Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleMetabolism and Enzymology
You have accessRestricted Access

Wheat Vegetative Nitrogen Compositional Changes in Response to Reduced Reproductive Sink Strength

Charles T. MacKown, David A. Van Sanford, Ningyan Zhang
Charles T. MacKown
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David A. Van Sanford
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ningyan Zhang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published August 1992. DOI: https://doi.org/10.1104/pp.99.4.1469

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1992 American Society of Plant Biologists

Abstract

N redistribution patterns and the N composition of vegetative tissues above the peduncle node of wheat (Triticum aestivum L.) plants with altered reproductive sink strength were evaluated to determine the role of vegetative storage proteins in the temporary storage of excess N destined for export. The degree of leaf senescence symptoms (loss of chlorophyll, total N, and ribulose-1,5-bisphosphate carboxylase/oxygenase) were initially reduced, but the complete senescence of vegetative tissues proceeded even for plants completely lacking reproductive sinks. Plants with 50% less sink strength than control plants with intact spikes redistributed vegetative N to the spike almost as effectively as the control plants. Plants without reproductive sinks exported less N from the flag leaf and had flag leaf blades and peduncle tissues with higher soluble protein and α-NH2 amino acid levels than control plants. An abundant accumulation of polypeptides in the soluble protein profiles of vegetative tissues was not evident in plants with reduced sink strength. Storage of amino acids apparently accommodates any excess N accumulated by vegetative tissues during tissue reproductive growth. Any significant role of vegetative storage proteins in the N economy of wheat is unlikely.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Wheat Vegetative Nitrogen Compositional Changes in Response to Reduced Reproductive Sink Strength
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Wheat Vegetative Nitrogen Compositional Changes in Response to Reduced Reproductive Sink Strength
Charles T. MacKown, David A. Van Sanford, Ningyan Zhang
Plant Physiology Aug 1992, 99 (4) 1469-1474; DOI: 10.1104/pp.99.4.1469

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Wheat Vegetative Nitrogen Compositional Changes in Response to Reduced Reproductive Sink Strength
Charles T. MacKown, David A. Van Sanford, Ningyan Zhang
Plant Physiology Aug 1992, 99 (4) 1469-1474; DOI: 10.1104/pp.99.4.1469
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 99, Issue 4
August 1992
  • Table of Contents
  • Index by author

More in this TOC Section

  • The Metabolism of Gibberellin A20 to Gibberellin A1 by Tall and Dwarf Mutants of Oryza sativa and Arabidopsis thaliana
  • A Mutation at the fad8 Locus of Arabidopsis Identifies a Second Chloroplast [omega]-3 Desaturase
  • The 58-Kilodalton Calmodulin-Binding Glutamate Decarboxylase Is a Ubiquitous Protein in Petunia Organs and Its Expression Is Developmentally Regulated
Show more Metabolism and Enzymology

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire