Microfilaments perform essential functions in eukaryotic cells, being responsible, in conjunction with other cytoskeletal elements, for the structural integrity of the cell and also for many of the cellular movements, including muscle contraction, cytokinesis, cytoplasmic streaming, and phagocytosis. The structural versatility of microfilaments is mediated by actin-binding proteins (Hartwig and Kwiatkowski, 1991). A group of small actin-binding proteins, the ADF group, has the ability to regulate actin polymerization and depolymerization. Proteins within the ADF group have similar properties and they include vertebrate ADF (Bamburg et al., 1980), or destrin (Moriyama et al., 1990), starfish depectin (Mabuchi, 1981), and Acanthamoeba actophorin (Cooper et al., 1986). Chemical cross-linking experiments, mutational analysis, and competition studies using synthetic peptides have demonstrated that the amino acid region from Trp°-Leu in pig cofilin is likely to be a multifunctional domain binding both phosphoinositides and actin (Yonezawa et al., 1991a, 1991b; Moriyama et al., 1992); the Lys plays a pivotal role in the actin-depolymerizing activity of cofilin (Moriyama et al., 1992). This amino acid region is highly conserved among the members of the ADF group.

Recently, a lily anther preferentially expressed cDNA was isolated and sequenced by An and colleagues (Kim et al., 1993), and the deduced amino acid sequence showed significant homology to the proteins in the ADF group. In a similar study, we differentially screened a maize pollen cDNA library with radiolabeled shoot and pollen first-strand cDNA and isolated a pollen-abundant cDNA, ZmABP1. The nucleotide sequence of ZmABP1 shows homology to the lily cDNA and to the members of the ADF group (Table I).

ZmABP1 was found to encode a protein of 139 amino acids. The deduced amino acid sequence shows 70% identity (97% similarity) with the lily sequence. A comparison of the maize sequence with the sequence of the members of the ADF group reveals that most homology is exhibited with yeast cofilin (44% identity, 83% similarity) and least homology with starfish depectin (22% identity, 72% similarity). In addition, the pig cofilin actin and phosphoinositide-binding domain (Trp°-Leu) shows 52% identity (96% similarity) with the corresponding maize sequence (Trp°-Leu). Although the biological activity of the ZmABP1 protein has yet to be determined, the sequence comparisons suggest that the protein will have actin-binding properties.

Received August 15, 1994; accepted August 29, 1994.

The EMBL accession number for the sequence reported in this article is X80820.

LITERATURE CITED


---

**Table 1. Characteristics of a cDNA encoding a putative ADF from Zea mays**

| Organism: | Zea mays, inbred line A188. |
| Clone Type: | cDNA, full-length. |
| Source: | cDNA library in Bluesribe M13+, constructed from maize (A188) pollen poly(A) RNA. |
| Techniques: | 60,000 colonies of the pollen cDNA library were hybridized sequentially with radiolabeled shoot and pollen first-strand cDNA. Colonies showing a differential hybridization with the shoot and pollen cDNA were isolated. The ZmABP1 clone was isolated as a pollen-abundant clone and was completely sequenced using dyeoxy sequencing. |
| Sequence Comparison: | All comparisons were carried out using the Bestfit program in the Genetics Computer Group Sequence Analysis software package. The nucleotide and deduced amino acid sequence showed significant homology to the putative lily ADF sequence and to the sequences of the different members of the ADF group. |
| Structural Features of the Protein: | The open reading frame encodes 139 amino acids with a predicted molecular mass of 16,167 D and a pl of 5.42. A putative actin and phospholipid-binding domain resides between Trp° and Leu°. |

---

1 This work was supported by a postdoctoral grant (M.R.) from ZNECA Seeds (formerly ICI Seeds), which in the UK is part of ZNECA Ltd., and by a scholarship to I.L. from the British Council.

* Corresponding author; e-mail p.hussey@rhbnc.ac.uk; fax 44-784-434326.

Abbreviation: ADF, actin-depolymerizing factor.


