Sorbitol plays a key role in the translocation of photosynthate in the Rosaceae family, including apple (Malus domestica), pear, and stone fruits (4, 7). NADP-S6PDH plays the most important role in biosynthesis of sorbitol in apple because its activity increases before accumulation of sorbitol in seedlings (8), and high activity is maintained in leaves (10). This enzyme reduces G6P to S6P using only NADPH (1, 6). Therefore, S6P dehydrogenase (EC 1.1.1.140), which catalyzes NAD-dependent conversion between fructose 6-phosphate and S6P in microorganisms (3), is different from NADP-S6PDH described in this paper.

We report the isolation of a cDNA clone encoding NADP-S6PDH from apple (Table I). To our knowledge, this is the first report of the complete primary structure of a sorbitol-related enzyme from plants. A cDNA library constructed from apple seedlings was screened with the antibody against NADP-S6PDH purified from loquat leaves (1). The nucleotide and deduced amino acid sequences of the clone cDNA is shown in Figure 1.

ACKNOWLEDGMENTS

We thank Dr. M. Hirai, National Research Institute of Vegetables, Ornamental Plants, and Tea, for the gift of antibodies. We also thank Ms. H. Kajura, National Institute for Basic Biology, for amino acid sequencing work.

LITERATURE CITED

1 This study was carried out under the National Institute for Basic Biology Cooperative Research Program (91–166).
2 Abbreviations: NADP-S6PDH, NADP-dependent D-sorbitol-6-phosphate dehydrogenase; G6P, D-glucose 6-phosphate; S6P, D-sorbitol 6-phosphate.
Table 1. Characteristics of a cDNA Encoding Apple NADP-S6PDH

| Organism: | Malus domestica. |
| Function: | 56P + NADP* ⇔ G6P + NADPH + H+ (1, 6). |

Techniques:
A cDNA library constructed in pBluescript (Stratagene) by the vector-primer method (5) was screened with polyclonal antibodies raised against purified loquat NADP-S6PDH (1). Sequencing of double-stranded DNA was by the dideoxyribonucleotide method. 17 primer was used for sequencing of deletion mutants, and synthetic oligonucleotide primers were used for the other strand.

Methods of Identification:
Sequence identity with a partial amino acid sequence of a polypeptide obtained by cleavage (2) of purified NADP-S6PDH at Pro323 to Ala340 of the deduced sequence; detection of NADP-S6PDH activity in an extract of Escherichia coli harboring the cDNA; synthesis of an immunoreactive protein similar in size to the purified enzyme in E. coli.

Expression Characteristics:
mRNA of approximately 1.4 kb detected by northern blot analysis of polyadenylate-enriched RNA and total RNA.

Regulation:
Unknown.

(G+C) Content:
46.4% in the coding region.

Structural Features of Protein:
Open reading frame of 310 amino acids; M, 34,900; dimers consisting of two equally sized subunits (1).

Subcellular Localization:
Chloroplast and cytosol (9).

DDBJ/EMBL/GenBank Accession No.:
D11080

Figure 1. Nucleotide sequence and deduced amino acid sequence of a cDNA encoding apple NADP-S6PDH. The partial amino acid sequence determined by Edman degradation of a peptide fragment obtained from NADP-S6PDH is underlined.