Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleMetabolism and Enzymology
You have accessRestricted Access

Evidence for Circadian Regulation of Starch and Sucrose Synthesis in Sugar Beet Leaves

Bin Li, Donald R. Geiger, Wen-Jang Shieh
Bin Li
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Donald R. Geiger
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wen-Jang Shieh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published August 1992. DOI: https://doi.org/10.1104/pp.99.4.1393

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1992 American Society of Plant Biologists

Abstract

Starch accumulation and sucrose synthesis and export were measured in leaves of sugar beet (Beta vulgaris L.) during a period of prolonged irradiance in which illumination was extended beyond the usual 14-hour day period. During much of the 14-hour day period, approximately 50% of the newly fixed carbon was distributed to sucrose, about 40% to starch, and less than 10% to hexose. Beginning about 2 hours before the end of the usual light period, the portion of newly fixed carbon allocated to sucrose gradually increased, and correspondingly less carbon went to starch. By the time the transition ended, about 4 hours into the extension of the light period, nearly 90% of newly fixed carbon was incorporated into sucrose and little or none into starch. Most of the additional sucrose was exported. Gradual cessation of starch accumulation was not the result of a futile cycle of simultaneous starch synthesis and degradation. Neither was it the result of a decrease in the extractable activity of adenosine diphosphoglucose pyrophosphorylase or phosphoglucose isomerase, enzymes important in starch synthesis. Nor was there a notable change in control metabolites considered to be important in regulating starch synthesis. Starch accumulation appeared to decrease markedly because of an endogenous circadian shift in carbon allocation, which occurred in preparation for the usual night period and which diverted carbon from the chloroplast to the cytosol and sucrose synthesis.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Evidence for Circadian Regulation of Starch and Sucrose Synthesis in Sugar Beet Leaves
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Evidence for Circadian Regulation of Starch and Sucrose Synthesis in Sugar Beet Leaves
Bin Li, Donald R. Geiger, Wen-Jang Shieh
Plant Physiology Aug 1992, 99 (4) 1393-1399; DOI: 10.1104/pp.99.4.1393

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Evidence for Circadian Regulation of Starch and Sucrose Synthesis in Sugar Beet Leaves
Bin Li, Donald R. Geiger, Wen-Jang Shieh
Plant Physiology Aug 1992, 99 (4) 1393-1399; DOI: 10.1104/pp.99.4.1393
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 99, Issue 4
August 1992
  • Table of Contents
  • Index by author

More in this TOC Section

  • The Metabolism of Gibberellin A20 to Gibberellin A1 by Tall and Dwarf Mutants of Oryza sativa and Arabidopsis thaliana
  • A Mutation at the fad8 Locus of Arabidopsis Identifies a Second Chloroplast [omega]-3 Desaturase
  • The 58-Kilodalton Calmodulin-Binding Glutamate Decarboxylase Is a Ubiquitous Protein in Petunia Organs and Its Expression Is Developmentally Regulated
Show more Metabolism and Enzymology

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire