An O-Acetylserine (Thiol) Lyase cDNA from Spinach

Rüdiger Hell, Gadi Schuster, and Wilhelm Gruissem

Department of Plant Biology, University of California, Berkeley, California 94720

Cys biosynthesis represents the essential step of incorporation of reduced sulfur into an organic compound in microorganisms and plants. OAS-TL (EC 4.2.99.8; also called Cys synthase) catalyzes the formation of L-Cys from free or bound sulfide and O-acetyl-L-Ser. Both the substrate O-acetylserine and the product Cys of this reaction are postulated to be involved in the regulation of sulfur uptake and assimilation (Giovanelli et al., 1980; Neuenschwander et al., 1991). OAS-TL has been purified to apparent homogeneity from spinach (Spinacia oleracea L.) leaf extracts (Murakoshi et al., 1985) and spinach chloroplasts (Droux et al., 1992) and consists of two identical subunits of 35 kD with a pyridoxal phosphate cofactor. Isoforms of OAS-TL occur in the cytosol, chloroplasts, and mitochondria of spinach leaves (Lunn et al., 1990).

We report here the complete cDNA sequence for a nuclear-encoded plastid isoform of OAS-TL from spinach and its expression in different organs.

A spinach young leaf cDNA library was screened with a rabbit polyclonal antiserum originally generated against a soluble chloroplast protein fraction that had been fractionated for RNA binding activity by Suc gradient centrifugation and heparin affinity chromatography. Four independent cDNA clones were isolated from 500,000 plaques. The sequences of the cDNA insert ends showed that the four clones differed only in length. The complete nucleotide sequence of the longest cDNA insert (designated pIOAS-TL) was determined for both strands. A comparison of the predicted amino acid sequence with sequences in the GenBank/EMBL data base revealed extensive homology to the proteins encoded by the Escherichia coli and Salmonella typhimurium cysK and cysM genes, which encode Cys synthase activity (Byrne et al., 1988). Amino acid homology to OAS-TL from Capsicum annuum chloroplasts (Römer et al., 1992) is 70%, including a putative chloroplast transit sequence (von Heijne et al., 1989), and 77% for the mature proteins. The sequence deduced from pIOAS-TL is consistent with the total amino acid composition as well as an amino terminal peptide sequence reported for the purified, mature OAS-TL from spinach chloroplasts (Droux et al., 1992). This sequence begins at amino acid position 52 of the pIOAS-TL cDNA clone, which would indicate a mature subunit of 35.7 kD. Therefore, the cDNA clone reported here probably encodes a plastid-localized OAS-TL. The amino acid sequence of pIOAS-TL shows 69% identity to that of a spinach cDNA encoding an OAS-TL that has been suggested to be a cytosolic isoform (Saito et al., 1992). The latter sequence contains no transit peptide, and its alignment starts at a position similar to that of the suggested mature OAS-TL protein from plastids.

Received January 15, 1993; accepted January 19, 1993.
Copyright Clearance Center: 0032-0889/93/102/1057/02.
The GenBank accession number for the sequence reported in this article is L05184.

LITERATURE CITED
Byrne CR, Monroe RS, Ward KA, Kredich NM (1988) DNA sequences of the cysK regions of Salmonella typhimurium and Esche-

Abbreviation: OAS-TL, O-acetylserine (thiol) lyase.
Hell et al.

richia coli and a linkage of the cysK regions to ptsH. J Bacteriol 170: 3150–3157


