Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleMembranes and Bioenergetics
You have accessRestricted Access

Involvement of Calmodulin and Calmodulin-Dependent Myosin Light Chain Kinase in Blue Light-Dependent H+ Pumping by Guard Cell Protoplasts from Vicia faba L.

Ken-ichiro Shimazaki, Toshinori Kinoshita, Mitsuo Nishimura
Ken-ichiro Shimazaki
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Toshinori Kinoshita
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mitsuo Nishimura
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published August 1992. DOI: https://doi.org/10.1104/pp.99.4.1416

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1992 American Society of Plant Biologists

Abstract

Signal transduction processes involved in blue light-dependent proton pumping were investigated using guard cell protoplasts from Vicia faba. N-[2-(Methylamino)ethyl]-5-isoquinolinesulfonamide, an inhibitor of cyclic AMP- and cyclic GMP-dependent protein kinases, had no effect. 1-(5-Isoquinolinesulfonyl)-2-methylpiperazine (H-7) and calphostin C, inhibitors of protein kinase C, produced slight inhibition of the blue light-dependent proton pumping. 1-[N, O-Bis(5-isoquinolinesulfonyl)-N-methyl-l-tyrosyl] -4-phenylpiperazine, a specific inhibitor of Ca2+/calmodulin (CaM)-dependent protein kinase II, did not inhibit the proton pumping, but 1-(5-iodonaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine and 1-(5-chloro-naphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine (ML-9), inhibitors of Ca2+/CaM-dependent myosin light chain kinase, strongly suppressed the proton pumping. A CaM antagonist, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), inhibited blue light-dependent proton pumping, whereas its less active structural analog, N-(6-aminohexyl)-1-naphthalenesulfonamide (W-5), had little effect on the response. Other CaM antagonists, trifluoperazine, compound 48/80, prenylamine, and 3-(2-benzothiazolyl)-4,5-dimethoxy-N-[3-(4-phenyl-piperidinyl)- propylbenzenesulfonamide inhibited the proton pumping. In accord with these results, light-induced stomatal opening in the epidermis of Commelina benghalensis ssp. was inhibited by ML-9 and W-7, but not by H-7 and W-5. Thus, it is concluded that CaM and Ca2+/CaM-dependent myosin light chain kinase are the components of the signal transduction process in blue light-dependent proton pumping in guard cells.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Involvement of Calmodulin and Calmodulin-Dependent Myosin Light Chain Kinase in Blue Light-Dependent H+ Pumping by Guard Cell Protoplasts from Vicia faba L.
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Involvement of Calmodulin and Calmodulin-Dependent Myosin Light Chain Kinase in Blue Light-Dependent H+ Pumping by Guard Cell Protoplasts from Vicia faba L.
Ken-ichiro Shimazaki, Toshinori Kinoshita, Mitsuo Nishimura
Plant Physiology Aug 1992, 99 (4) 1416-1421; DOI: 10.1104/pp.99.4.1416

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Involvement of Calmodulin and Calmodulin-Dependent Myosin Light Chain Kinase in Blue Light-Dependent H+ Pumping by Guard Cell Protoplasts from Vicia faba L.
Ken-ichiro Shimazaki, Toshinori Kinoshita, Mitsuo Nishimura
Plant Physiology Aug 1992, 99 (4) 1416-1421; DOI: 10.1104/pp.99.4.1416
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 99, Issue 4
August 1992
  • Table of Contents
  • Index by author

More in this TOC Section

  • Short-Term Experiments on Ion Transport by Seedlings and Excised Roots
  • Photosystem II Core Phosphorylation Heterogeneity, Differential Herbicide Binding, and Regulation of Electron Transfer in Photosystem II Preparations from Spinach
  • Effects of Deuterium Oxide on Growth, Proton Extrusion, Potassium Influx, and in Vitro Plasma Membrane Activities in Maize Root Segments
Show more Membranes and Bioenergetics

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire