Effect of Volatile Methyl Jasmonate on the Oxylin Pathway in Tobacco, Cucumber, and Arabidopsis

Sergei Avdiushko, Kevan P. C. Croft, Grayson C. Brown, D. Mike Jackson², Tom R. Hamilton-Kemp, and David Hildebrand*

The effect of atmospheric methyl jasmonate on the oxylin pathway was investigated in leaves of tobacco (Nicotiana tabacum L.), cucumber (Cucumis sativa L.), and Arabidopsis thaliana (L.). Differential sensitivities of test plants to methyl jasmonate were observed. Thus, different concentrations of methyl jasmonate were required for induction of changes in the oxylin pathway. Arabidopsis was the least and cucumber the most sensitive to methyl jasmonate. Methyl jasmonate induced the accumulation of lipoxygenase protein and a corresponding increase in extractable lipoxygenase activity. Atmospheric methyl jasmonate additionally induced hydroperoxide lyase activity and the enhanced production of several volatile six-carbon products. It is interesting that lipid hydroperoxidase activity, which is a measure of hydroperoxide lyase plus allene oxide synthase plus possibly other lipid hydroperoxide-metabolizing activities, was not changed by methyl jasmonate treatment. Methyl jasmonate selectively altered the activity of certain enzymes of the oxylin pathway (lipoxygenase and hydroperoxide lyase) and increased the potential of leaves for greatly enhanced six-carbon-volatile production.

MJ and JA are thought to be involved in numerous aspects of plant biochemistry. These include wound-induced defense (Farmer and Ryan, 1992; Pena-Cortes et al., 1993) and inhibition of plant growth and promotion of senescence (reviewed by Hamberg and Gardner, 1992), as well as the induction of tuberization in potato (Koda et al., 1991) and yam plants Dioscorea spp. (Koda and Kikuta, 1991). Mueller-Uri et al. (1988) demonstrated that jasmonins altered the expression of certain proteins they designated as jasmonate-induced proteins. Parthier (1991) and Reinbothe et al. (1994) reviewed the possible function of JA and MJ as signaling molecules.

Both JA and MJ are derived from linolenic acid via the oxylin pathway (Vick and Zimmerman, 1984; Song and Brash, 1991), and there has been speculation that they may fulfill a biochemical and regulatory signaling role in plants similar to that of leukotrienes and prostaglandins in animals. Anderson et al. (1989) and Francheschi and Grimes (1991) showed that exogenously applied MJ induced the accumulation of vegetative storage proteins in soybeans, that the 94-kD vegetative storage protein was a member of the LOX gene family (Tranbarger et al., 1991), and that MJ induced an active form of LOX (Bell and Mullet, 1991; Grimes et al., 1992).

A product of the oxylin pathway, MJ, may have a positive feedback effect on one of the enzymes involved in its own production, LOX. The work reported below is an attempt to clarify the importance of the effects of MJ on the enzymes and the products of the oxylin pathway.

MATERIALS AND METHODS

Biological Material

Tobacco (Nicotiana tabacum L. cv KY14) and cucumber (Cucumis sativus L. cv Wisconsin SMR-58) plants were grown in a greenhouse at 23 to 33°C under a 14-h photoperiod. Arabidopsis thaliana ecotype Columbia plants were grown in a growth chamber at 20°C under a 12-h photoperiod.

Chemicals

Yeast alcohol dehydrogenase, NADH, soybean LOX 1, leupeptin, linoleic acid, linolenic acid, heptadecanoic acid, and Triton X-100R were from Sigma. Chloroform, methanol, and hexane were from Fisher. 13(S)-Hydroperoxide of linolenic acid was prepared with soybean LOX 1 following the procedure described by Gardner (1975), and the concentration of hydroperoxide was measured spectrophotometrically at 235 nm with 25,000 M⁻¹ cm⁻¹ as the extinction coefficient. Hexanal, E-2-hexenal, and Z-3-hexenyl acetate were from Aldrich, and Z-3-hexen-1-ol was from Bedoukian (Danbury, CT).

Plant Treatments and Enzyme Assays

Plants were individually enclosed in airtight 12.5-L bell jars. One microliter of neat MJ on a piece of a filter paper

Abbreviations: HPL, hydroperoxide lyase; JA, jasmonic acid; LHP, lipid hydroperoxidase; LOX, lipoxygenase; MJ, methyl jasmonate.

¹ This work was supported by U.S. Department of Agriculture Cooperative Agreements, Tobacco and Health Research Institute, and the Kentucky Agricultural Experiment Station.
* Corresponding author; e-mail dhild@ukcc.uky.edu; fax 1–606–323–1952.
was applied per jar for tobacco (6–7 weeks old), 50 μL of neat MJ for Arabidopsis (2–3 weeks old), and 1 μL of MJ diluted 1:100 in ethanol for cucumber (3–4 weeks old). Three plants were used for treatment with MJ. For the control, plants were kept in similar jars either untreated (tobacco, Arabidopsis) or treated with 1 μL of ethanol (cucumber). The plants were analyzed for up to 5 d after treatment.

Fully expanded leaf tissues (0.5 g) were homogenized in a chilled mortar and pestle in a total of 0.5 mL of Hepes buffer (50 mM, pH 7.5) containing 0.5% (v/v) Triton X-100 buffer (1987) using rabbit polyclonal antibodies raised against soybean leaf peak 3 LOX (Grayburn et al., 1991). Fifty micrograms of the protein extracted from tobacco leaves were analyzed on a 10% SDS gel and probed with polyclonal antibodies raised against soybean leaf peak 3 LOX isozyme.

Electrophoresis and Western Blotting

SDS-PAGE was performed using 10% separating and 5% stacking gels as described by Laemmli (1970). Western blotting was performed as described by Wang and Hildebrand (1987) using rabbit polyclonal antibodies raised against soybean leaf peak 3 LOX (Grayburn et al., 1991). Fifty micrograms of the protein extracted from tobacco leaves were analyzed on a 10% SDS gel and probed with polyclonal antibodies raised against soybean leaf peak 3 LOX isozyme.

Cα-Aldehyde Measurement

Five discs cut with an 8-mm cork borer from tobacco or cucumber leaves (the same leaves that were analyzed for enzymatic activities) or five whole leaves of Arabidopsis were put into 1.8-mL screwcap vials and stored at -80°C until the assay. In preparation for Cα-aldehyde measurement, the vials were placed in a 30°C water bath for 20 min followed by 5 min at 80°C, and then 250 μL of gas from the headspace of the vials were withdrawn using a gas-tight 500-μL syringe and injected directly into a Varian (Sunnyvale, CA) 3700 gas chromatograph with a 30-m × 0.53-mm DB-Wax (PEG) fused silica column operated under the following conditions: injector, 220°C; oven temperature, 50°C for 5 min and then 3°C min⁻¹ to 150°C; flame ionization detector, 240°C; helium carrier flow rate, 6 mL min⁻¹. All quantitative analyses were repeated at least four times. The identity of compounds was determined by co-chromatography with authentic standards.

Time Course of MJ Treatment

For the time course of the MJ-treatment studies, tobacco plants (six to seven fully developed leaves) were treated with 2 μL of neat MJ for 5 d in the bell jars. Control plants were kept in similar bell jars. Every day the bell jars were opened, an aliquot of leaf tissue was collected (0.5 g), and the plants were put under bell jars again with a new aliquot of MJ added. Leaf tissues were kept at -80°C until the analysis.

Aliquots of leaf tissues (0.5 g) were ground in a mortar with liquid nitrogen with 2 mL of the grinding buffer as described by Radetzky et al. (1993) with some modifications. The final composition of buffer was 15% Suc, 1.5 mM EDTA, 0.1 mM MgCl₂, 10 μM leupeptin, 150 mM Tris-HCl, pH 7.5. This was the only buffer among several that are used routinely for LOX analysis where the full-size LOX band was seen intact on western blots. The extracts were centrifuged for 15 min at 12,000g, and the supernatants were used for the enzymatic activity analyses. For western blots, supernatants were mixed 1:1 (v/v) with loading buffer (Laemmli, 1970) and boiled for 5 min.

RESULTS

Effects of MJ on Oxylipin Pathway Enzymes

Tobacco plants were treated with MJ in airtight 12.5-L bell jars for 5 d. One microliter of neat MJ was applied per jar. Plants thus treated showed symptoms of senescence, visible as slight chlorosis that was lacking in controls. Treated cucumber plants exhibited tissue collapse within 10 h of treatment with 1 μL of neat MJ. An application of 1 μL of MJ diluted 1:100 in ethanol (less than 1 nL L⁻¹ final concentration) caused no visible tissue collapse but caused a significant increase in LOX and HPL activities (Table I) and LOX/HPL product formation (Table II). Arabidopsis plants were little affected when treated at the same level of MJ that significantly affected tobacco. A 50-fold higher level of MJ was needed to give a similar induction of Cα-aldehyde formation in Arabidopsis as in tobacco. At this level of MJ treatment, Arabidopsis plants exhibited growth inhibition. For example, such plants had a drastically reduced growth of the flower stalk to approximately 5 to 10% of the length of those of control plants.

MJ in the gaseous phase increased LOX activity in tobacco leaf tissues 3.2-fold after 5 d of treatment. HPL activity was enhanced more than 2-fold, whereas LHP activity was not significantly affected (Table I). After 5 d of MJ treatment, plants were removed from the bell jars and left in normal greenhouse conditions. The increase in both LOX and HPL activity was persistent and did not significantly change for at least 7 d after termination of MJ exposure. The increases in LOX and HPL activities

| Table I. Enzymatic activities (nmol s⁻¹ μg⁻¹ protein) in tobacco and cucumber plants treated with MJ for 5 d
| Plant and Treatment | LOX | HPL | MJ significantly increased LOX and HPL activities at the 1% level but had no significant effect on LHP.
Tobacco			
Control	0.18 ± 0.06	0.19 ± 0.01	0.29 ± 0.04
MJ	0.58 ± 0.16	0.53 ± 0.06	0.26 ± 0.01
Cucumber			
Control	0.83 ± 0.13	0.73 ± 0.11	0.23 ± 0.02
MJ	2.05 ± 0.45	1.19 ± 0.26	0.25 ± 0.07
Effects of Mj treatment on volatile fatty acid oxidation product content in tobacco, cucumber, and Arabidopsis leaves

<table>
<thead>
<tr>
<th>Retention Time</th>
<th>Compound</th>
<th>Tobacco</th>
<th>Cucumber</th>
<th>Arabidopsis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>MI</td>
<td>Control</td>
<td>MI</td>
</tr>
<tr>
<td>2.8</td>
<td>2.8</td>
<td>523 ± 71</td>
<td>83 ± 26</td>
<td>261 ± 72</td>
</tr>
<tr>
<td>6.5</td>
<td>2.8</td>
<td>523 ± 71</td>
<td>83 ± 26</td>
<td>261 ± 72</td>
</tr>
<tr>
<td>10.2</td>
<td>2.8</td>
<td>523 ± 71</td>
<td>83 ± 26</td>
<td>261 ± 72</td>
</tr>
<tr>
<td>12.9</td>
<td>2.8</td>
<td>523 ± 71</td>
<td>83 ± 26</td>
<td>261 ± 72</td>
</tr>
<tr>
<td></td>
<td>nd</td>
<td>60 ± 5</td>
<td>5 ± 1</td>
<td>nd</td>
</tr>
<tr>
<td></td>
<td>Z-3-hexen-1-ol</td>
<td>60 ± 5</td>
<td>5 ± 1</td>
<td>nd</td>
</tr>
</tbody>
</table>

* nd, Not detected.

were readily apparent after 2 d of exposure to MJ, with maximum enhancement seen after 4 d of exposure to MJ (Fig. 1A). The absolute level of LOX and HPL activities varied from experiment to experiment, depending on leaf and plant age as well as environmental conditions, but the relative increase due to MJ treatment was highly reproducible.

MJ treatment of cucumber plants produced results similar to MJ treatment of tobacco in the change of oxylipin pathway enzymatic activities. LOX activity was increased 2.5-fold, HPL activity was increased by 62%, whereas LHP activity was not significantly altered (Table I).

An increase of LOX protein was apparent in tobacco leaf tissues upon treatment with MJ as shown by immunoblot analysis (Fig. 1B). Similar results were obtained for cucumber and Arabidopsis leaves (data not shown).

Effects of MJ Treatment on C6-Aldehyde Production

MJ treatment of tobacco plants significantly affected the formation of C6-aldehydes, which are the products of the oxylipin pathway via HPL activity as shown by co-chromatography with authentic compounds (Table II). The amount of hexanal was increased more than 3-fold and the amount of the most abundant aldehyde, E-2-hexenal, by 80%. Z-3-Hexenyl acetate, not detectable in control plants, accumulated in the leaf tissues treated with MJ. There was a 60% increase in the amount of the C6-alcohol Z-3-hexen-1-ol.

Cucumber plants showed a similar trend in C6-aldehyde production (Table II). MJ treatment increased the amount of hexanal 2.5-fold and the amount of E-2-hexenal by 60%. Z-3-Hexenyl acetate was detected at a very low level, and its concentration, as well as the concentration of Z-3-hexen-1-ol, was not affected by MJ.

In Arabidopsis plants, MJ treatment increased the amount of hexanal production more than 5-fold and that of E-2-hexenal 4.6-fold (Table II).

DISCUSSION

JA and MJ appear to be important signaling molecules in plants (Farmer and Ryan, 1990, 1992; Song and Brash, 1991). They have been shown to be able to alter expression of many plant proteins when applied exogenously (Muel-

Figure 1. Time course of enzymatic activities of LOX and HPL (A) and of LOX protein as detected by western blot (B) in tobacco leaves after treatment with 2 μL of MJ in the bell jars. A, Triangles, LOX activity; squares, HPL activity; filled symbols, MJ treatment; open symbols, control. B, Fifty micrograms of the protein were loaded in each lane. The legend represents samples from control and MJ-treated leaves 1 to 5 d after application of MJ. Soybean LOX peak 3 antibodies were used to decorate the blot. Molecular mass standards.
volved in the LOX/lyase pathway were observed after exposure to MJ, as were changes in certain products of the pathway. In vitro assays for LOX activity and western blot analysis of protein extracts from MJ-treated tobacco and cucumber plants showed that MJ is a potent enhancer of LOX. Western analysis of MJ-treated Arabidopsis showed a similar increase in LOX protein. It is interesting that there was a wide variation in the degree of sensitivity to MJ between the plant species tested. Arabidopsis was the most insensitive, requiring 50-fold more MJ than tobacco to achieve a similar degree of LOX increase, whereas cucumber appeared to be approximately 100-fold more sensitive than tobacco. How this affects the importance and use of MJ as an inter- and intracellular signaling molecule in different plant species is yet to be investigated.

Other enzymes of the oxylipin pathway were also enhanced by MJ. Tobacco and cucumber exhibited an increase in HPL of 2- and 0.6-fold, respectively, following MJ treatment. Once the fatty acid hydroperoxide [e.g. 13(S)-hydroperoxide of linolenic acid] is formed because of LOX activity, at least two possible metabolic routes are available in the oxylipin pathway (Vick and Zimmerman, 1987; Hildebrand, 1989). First, HPL will cleave the 18-carbon chain into C9- and C6-moieties and give rise to the C9-aldehydes and C9-alcohols and the C12 product 12-oxo-E-10-dodecenoic acid (tralmo- nates). Alternatively, the fatty acid hydroperoxide may be metabolized by allene oxide synthase and a cyclase, causing the cyclization of the hydroperoxide, which, following reduction and several rounds of β-oxidations, will form JA (Song and Brash, 1991). The data presented here provide evidence that MJ directly or indirectly enhances certain enzymes of the oxylipin pathway and thereby affects the direction the pathway takes and ultimately the type of fatty acid peroxidation products formed. In both tobacco and cucumber, only HPL showed good induction of enzymatic activity, whereas LHP levels were not significantly different between control and MJ-treated plants. From this result one would expect to see a shift in the balance of oxylipin pathway products after MJ treatment to increased production of C9 volatiles and trauma-

LITERATURE CITED

Anderson JM, Spilatro SR, Klauer SF, Franceschi VR (1989) Jasmonic acid-dependent increase in the level of vegetative stor-

Bell E, Mullet JE (1991) Lipoxynegen gene expression is modu-
lated in plants by water deficit, wounding and methyl jas-

Franceschi VR, Grimes HD (1991) Induction of soybean vegeta-
tive storage proteins and anthocyanins by low-level atmospheric methyl jasmonate. Proc Natl Acad Sci USA 88: 6745–6749

Gane NW (1975) Isolation of a pure isomer of linoleic acid hydroperoxide. Lipids 10: 248–252

Hamberg M, Gardner HW (1992) Oxylipin pathway to jas-
monates: biochemistry and biological significance. Biochim Bio-
phys Acta 1165: 1–18

Hildebrand DF, Verslyus RT, Collins GB (1991) Changes in lipoygenase isozyme levels during soybean embryo develop-
ment. Plant Sci 75: 1–8

Mellan MA, Dong X, Endara ME, Davis KR, Ausubel FM, Peter-

Song W-C, Brash AR (1991) Purification of an allene oxide syn-
thase and identification of the enzyme as a cytochrome P-450. Science 253: 781–784

Vick BA, Zimmerman DC (1987) Oxidative systems for modifica-

Vick BA (1991) A spectrophotometric assay for hydroperoxide li-
ase. Lipids 26: 315–320

Wang XM, Hildebrand DF (1987) Effect of a substituted pyridazi-
none on the decrease of lipoygenase activity in soybean coty-