Biosynthesis of Cardiolipin in Plant Mitochondria

Margrit Frentzen* and Regina Griebau
Institut für Allgemeine Botanik, Universität Hamburg, Ohnhorststraße 18, D-22609 Hamburg, Germany

The properties of cardiolipin synthase were investigated in mitochondrial and submitochondrial fractions from etiolated mung bean (Vigna radiata L.) seedlings. Direct evidence is presented that the enzyme utilizes CDP-diacylglycerol in addition to phosphatidylglycerol for the synthesis of cardiolipin. Cardiolipin synthase had an alkaline pH optimum of about 9 and required divalent cations for activity. Maximal activity was obtained in the presence of 16 mM MnCl₂. The apparent K_m values for CDP-diacylglycerol and phosphatidylglycerol were 0.8 and 50 μM, respectively. Cardiolipin synthase was localized predominantly in the inner membrane of mung bean mitochondria and displayed a substrate species specificity. Highest activities were measured with the dioleoyl species of both CDP-diacylglycerol and phosphatidylglycerol, and somewhat lower activities were measured with mixed species of the two substrates containing a palmitoyl and an oleoyl group. On the other hand, the cardiolipin synthase hardly used the dipalmitoyl species and strongly discriminated against CDP-dipalmitoylglycerol from a mixture with CDP-dioleoylglycerol.

Cardiolipin (diphosphatidylglycerol) is an anionic phospholipid with a unique tetraacyl structure found in mitochondria of eukaryotes as well as in membranes of various prokaryotes. It is generally accepted that cardiolipin is a characteristic component of the inner mitochondrial membrane, but recent reports have shown that it is also present in the outer membrane (Hovious et al., 1990, 1993) and is even enriched in the contact sites between the two membrane systems (Ardail et al., 1990; Simbeni et al., 1991). There is a growing body of evidence that cardiolipin is of vital importance for mitochondria by interacting with several enzymes and substrate carriers in such a way that makes it an essential membrane component for respiration and oxidative phosphorylation (Daum, 1985; Hoch, 1992; Robinson, 1993). Moreover, it appears to play a decisive role in targeting cytoplasmically synthesized preproteins to the mitochondria (Leenhouts et al., 1993; Robinson, 1993).

Cardiolipin can be synthesized by two alternative pathways (Fig. 1). In bacteria a membrane-bound condensing enzyme, the cardiolipin synthase, utilizes two molecules of acylGroPGro for cardiolipin synthesis (Fig. 1; Shibuya, 1992). On the other hand, the mitochondrial cardiolipin synthase from diverse eukaryotes catalyzes the transfer of a phosphatidyl residue from CDP-acylGro to acylGroPGro (Fig. 1; Daum, 1985; Tamai and Greenberg, 1990; Schlame and Hostetler, 1991; Schlame and Haldar, 1993; Schlame et al., 1993). So far, cardiolipin synthase of both E. coli and rat liver have been purified (Hiraoka et al., 1991; Schlame and Hostetler, 1991) and the gene of E. coli encoding the enzyme has been cloned (Ohya et al., 1985), whereas little is known about cardiolipin biosynthesis in plants (Kinney, 1993). Recently, cardiolipin synthase activity has been clearly demonstrated for the first time by Schlame et al. (1993) in isolated plant mitochondria. The authors, however, failed to detect this enzymic activity when radioactively labeled CDP-acylGro instead of acylGroPGro was used as the tracer molecule. Thus, it is still unclear whether the plant enzyme follows the prokaryotic or the eukaryotic pathway (Fig. 1). Furthermore, the mechanisms that cause the different fatty acid patterns of acylGroPGro and cardiolipin from plant mitochondria as well as the origin of polyunsaturated C₂₀ fatty acids, which are esterified in a distinctly higher proportion in cardiolipin than in its precursor acylGroPGro (Bligny and Douce, 1980; Fuchs et al., 1981; Edman and Ericson, 1987; Dorne and Heinz, 1989), have not been elucidated.

To approach these problems, we have started to characterize cardiolipin synthase in plant mitochondria. In this paper the properties of the enzyme from mung bean (Vigna radiata L.) mitochondria are presented that clearly show that in plants, as in other eukaryotes, the committed step of cardiolipin biosynthesis involves the transfer of a phosphatidyl group from CDP-acylGro to acylGroPGro (Fig. 1). Furthermore, the observed substrate species specificities and selectivities of the synthase are discussed with regard to the typical fatty acid pattern of cardiolipin.

MATERIALS AND METHODS

Chemicals

-sn-[U-¹⁴C]GroP (5.88 kBq nmol⁻¹) was purchased from Amersham Buchler and the various CDP-acylGroP and acylGroPGro species were obtained from Serdary Research.

Abbreviations: acylGroP, 1-acyl-sn-glycerol-3-phosphate; acylGroP, 1,2-diacyl-sn-glycerol-3-phosphate; acylGroPGro, phosphatidylglycerol; acylGroPGro, phosphatidylglycerophosphate; Ampso, 3-[(1,1-dimethyl-2-hydroxyethyl)amino]-2-hydroxypropanesulfonic acid; Capso, 3-[(cyclohexylamino)-2-hydroxy-1-propane-sulfonic acid; CDP-acylGro, CDP-diacylglycerol; Ches, 2-[N-(cyclohexylamino)ethanesulfonic acid; GroP, sn-glycerol-3-phosphate.
Figure 1. Biosynthesis of cardiolipin via the prokaryotic (A) and the eukaryotic pathway (B).

Acyl\(2\)Gro PGro I

RCOO RCOO

PGro

A

Acyl\(2\)Gro PGro

Gro

B

CDP-acyl\(2\)Gro

Gro

OCR OCR

PGro P

Cardiolipin

Laboratories (London, Ontario, Canada) or Sigma. CDP-acyl\([U-^{14}C]\)Gro (5.88 kBq nmol\(^{-1}\)) was synthesized enzymatically from \([U-^{14}C]\)GroP, acyl-CoA, and CTP in three consecutive reactions. At first the 1-oleoyl and 1-palmitoyl derivatives of \([U-^{14}C]\)GroP were produced with purified GroP acyltransferase from pea chloroplasts according to Bertrams and Heinz (1981). Next, labeled acylGroP was converted to the 1,2-diacyl derivative in an acylGroP acyltransferase assay consisting of 0.1 M Tris-HCl, pH 8, 12 \(\mu\)M acyl\([U-^{14}C]\)GroP, 30 \(\mu\)M oleoyl-CoA, and about 30 \(\mu\)g of crude membrane protein from the \(E.\) coli strain JC201/pPLSC, which overproduces acylGroP acyltransferase (Coleman, 1992), in a total volume of 2 mL. After an incubation of 60 min at 37°C, lipids were extracted according to Hajra (1974), dried in a stream of argon, and resuspended in 50 mM phosphate buffer, pH 7.4. Finally, CDP-acyl\([U-^{14}C]\)Gro was synthesized from acyl\([U-^{14}C]\)GroP and CTP by membrane fractions of \(E.\) coli harboring pCD100 and subsequently purified by TLC as described by Tamai and Greenberg (1990). \([U-^{14}C]\)GroP was converted to the final product with a yield of 50 to 60%.

Purification and Fractionation of Mitochondria

Mitochondria were isolated from etiolated mung bean (\(Vigna\) \(radiata\) \(L\).) seedlings according to the procedure of Neuburger et al. (1982) as described previously (Griebau and Frentzen, 1994). Purified mitochondria were washed and resuspended in 20 mM Pipes-KOH, pH 7.2, 5 mM DTT. To isolate mitochondrial membranes, purified organelles corresponding to about 4 mg of protein were diluted in 20 mL of hypotonic medium containing 2 mM Pipes-NaOH, pH 7.3, and 0.25 mM EDTA. The suspension was stirred for 20 min, briefly sonicated (twice for 5 s), and then spun for 30 min at 140,000g. The resulting pellet of outer and inner membranes was resuspended in 20 mM Pipes-NaOH, pH 7.3, containing 5 mM DTT and 50% (v/v) glycerol and stored at \(-20^\circ\)C.

Outer mitochondrial membranes were separated from the inner ones by the swelling contraction method (Douce et al., 1973) as described previously (Frentzen et al., 1990). The protein concentration in mitochondrial fractions was determined according to Bradford (1976).

Enzyme Assays

Unless otherwise stated, cardiolipin synthase was measured at 30°C in isolated mung bean mitochondria or mitochondrial membrane fractions (up to 10 \(\mu\)g of protein) in the presence of 50 mM Bis-Tris-propane-HCl, pH 9, 16 mM MnCl\(_2\), 0.5 mM oleoyl\([U-^{14}C]\)GroPGro, and 3 \(\mu\)M CDP-oleoyl\([U-^{14}C]\)Gro in a total volume of 50 \(\mu\)L. Reaction was started by the addition of MnCl\(_2\) and stopped after 20 min with 240 \(\mu\)L of chloroform:methanol (1:1, v/v) containing 50 \(\mu\)g of cardiolipin and 100 \(\mu\)L of 0.2 mM H\(_2\)PO\(_4\), 1 mM KCl. After phase separation, 100 \(\mu\)L of the chloroform layer were routinely analyzed by TLC on Silica Gel 60 plates in chloroform:methanol:glacial acetic acid (65:25:8, v/v). To confirm the identity of the products, they were rechromatographed in different solvent systems and their water-soluble products obtained by deacylation were analyzed as described previously (Griebau and Frentzen, 1994).

Acyl\(2\)GroPGroP synthase activity was measured by determining the incorporation of \([U-^{14}C]\)GroP into lipophilic products as described previously (Griebau and Frentzen, 1994). Acyl\(2\)GroPGroP phosphatase activity was assayed and the reaction product was separated by TLC according to Griebau and Frentzen (1994). The activity of CDP-acyl\(2\)Gro synthase was measured by monitoring the incorporation of \([5-^{3}H]\)CTP

Figure 2. Biosynthesis of cardiolipin in mung bean mitochondria from labeled CDP-oleoyl\(2\)Gro. The radioscans show the labeling pattern of the reaction products formed by isolated mung bean mitochondria (30 \(\mu\)g of protein) from CDP-oleoyl\([U-^{14}C]\)Gro without (A) and with (B) exogenously added oleoyl\([U-^{14}C]\)GroPGro. 1, CDP-acyl\(2\)Gro; 2, phosphatidylethanolamine; 3, acyl\(2\)GroPGro; 4, cardiolipin.
into chloroform-soluble products under conditions similar to those reported by Carman et al. (1980). In brief, the reaction mixture was composed of 50 nM Bis-Tris-propane-HCl, pH 7.5, 10 mM MgCl₂, 0.5 mM oleoylGroP, 5 mM Triton X-100, up to 20 μg of mitochondrial protein, and 1.2 mM [5-3H]CTP (310 Bq nmol⁻¹) in a total volume of 50 μL. Reactions were terminated and lipophilic products were extracted (Hajra, 1974) after 20 min at 30°C. AcylGroP acyltransferase and Cyt c oxidase were determined as outlined by Frentzen et al. (1990) and Jesaitis et al. (1977), respectively.

RESULTS AND DISCUSSION

Assay Conditions

To elucidate the reaction sequence resulting in the formation of cardiolipin in plant mitochondria, we have optimized an in vitro assay for cardiolipin synthase. Since hardly any cardiolipin was formed via in situ-synthesized acyl₂GroPGro, CDP-acyl²Gro instead of acyl₂GroPGro as a tracer molecule. These differences are presumably due to the different assay conditions used. Hence, direct evidence is provided that in plant mitochondria cardiolipin biosynthesis requires not only acyl₂GroPGro but also CDP-acyl₂Gro and is, thus, catalyzed by an acyl₂GroPGro:CDP-acyl₂Gro phosphatidyltransferase as in the organelles of other organisms (Fig. 1) (Daum, 1985; Tamai and Greenberg, 1990; Schlame et al., 1993). Cardiolipin synthase from mung bean mitochondria exhibited an alkaline pH optimum of about 9 (Fig. 3A), similar to the respective enzyme from yeast (Tamai and Greenberg, 1990) and rat liver mitochondria (Schlame and Hostetler, 1991). The activity of the plant enzyme varied appreciably in dependence on the buffer substance. Highest activities were measured in Bis-Tris-propane-HCl, but 2- to 5-fold lower activities were measured in Ampso-NaOH, Ches-NaOH, Tris-HCl, and Capso-NaOH.

As depicted in Figure 3B, cardiolipin synthase requires divalent cations for its activity. Maximal activities were achieved by addition of MnCl₂ to a final concentration of about 16 mM. Stimulation of cardiolipin synthase by Mg²⁺ was distinctly lower than by Mn²⁺, whereas Co²⁺ or Ca²⁺ showed no effect (Fig. 3B). Due to the low solubility and stability of Mn²⁺ at alkaline pH values, the enzyme assays were started by the addition of MnCl₂. In this way reaction rates were independent of whether or not oxidation of Mn²⁺ was largely prevented during the incubation. A requirement of the cardiolipin synthase activity from mung bean mitochondria for divalent cations has also been described by Schlame et al. (1993). An absolute dependence on such cations appears to be typical of the mitochondrial cardiolipin synthase from various organisms, although they differ in their cation specificities (Daum, 1985; Tamai and Greenberg, 1990; Schlame et al., 1993). Unlike the enzyme of mung beans, those of other eukaryotes displayed a specificity for

Table 1. Enzymic activities in outer (OM) and inner (IM) membrane fractions from mung bean mitochondria

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Total Activity</th>
<th>Specific Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OM</td>
<td>IM</td>
</tr>
<tr>
<td>AcylGroP acyltransferase</td>
<td>11</td>
<td>91</td>
</tr>
<tr>
<td>CDP-acyl₂Gro synthase</td>
<td>36</td>
<td>3400</td>
</tr>
<tr>
<td>Acyl₂GroPGro synthase</td>
<td>6</td>
<td>330</td>
</tr>
<tr>
<td>Acyl₂GroPGroP phosphatase</td>
<td>64</td>
<td>4200</td>
</tr>
<tr>
<td>Cardiolipin synthase</td>
<td>12</td>
<td>700</td>
</tr>
<tr>
<td>Cyt c oxidase*</td>
<td>6</td>
<td>6400</td>
</tr>
</tbody>
</table>

*10⁻² values are given.

Figure 3. Effect of pH (A) and divalent cation (B) on cardiolipin synthase activity in mung bean mitochondria. Incorporation rates of CDP-oleoyl₁[U-¹⁴C]Gro into cardiolipin were measured in a reaction mixture buffered with Bis-Tris-propane-HCl (A) and containing the given cation concentrations (B) (Ca²⁺ gave the same results as Co²⁺).
Substrate species specificities of the cardiolipin synthase from mung bean mitochondria. Formation rates of cardiolipin by inner membrane fractions are given as a function of the concentrations of species of acyl2GroPGro (O, dioleoyl; ●, dipalmitoyl; ▲, dimyristoyl; and △, the mixture from egg lecithin) (A) and CDP-acyl2Gro (O) and CDP-1-palmitoyl-2-oleoyl[U-14C]Gro (□) (B).

Submitochondrial Localization

In mitochondria from mung bean seedlings cardiolipin synthase is firmly bound to the membrane, since its total activity measured in mitochondria could be recovered in the membrane fractions even after washing the membranes with buffer containing 0.6 M KCl. To localize the enzyme more precisely, the two membrane systems were separated on Suc step gradients. As shown in Table I, most of the cardiolipin synthase activity was recovered in the inner membrane frac-
tions, and in these fractions the specific activity of the enzyme was about 2-fold higher than in the outer fractions. The distribution of the cardiolipin synthase corresponded to those of CDP-acylGro synthase, acylGroPGro synthase, and phosphatase, but differed from that of acylGroP acyltransferase (Table I). Furthermore, results very similar to those given in Table I were obtained when the experiments were carried out with mitochondrial membrane fractions isolated from etiolated cucumber seedlings.

The observed submitochondrial localization of the plant enzymes involved in acylGroP, CDP-acylGro, and acylGroPGro biosynthesis is in agreement with previous results (Douce et al., 1972; Sparace and Moore, 1979; Frentzen et al., 1990). Hence, in plant mitochondria all enzymatic activities that catalyze the reactions from acylGroP to acylGroPGro are located in the inner membrane, and within this membrane CDP-acylGro and acylGroPGro serve as substrates for the biosynthesis of cardiolipin. A comparison of the activity patterns of these enzymes with that of Cyt c oxidase, however, revealed that the activities determined in the outer membranes could not be attributed merely to contamination of these fractions with inner membranes (Table I). Rather, the results indicate that the biosynthesis of cardiolipin occurs predominantly but not exclusively in the inner membrane. In this respect mitochondria of mung bean and cucumber seedlings resemble more closely the organelles of guinea pig liver (Stuhne-Sekalic and Stanacev, 1990) than those of rat liver, in which cardiolipin synthase is located exclusively in the inner membranes (Hostetter and van den Bosch, 1972; Stuhne-Sekalic and Stanacev, 1990; Schlame and Haldar, 1993).

Substrate Specificities and Selectivities

To understand by which reaction sequences the typical fatty acid composition of cardiolipin is established, the substrate specificities of the cardiolipin synthase of mung bean mitochondria have been investigated. Figure 4A shows results of cardiolipin synthesis from CDP-oleoyl[G-14C]Gro and various species of acylGroPGro exogenously added as sonicated micellar solutions. Highest activities of cardiolipin synthase were obtained with oleoylGroPGro, and lower activities were obtained with acylGroPGro from egg lecithin, which consists predominantly of the 1-palmitoyl-2-oleoyl species. These results were confirmed and extended by competition experiments in which the incorporation rates of CDP-oleoyl[G-14C]Gro into cardiolipin were determined in the presence of increasing concentrations of various unlabeled CDP-acylGro species (Fig. 5). CDP-myristoylGro as well as the species mixture from egg lecithin efficiently competed with the dioleoyl species for cardiolipin synthesis, whereas CDP-decanoylGro was less effective. On the other hand, CDP-palmitoylGro hardly altered the incorporation rates of the dioleoyl species (Fig. 5). With regard to its CDP-acylGro species specificity, cardiolipin synthase from mung bean mitochondria differs from the respective enzyme from mammalian cells (Hostetler et al., 1975; Stuhne-Sekalic and Stanacev, 1989). Furthermore, it has a substrate specificity quite different from those of acylGroPGro synthase and phosphatase from mung bean mitochondria (Griebau and Frentzen, 1994). Unlike these enzymes, which showed higher activities with the dipalmitoyl species of their substrates than with the dioleoyl species, cardiolipin synthase specifically used the dioleoyl species of both CDP-acylGro and acylGroPGro and strongly discriminated against the dipalmitoyl species of both its substrates. These results correlate with the fatty acid composition of cardiolipin consisting of more than 90% unsaturated C18 acyl groups. However, the results obtained with the substrate species containing both a palmitoyl and an oleoyl group strongly suggest that the incorporation of such mixed species into cardiolipin cannot be prevented by the properties of the synthase. Perhaps de- and reacylation reactions are also involved in establishing the typical fatty acid pattern of cardiolipin, as has been described for cardiolipin of mammalian cells (Schlame and Rüdstow, 1990), but this awaits clarification.

ACKNOWLEDGMENTS

We are grateful to Dr. M. Greenberg for her assistance in providing us with plasmid pCD100. We thank Dr. J. Coleman for providing E. coli strain JC201/pPLSC.

Received May 18, 1994; accepted August 10, 1994.

Copyright Clearance Center: 0032-0889/94/106/1527/06.

LITERATURE CITED

Cardiolipin Synthesis 1531

Hostetler KY, Galisloot JM, Boer P, van den Bosch H (1975) Further studies on the formation of cardiolipin and phosphatidylglycerol in rat liver mitochondria, effect of divalent cations and the fatty acid composition of CDP-diglyceride. Biochim Biophys Acta 380: 382–389

Hostetler KY, van den Bosch H (1972) Subcellular and submitochondrial localization of the biosynthesis of cardiolipin and related phospholipids in rat liver. Biochim Biophys Acta 260: 380–386

