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Table I. Purification of NAD-dependent MTD from celery suspension cultures
Crude extract was derived from 260 g fresh weight of cells.

Purification Step

Crude extract
1 5-30% PEG fractionation
Fractogel DEAE ion-exchange
NAD-agarose

Total
Volume

ml
1017
128
210

11

Total
Activity

units
4373
3789
2499
1615

Total
Protein

mg
7061
1384

146.6
4.4

Specific
Activity

units/mg
0.62
2.69

17.05
365

Recovery

%
100
87
57
37

Fold
Purification

-
4.3

27.5
589

affinity chromatography on an NAD-agarose column using
NAD gradient elution (Table I). Crude extracts of MTD
were obtained from cells on the 4th d after subculture,
when the enzymatic activity of MTD is high. Fractionation
with PEG increased the specific activity 4-fold, with 87%
recovery of the MTD activity. PEG fractionation was used
instead of ammonium sulfate fractionation, as used previ-
ously in partially purifying MTD from celeriac roots (Stoop
and Pharr, 1992), because ammonium sulfate fractionation
of extracts from celery suspension cells resulted in a low
recovery (25%) of MTD activity (data not shown). The
Fractogel EMD DEAE ion-exchange step resulted in a pu-
rification of MTD away from ADH and PMI, in a manner
similar to that described for celeriac roots (Stoop and Pharr,
1992). In initial purifications, the ion-exchange fraction was
loaded on an NAD-agarose affinity column, and MTD was
eluted in a single step with 2 mM NAD added to the
running buffer. When peptides in this fraction were sepa-
rated by SDS-PAGE, one dominant band was observed
(data not shown), whereas separation by native PAGE,
resulted in two distinct protein bands (Fig. 1, lane A).
When the native gel was stained for MTD activity, only the
lower mobility protein stained (Fig. 1). We were able to
separate the protein with MTD activity (low mobility on
native gel) from the protein without MTD activity (high
mobility on native gel) using a 0 to 0.6 mM NAD linear
gradient on the NAD-agarose affinity column. Patterns of
these two proteins on native PAGE are shown in Figure 1,
lanes B and C. Molecular mass determination using
MALDI (Michigan State University, East Lansing, MI) in-
dicated that the protein with MTD activity had a molecular
mass of 40.35 kD and the other protein had a molecular
mass of 42.00 kD. The relatedness of the two proteins was
investigated by peptide mapping of their clostripain cleav-
age fragments. As shown in Figure 2, the cleavage patterns
were not similar, indicating that the 40.35- and 42.00-kD
proteins may not be related.

The SDS-PAGE protein patterns of various steps of the
purification are shown in Figure 3. Throughout the purifi-
cation, a protein with an apparent molecular mass of 40 kD
became more predominant. Lane D represents the MTD
fraction eluted with a linear gradient from an NAD-agarose
column. When excess amounts of purified MTD, up to 1.3
/j,g, were subjected to electrophoresis on SDS-PAGE and
stained with silver, no contaminating peptides could be
observed in the range of detectability (5-10 ng of protein)
(data not shown).

Characteristics of MTD

Native molecular mass was determined by calibrated gel
filtration to be approximately 43 kD. This result together
with the MALDI and SDS-PAGE data suggests that MTD is
monomeric. The MTD was blotted onto nitrocellulose pa-
per and subjected to N-terminal amino acid sequencing,
which indicated that the N terminus was blocked. The
amino acid sequence was obtained from three peptides
generated by tryptic digests of the purified MTD protein
and purified by microbore HPLC. The following sequences
were obtained: peptide 1, AFGWAAR; peptide 2, VLF(C/
S)GVCHSDHHMIHNNWGF (manually terminated); pep-
tide 3, LLGGTINGGIK.

The pi of the MTD was estimated to be 6.5 using the
Rotofor system (Bio-Rad).

Immunological Characterization
Polyclonal antibodies against MTD were raised in rabbits

immunized with SDS gel-purified MTD from initial puri-
fications in which the MTD was eluted from an NAD-
agarose column in a single 2 mM NAD pulse, described
above. Subsequent analyses showed that this MTD fraction
contained 90% MTD. These analyses were based on deter-
mination of protein concentration of the fractions from an
NAD gradient elution and native PAGE. Immunoblot anal-
ysis of crude extracts from mannitol-grown cells and NAD-

B
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Figure 1. Native PAGE of proteins eluted from an NAD-agarose
affinity column under different elution conditions. Lane A, Protein
eluted by a single 2 mM NAD pulse. Lanes B and C, Two protein
fractions eluted using a linear 0 to 0.6 mM NAD gradient. When this
gel was stained for MTD activity, the protein with low mobility
(Active) stained for MTD activity, whereas the protein with high
mobility did not (Inactive).
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Figure 2. Electrophoretic patterns of clostripain cleavage products of
a 40-kD protein with MTD activity (B) and a 42-kD protein with no
MTD activity (C). Clostripain fragments were prepared from proteins
separated on an NAD-agarose affinity column by gradient elution
and were electrophoresed on a 10 to 20% gradient SDS minigel.
Lane A contains low-range molecular mass markers (GIBCO-BRL).

agarose-purified MTD probed with anti-MTD serum
showed a single major immunoreactive band correspond-
ing to an apparent molecular mass of 40 kD (Fig. 4). Blots
probed with preimmune serum had no immunoreactive
bands (Fig. 4). Immunoblot analyses of crude extract from
celery and celeriac root tissue also showed a single major
cross-reactive band corresponding to a molecular mass of
40 kD (Fig. 5). The anti-MTD serum was also cross-reactive
with a 40-kD protein in extracts from the innermost leaves
of parsley (Fig. 5.). MTD activity measured in parsley sink
(innermost) leaves was 3.9 units g"1 fresh weight, whereas
no MTD activity was detected in source leaves of parsley.

Immunotitration of MTD with preimmune and anti-
MTD sera indicated that anti-MTD serum inhibits enzy-
matic activity of the purified MTD, whereas preimmune
serum has no effect on the MTD activity (Fig. 6).

DISCUSSION

In this paper we describe a rapid and efficient protocol
for purifying the NAD-dependent MTD, previously re-
ferred to as mannitol:Man 1-oxidoreductase (Stoop and

Figure 4. Immunoblot of crude and purified MTD fractions after
separation by SDS-PAGE. Lanes A and C, 20 itg of crude extract from
celery suspension cells grown on mannitol; lanes B and D, 0.1 /xg of
purified MTD. A and B, Probed with preimmune serum; C and D,
probed with anti-MTD immune serum (Immune).

Pharr, 1992), from celery suspension cultures grown on
o-mannitol as the sole carbon source. This enzyme cata-
lyzes the oxidation of D-mannitol to D-Man. MTD was
purified 589-fold to apparent electrophoretic homogeneity
and a final specific activity of 365 units mg"1 protein. The
three-step protocol yielded 4.4 mg of protein from 260 g of
cells, representing 37% of the initial activity in the crude
homogenate. Previously, the MTD was partially purified to
a specific activity of 201 units mg"1 protein using celeriac
roots (Stoop and Pharr, 1992). Cell-suspension cultures
were chosen for this study because of the higher specific
activity and ease of obtaining large quantities of cells. The
high purity of MTD is indicated by the presence of only a
single polypeptide of 40 kD on SDS gels together with the
presence of a single polypeptide after native PAGE.
MALDI analysis of the purified MTD also gave a signal
consistent with a single protein. We were also able to
obtain defined peptide sequences from the final purifica-

A B C D
kD

97.4—

68 —

43 —

29 —

18.4—
Figure 3. SDS-PAGE analysis of MTD purified from celery suspen-
sion-culture cells grown on mannitol as the sole carbon source.
Proteins were separated on a 12% SDS gel at 25°C and visualized by
Coomassie brilliant blue R250 staining. Lane A, 20 jug of crude
extract; lane B, 20 /xg of resuspended PEG fraction; lane C, 20 /xg of
Fractogel DEAE ion-exchange fraction; lane D, 2 itg of purified MTD.

*F

Figure 5. Immunoblot of 0.1 /ig of purified MTD and crude extracts
(20 /xg) from celery suspension cells (cultured cells), celeriac young
roots (celeriac), celery young roots (celery), and parsley innermost
leaves (parsley).
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Figure 6. lmmunotitration of MTD activity of the NAD-agarose- 
purified fraction with preimmune serum or anti-MTD serum. 

tion fraction, supporting the notion that this fraction is 
homogeneous. The molecular mass of the purified native 
MTD estimated by gel filtration was approximately 43 kD. 
This result together with the MALDI and SDS molecular 
mass determination indicates that MTD is a monomer of 40 
kD. The latter has important implications for genetically 
engineering plants in that no coordinate expression of mul- 
tiple subunits is required to express the MTD protein in 
transgenic plants. Lower organisms, such as the hetero- 
thallic fungus Absidia glauca, also contain an NAD-depen- 
dent monomeric mannitol dehydrogenase (Ueng et al., 
1976). However, the mannitol dehydrogenase purified 
from A. glauca has a molecular mass of 67 kD and oxidizes 
mannitol to Fru (Ueng et al., 1976). Thus, although severa1 
reports exist of NAD-mannitol dehydrogenases in lower 
organisms (Martinez et al., 1963; Ueng et al., 1976; Quain 
and Boulton, 1987), caution is needed in comparing them 
with the MTD from celery, which is a 1-oxidoreductase, 
whereas mannitol dehydrogenses from lower organisms 
are 2-oxidoreductases. 

Immunotitration studies using antiserum against MTD 
showed that the purified MTD enzymatic activity is com- 
pletely inhibited by the antibody. No loss in activity was 
observed when purified MTD was incubated with preim- 
mune serum. This indicates that the antiserum raised 
against the gel-purified MTD reacted with a protein re- 
sponsible for MTD activity. 

Rabbit polyclonal antibodies against MTD reacted with a 
40-kD protein in immunoblots of crude protein extracts 
and purified MTD from mannitol-grown celery cells sub- 
jected to SDS gel electrophoresis. These antibodies were 
recently used to isolate and identify a clone encoding MTD 
from a cDNA library constructed from poly(A)+ RNA iso- 
lated from mannitol-grown celery cells (Williamson et al., 
1995). The amino acid sequence deduced from the M t d  
cDNA indicated that the predicted protein product of the 
cDNA had a molecular mass of 39.7 kD. This is consistent 
with molecular mass estimates for MTD based on SDS- 
PAGE and MALDI. Furthermore, the amino acid sequence 
of three peptide fragments obtained from the tryptic digest 
of MTD was identical with the deduced amino acid se- 
quence of three regions from the cDNA clone, indicating 
that the cDNA clone encoded the MTD protein (William- 
son et al., 1995). 

Immunoblot analysis of SDS-PAGE-separated proteins 
of crude extracts from celery and celeriac showed a single 
dominant immunoreactive band, demonstrating that the 
antiserum was cross-reactive with root tissue of celery and 
celeriac. This allowed us to determine the amount of MTD 
in salt-stressed celery plants, and the results indicated that 
the amount of MTD in root extracts was proportional to the 
MTD activity in these extracts (Pharr et al., 1995). 

MTD activity was also observed in parsley (Petrosel inum 
crisptlm L.), which is a member of the Apiaceae and closely 
related to celery and celeriac. As in celery, the MTD activity 
observed in parsley leaves was dependent on the develop- 
mental stage of the tissue analyzed, with high activity 
expressed in sink leaves. Antibodies raised against the 
celery MTD were also cross-reactive with a 40-kD protein 
in extracts from sink leaves (Fig. 5.) .  Further investigations 
of the presence of the mannitol catabolic pathway in plants 
will be useful in determining how widespread the use of 
MTD is in the plant kingdom. 

Continued work toward a more detailed analysis of the 
physical and kinetics properties of the MTD, as well as a 
more thorough understanding of the regulation of this 
catabolic enzyme, is presently underway. Further areas 
that need attention are the determination of the intracellu- 
lar localization of the MTD to better understand the trans- 
port physiology of mannitol under normal and stressed 
conditions. 
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