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Figure 5. Distribution of H2O2 in the growing
zone of the first internode of pea stems treated
with ethylene for induction of radial expansion.
Pea seedlings were transferred, after 3 d of
germination in darkness, to a root medium con-
taining water with 100 mg L~' ethephon for
inducing the ethylene-specific radical expan-
sion growth in the upper part of the first inter-
node. After a further 3 d of growth in darkness,
sections were prepared from the indicated re-
gions of the epicotyl (a and b) and either incu-
bated in a drop of Kl-starch reagent (left) or
blotted as in Figure 2 (right). For comparison,
sections from the same region of the first inter-
node of nontreated control seedlings are also
shown (c). Bar = 1 mm.

can be catalyzed in the absence of H2O2 by laccase was
recently emphasized by O'Malley et al. (1993).

Example 4: Change of Epidermal H2O2 Levels during
Light-Induced Growth Inhibition of Sunflower and
Cucumber Hypocotyls

The light-mediated inhibition of hypocotyl elongation is a
central feature of photomorphogenesis in dicotyledonous
seedlings. The hypothesis has been proposed that this re-
sponse is mediated by a stiffening of the cell wall in the
elongation zone of the hypocotyl by peroxidase-catalyzed
cross-linking of load-bearing wall polymers (Goldberg et al.,
1987; Angelini et al., 1990; Zheng and Van Huystee, 1992).
In this context it was of interest to check whether light has a
promoting effect on the level of H2O2 in the elongation zone

of the hypocotyl. Figure 7 shows that there are in fact
significant differences in the intensity of H2O2 staining in
tissue prints produced by hypocotyl sections from illuminated
and dark-grown sunflower and cucumber seedlings. In both
plants staining was strongest in the epidermis and in the
vascular bundles, with less intense staining in the cortex.
Illumination with white light produced a marked increase in
staining in all tissues, especially in the epidermis. Similar
results were obtained with soybean seedlings (data not
shown). Interestingly, sunflower and cucumber produced a
dotted staining pattern instead of a meshwork in the H2O2-
positive regions of the prints, suggesting that H2O2 is trans-
ferred to the paper from the cell lumens rather than from the
cell walls. Taken together, these results indicate that light-
grown hypocotyls contain higher levels of H2O2 in their
elongation zone than dark-grown hypocotyls. Moreover,

\

Figure 6. Distribution of lignin and H2O2 in the hypocotyl of a bean seedling. Sections were prepared from the growing
region of the hypocotyl (20 mm below the cotyledonary node) of a bean seedling grown for 6 d in darkness. Sequential
sections were either stained for lignin with phloroglucinol-HCI (left, dark regions) or blotted as in Figure 2. Middle, Blot
photographed immediately after removal of the section showing the mechanical imprints of the xylem bundles. Right,
The same blot photographed 20 min later showing the pattern of H2O2-mediated staining. The orientation of the sections
is indicated by arrows. Bar = 1 mm.  www.plantphysiol.orgon October 30, 2020 - Published by Downloaded from 
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H2O2 seems to be located primarily in the epidermis, the
putatively growth-controlling tissue of the organ (Hohl and
Schopfer, 1992). Whether this effect can be causally related
to the light-mediated inhibition of growth remains uncertain.
At any rate, these experiments do demonstrate that the H2O2
level of plant tissues can be regulated by environmental
factors such as light and that tissue printing is an effective
method to document this phenomenon.

Example 5: Induction of H2O2 Formation in Wounded
Potato Tuber Tissue

Wound healing of injured storage parenchyma of the po-
tato tuber is characterized by the formation of a new suber-
ized periderm from a cork cambium (phellogen) regenerated
at the surface of the wound that closely resembles the original
periderm of the nonwounded tuber surface (Kahl, 1978).
Figure 8 shows that the outer cell layers of tuber, including
the periderm, contain high amounts of H2O2. Moreover, the
air-exposed surface of a freshly cut tuber disc also acquires
the ability to accumulate levels of H2O2 within 24 h after
wounding that are detectable with the H2O2-printing method.
This response to mechanical injury may be related to the
biosynthesis of suberin in the newly formed periderm (Ko-
lattukudy, 1981). In addition, H2O2 could serve as a chemical
defense barrier against the invasion of fungal and bacterial
pathogens. H2O2 printing may provide a useful tool for
investigating these protective processes in more detail.

GENERAL CONCLUSIONS

These few examples of application of the H2O2-printing
assay to various plant materials illustrate that H2O2 is gen-

Figure 7. Distribution of H2O2 in the growing zone of the hypocotyl
of sunflower (top) and cucumber (bottom) seedlings grown in the
light (left) or in darkness (right). Seedlings were grown for 6 d in
white light or darkness. Sections were prepared from the hypocotyl
10 mm below the cotyledonary node and blotted as in Figure 2.
Bar = 1 mm.

48 h

60 h

Figure 8. Wound-induced formation of H2O2 in potato tuber sec-
tions. A 5-mm disc cut from the middle of a potato tuber was stored
with its lower surface on wet filter paper in a closed box at 25°C.
Left, Various times after wounding, thin sections (0.5 mm) were cut
at right angles to the wound surfaces from the periphery of the
disc, including the periderm, and blotted as in Figure 2. Note that
staining occurs after >24 h in a thin layer adjacent to the upper
(air-exposed) wound surface but not at the lower surface (facing
the filter paper). Also, the inner edges of the sections, which result
from the cutting immediately before the assay, show no response.

erally produced by many plant tissues, although in highly
variable amounts. This assay should be useful for quickly
screening large numbers of samples in vivo for the presence
and histological distribution of H2O2. The rapidity of the
assay minimizes the possibility of unwanted side reactions,
although a possibility for false-negative results remains.
Moreover, because the results can be obtained within less
than 1 min after preparation of tissue sections, wound-
induced changes in the H2O2 level can be largely excluded.
After standardization, the method can be used for semiquan-
titative estimation of H2O2 and comparative studies on
changes in H2O2 levels mediated by developmental factors
such as hormones, light, or wounding. H2O2 appears to be a
developmentally tightly regulated metabolite in the plant, the
study of which may provide a multitude of new and unex-
pected insights into growth and development.

Finally, it should be noted that this assay can be modified
for the histochemical localization of other oxidizing agents.
For example, as pointed out by Joe Varner (personal com-
munication), nitrite will oxidize KI to I2 at pH 4.0. This
reaction can possibly be used for the localization of nitrite as
well as nitrite reductase.
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