Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleEnvironmental and Stress Physiology
You have accessRestricted Access

Osmotic Adjustment in Sorghum

I. Mechanisms of Diurnal Osmotic Potential Changes

Fekade S. Girma, Daniel R. Krieg
Fekade S. Girma
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Daniel R. Krieg
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published June 1992. DOI: https://doi.org/10.1104/pp.99.2.577

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1992 American Society of Plant Biologists

Abstract

Osmotic adjustment, defined as a lowering of osmotic potential (ψπ) due to net solute accumulation in response to water stress, has been considered to be a beneficial drought tolerance mechanism in some crop species. The objective of this experiment was to determine the relative contribution of passive versus active mechanisms involved in diurnal ψπ changes in sorghum (Sorghum bicolor L. Moench) leaf tissue in response to water stress. A single sorghum hybrid (cv AT×623 × RT×430) was grown in the field under variable water supplies. Water potential, ψπ, and relative water content were measured diurnally on expanding and the uppermost fully expanded leaves before flowering and on fully expanded leaves during the grain-filling period. Diurnal changes in total osmotic potential (Δψπ) in response to water stress was 1.1 megapascals before flowering and 1.4 megapascals during grain filling in comparison with 0.53 megapascal under well-watered conditions. Under water-stressed conditions, passive concentration of solutes associated with dehydration accounted for 50% (0.55 megapascal) of the diurnal Δψπ before flowering and 47% (0.66 megapascal) of the change during grain filling. Net solute accumulation accounted for 42% (0.46 megapascal) of the diurnal Δψπ before flowering and 45% (0.63 megapascal) of the change during grain filling in water-stressed leaves. The relative contribution of changes in nonosmotic volume (decreased turgid weight/dry weight) to diurnal Δψπ was less than 8% at either growth stages. Water stress did not affect leaf tissue elasticity or partitioning of water between the symplasm and apoplasm.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Osmotic Adjustment in Sorghum
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Osmotic Adjustment in Sorghum
Fekade S. Girma, Daniel R. Krieg
Plant Physiology Jun 1992, 99 (2) 577-582; DOI: 10.1104/pp.99.2.577

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Osmotic Adjustment in Sorghum
Fekade S. Girma, Daniel R. Krieg
Plant Physiology Jun 1992, 99 (2) 577-582; DOI: 10.1104/pp.99.2.577
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 99, Issue 2
June 1992
  • Table of Contents
  • Index by author

More in this TOC Section

  • Iron-Superoxide Dismutase Expression in Transgenic Alfalfa Increases Winter Survival without a Detectable Increase in Photosynthetic Oxidative Stress Tolerance
  • Role of Hormones in the Induction of Iron Deficiency Responses in Arabidopsis Roots
  • Reduction and Coordination of Arsenic in Indian Mustard
Show more Environmental and Stress Physiology

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire