LHT1, A Lysine- and Histidine-Specific Amino Acid Transporter in Arabidopsis

Lishan Chen and Daniel R. Bush*

Program in Physiological and Molecular Plant Biology, University of Illinois (L.C., D.R.B.); Photosynthesis Research Unit, United States Department of Agriculture-Agricultural Research Service (D.R.B.); and Department of Plant Biology, University of Illinois, 196 Madigan Laboratory, 1201 West Gregory Drive, Urbana, Illinois 61801 (D.R.B.)

We have identified a new amino acid transporter from the Arabidopsis thaliana expressed sequence tag cDNA collection by functional complementation of a yeast amino acid transport mutant. Transport analysis of the expressed protein in yeast shows that it is a high-affinity transporter for both lysine (Lys) and histidine with Michaelis constant values of 175 and 400 μM, respectively. This transporter (LHT1, lysine histidine transporter) has little affinity for arginine when measured directly in uptake experiments or indirectly with substrate competition. The cDNA is 1.7 kb with an open reading frame that codes for a protein with 446 amino acids and a calculated molecular mass of 50.5 kD. Hydropathy analysis shows that LHT1 is an integral membrane protein with nine to 10 putative membrane-spanning domains. Southern-blot analysis suggests that LHT1 is a single-copy gene in the Arabidopsis genome. RNA gel-blot analysis shows that this transporter is present in all tissues, with the strongest expression in young leaves, flowers, and siliques. Whole-mount, in situ hybridization revealed that expression is further localized on the surface of roots in young seedlings and in pollen. Overall, LHT1 belongs to a new class of amino acid transporter that is specific for Lys and histidine, and, given its substrate specificity, it has significant promise as a tool for improving the Lys content of Lys-deficient grains.

Long-distance transport of resources and information is a fundamental process in all multicellular organisms. In higher plants sugars and amino acids are transported from the sites of primary assimilation to heterotrophic tissues via mass flow in the phloem. The import-dependent tissue systems, which include roots, young leaves, developing fruits, and specialized storage organs, carry out many essential processes required for plant growth (Pate, 1980; Gifford et al., 1984; Thorne, 1985; Schubert, 1986). Long-distance transport of organic nutrients is also an essential activity during seed germination and grain filling (Thorne, 1985; Fisher and Macnicol, 1986), in symbiotic N₂ assimilation (Schubert, 1986; Mylona et al., 1995), and in nutrient recycling during senescence (Thomas and Stoddart, 1980; Feller and Fischer, 1994). In all cases integral membrane proteins that mediate sugar and amino acid transport across the plasma membrane are essential components of the resource-allocation system in higher plants.

Amino acids are the predominant form of nitrogen available to the heterotrophic tissues of the plant. As such, they are the precursors of many essential molecules, including proteins, nucleic acids, chlorophyll, phytohormones, phytoalexins, phenylpropanoids, accessory pigments, and lignin. Amino acids are actively transported into plant cells by proton-coupled symporters (Bush, 1993). Bush and Langston-Unkefer (1988) used isolated membrane vesicles and imposed proton electrochemical potentials to provide the first biochemical description of proton-coupled amino acid transport in plants. Subsequently, Li and Bush (1990, 1991) provided a detailed analysis of the transport properties and bioenergetics of several amino acid symporters using highly purified plasma membrane vesicles isolated from sugar beet leaves. They showed that these transporters are electrogenic, that they are inhibited by DEPC, and that there are at least four classes of symporters based on their preferences for groups of amino acids that share charge or structural similarities. Williams et al. (1992, 1996) and Weston et al. (1995) found similar properties of transporter activity in membrane vesicles isolated from castor bean cotyledons and roots.

Frommer et al. (1993) and Hsu et al. (1993) cloned the first plant amino acid transporter cDNA (NAT2/AAPI) by functional complementation of yeast amino acid transport mutants. Functional complementation in yeast has become a powerful tool for plant transport biologists because it circumvents the daunting task of purifying these extremely low-abundance membrane proteins using traditional biochemical strategies (Bush, 1993; Frommer et al., 1994; Frommer and Ninneman, 1995; Tanner and Caspari, 1996). Frommer’s group went on to identify five additional transporter cDNAs that are closely related to NAT2/AAPI, providing good evidence that they represent a family of translocator genes (Kwart et al., 1993; Fischer et al., 1995; Rentsch et al., 1996). In addition to the NAT2/AAPI gene family, a cationic amino acid transporter cDNA, AAT1, that is related to an animal amino acid transporter has been described (Frommer et al., 1995), and an aromatic amino

Abbreviations: DEPC, diethyl pyrocarbonate; EST, expressed sequence tag; Ura, uracil.

1 Present address: Department of Microbiology, University of Washington, Seattle, WA 98195.

* Corresponding author; e-mail dbush@uiuc.edu; fax 1-217-244-4419.
acids and ammonium salts, 0.5% ammonium sulfate, 0.002% inosine, 0.1% Arg, and 130 μM His. In all cases, insert-free AYES and NAT2/AYES were run in parallel as negative and positive controls, respectively.

Transport Measurements

Yeast transport activity was measured as described by Hsu et al. (1993). Cells were grown to the midlogarithmic phase and then collected by centrifugation. They were resuspended at 200 to 300 mg cells mL⁻¹ in transport buffer that contained His-limiting medium without His and Arg (the pH was adjusted to 5.0 with KOH). Ten microliters of cells was used in a 300-μL transport reaction that contained 0.2 to 1.0 μCi of ¹⁴C-labeled and unlabeled amino acid to the desired final concentration. At predetermined times, 200 μL was removed from the reaction buffer and the cells were collected and washed on a micropore filter. JT16 cells transformed with insert-free AYES were used to measure background transport activity in all transport experiments, and results are reported as net transport (i.e. LHT1-expressing cells accumulation minus accumulation by insert-free vector controls).

Molecular Techniques

Yeast colony PCR was performed according to the method of Schneider et al. (1995), and plasmid DNA extraction from yeast was adapted from the method of Ward (1990). Two milliliters of saturated yeast culture was centrifuged and cells were resuspended in 200 μL of 2.5 M LiCl, 50 mM Tris HCl, pH 8.0, 4% Triton X-100, and 62.5 mM EDTA, and then 200 μL of phenol-chloroform (1:1, w/v) and 2.0 g of acid-washed glass beads (0.5 mm) were added. This mixture was immediately vortexed in a mini-beadbeater (Biospec, Bartlesville, OK) for 2 min and then centrifuged at 14,000 rpm for 5 min. The upper layer was collected and 600 μL of ethanol was added to precipitate the DNA. Yeast RNA was isolated using a kit according to the manufacturer’s instructions (Qiagen, Chatsworth, CA). Dideoxynucleotide sequencing (Sanger et al., 1977) was performed on double-strand DNA templates using Sequenase version 2.0 according to the manufacturer’s instructions (Amersham). Plant DNA was isolated according to the method of Dellaporta et al. (1983). Plant RNA was isolated using guanidinium as described by Kiedrowski et al. (1992). Whole-mount, in situ hybridization of Arabidopsis seedlings and flowers was as described by Bennett (1994).

For Southern-blot hybridizations plant genomic DNA was digested with different restriction enzymes, separated on a 0.8% agarose gel in TAE buffer (40 mM Tris-acetate and 1 mM EDTA), and depurinated with a 10-min treatment in 0.25 M HCl. DNA was transferred onto Hybond N+ membranes (Amersham) in 0.4 M NaOH, and then cross-linked to the membrane using a UV cross-linker (Stratagene). α-²³P-Labeled probes were synthesized using random hexamers (Boehringer Mannheim) or the Megaprimed system (Amersham). Probes were purified with either a Bio-Spin column (Bio-Rad) or a nucleotide-removal kit (Qiagen, Chatsworth). [α-²³P]Cytosine was purchased from Amersham. The hybridization and wash conditions followed the suggestions of the membrane manufacturer (Amersham). Low-stringency washes consisted of two 10-min washes with 2× SSPE (Sambrook et al., 1989) and 0.1%
SDS at room temperature. The high-stringency wash included an additional wash with 1× SSPE and 0.1% SDS at 65°C for 15 min, and two washes of 0.1× SSPE and 0.1% SDS at 65°C for 30 min.

Twenty micrograms of total RNA was separated on a formaldehyde gel (Zielinski, 1987) and transferred onto nylon membranes (Nytran, Schleicher & Schuell) for RNA gel-blot analysis. α-32P-Labeled probe was prepared as for the Southern-blot hybridization method. The hybridization and wash conditions followed the membrane manufacturer’s instruction (Schleicher & Schuell).

RESULTS

An EST cDNA Complements a Yeast Amino Acid Transport Mutant

One approach we have taken to identify additional amino acid transporters has been to survey the EST cDNA database for clones that exhibit low levels of deduced amino acid sequence similarity to NAT2. Several EST cDNAs were obtained from the collection at the Ohio State University Arabidopsis Stock Center because each possessed modest levels of similarity with the amino terminus of NAT2. Each EST cDNA that was sufficiently long to potentially contain a complete open reading frame was subcloned into a yeast expression vector (Elledge et al., 1991) and then transformed into a yeast strain auxotrophic for His and in which the high-affinity His transporter was deleted. Transformants that acquired the expression vector were selected on a high-His medium without Ura (Fig. 1A). The vector allows for growth in the absence of Ura because it contains the URA3 gene as a selectable marker.

Ura+ transformants were subsequently scored for their ability to complement the His-transport deficiency of the yeast mutant by growing them on a low-His medium that does not support growth of the deletion mutant (Hsu et al., 1993). Of several EST cDNAs tested, only LHT1 allowed for growth under His-limiting conditions (Fig. 1B). Although this result suggests that LHT1 encodes a protein with HIS-transport activity, there are alternative explanations for this observation. For example, a suppressor mutation in the yeast genome could allow for His uptake or the EST cDNA could encode a homolog to the mutated His biosynthesis gene (HIS4). We tested for suppressor mutants by substituting Glc for Gal in the selection medium. Because Glc represses the GAL1 promoter engineered into the expression vector, shifting the C source to Glc eliminated expression of the plant protein. LHT1-containing transformants transferred to the Glc-based medium lost their ability to complement His-limited growth, suggesting that complementation is attributable to the encoded plant protein rather than to a suppressor mutation (Fig. 1C). The LHT1 transformants also failed to grow on a His-free Gal medium, suggesting that the expressed plant protein is not a HIS4 homolog in the biosynthetic pathway (Fig. 1D). These data suggest that LHT1 is a plant protein with HIS-transport activity.

LHT1 Is a Lys- and His-Specific Transporter

Amino acid transport activity of LHT1 was investigated using 13 different amino acids as potential substrates. Lys and His transport were the most active among all of the substrates examined (Fig. 2). Although LHT1 exhibited some transport capacity for a few other amino acids, such as Leu, it was most effective at transporting Lys and His, hence the name Lys and His Transporter 1, LHT1.

Lys and His by LHT1 displayed saturable, concentration-dependent uptake kinetics that were consistent with carrier-mediated transport, and the double-reciprocal plots of those data gave Km values of 175 and 400 μM, respectively (Fig. 3). The apparent Km for Leu was 11 mM (data not shown), which is higher than typical physiological ranges. The substrate specificity of the transporter was further demonstrated when Arg (at a 10-fold excess) did not decrease Lys transport in a substrate competition experiment (Fig. 4). Lys transport was sensitive to carbonyl cyanide m-chlorophenylhydrazone, which is consistent with transport coupled to the proton motive force (Fig. 4). Transport was also inhibited by DEPC, although an indirect effect on the expression of LHT1 cannot be ruled out (Fig. 4).
Amino Acid Transported

Figure 2. Amino acid transport in LHT1-expressing cells. Thirteen amino acids were tested as potential substrates for LHT1. Each amino acid was tested at 100 μM. Transport activity in cells containing insert-free vector was also determined for each amino acid and results are reported as LHT1-dependent transport (i.e. LHT1-expressing cell accumulation minus insert-free cell accumulation). Lys transport was 0.39 pmol mg⁻¹ fresh weight min⁻¹.

Earlier biochemical descriptions of amino acid transport into purified plasma membrane vesicles implicated a DEPC-sensitive His residue(s) in the reaction mechanism (Li and Bush, 1992).

LHT1 Belongs to a New Class of Transport Protein

The cDNA insert of positive transformants was 1664 bp long. It contained an open reading frame encoding a protein of 446 amino acids with a calculated molecular mass of 50.5 kD (Fig. 5A). Hydropathy analysis of the deduced sequence (Kyte and Doolittle, 1982) suggests that LHT1 is a hydrophobic integral membrane protein, with 9 to 10 putative transmembrane domains (Fig. 5B). The proposed topology of LHT1 is different from that predicted for other plant amino acid transporters, suggesting that it represents a new class of carrier. The NAT2/AAP family, the Pro transporters, and a cationic amino acid transporter all have 10 or more putative transmembrane domains (Frommer et al., 1993, 1995; Hsu et al., 1993; Kwart et al., 1993; Fischer et al., 1995; Rentsch et al., 1996). A phylogenetic comparison of LHT1 with amino acid transporters from a variety of organisms also suggests that LHT1 is not part of a previously described family of transporters (Fig. 6). It should be noted, however, that LHT1 is closely related to a putative amino acid transporter gene isolated from tobacco (Lalanne et al., 1995). Our analysis suggests that LHT1 represents a new class of plant amino acid transporters, although it does share some similarity with amino acid transporters identified in Caenorhabditis elegans, yeast, and plants.

LHT1 Is a Single-Copy Gene in the Arabidopsis Genome and Is Preferentially Expressed on the Root Surface and in Siliques

Southern blot hybridization suggests that LHT1 is a single-copy gene in the Arabidopsis genome (Fig. 7). RNA gel blot analysis showed that LHT1 is transcribed into a 1.7-kb message. Moreover, the pattern of tissue-specific expression suggests that LHT1 is preferentially expressed in flowers, young leaves, and siliques, although it is also present in older leaves, stems, and roots (Fig. 8). Whole-mount, in situ analysis showed that expression is further localized to the surface of the root in young seedlings and in anthers (data not shown).
DISCUSSION

LHT1 represents a new class of amino acid transporters in plants because it has limited similarity to previously described transporters and because its predicted membrane topology differs from that of the other transporters. The similarity of LHT1 to the NAT2/AAP gene family is strongest around the first transmembrane domain, and that is why this EST cDNA showed up in our initial BLAST search of the EST database (Altschul et al., 1990). We have observed that this is a highly conserved domain shared by many eukaryotic amino acid transporters (Hoffmann, 1985; Ahmad and Bussey, 1986; Frommer et al., 1993; Hsu et al., 1993; Fischer et al., 1995; Rentsch et al., 1996) and an Arabidopsis aromatic amino acid transporter (Chen, 1997). We believe that future investigations will uncover the functional significance of this region.

LHT1 is easily differentiated from a functionally related cationic amino acid transporter, AAT1, which was recently described in Arabidopsis (Frommer et al., 1995). AAT1 has...
brane domains (Ellis et al., 1995). LHT1 is more closely related to the yeast and E. coli homologs (Bussey, 1988). The Lys transporter (LysP) in E. coli is also related to the yeast and E. coli ortholog (Chevallier, 1993), have been identified in budding yeast.

Figure 8. Expression pattern of LH1. RNA gel-blot analysis of LH1 gave a single band at 1.75 kb. The actin gene was used as a loading control. RNA was isolated from siliques (lane 1), flowers (lane 2), old and young leaves (lanes 3 and 4, respectivley), stems (lane 5), and roots (lane 6). The intensity of the LHT1 signal was weak relative to actin (2-d exposure versus 2 h).

533 amino acid residues, which is much larger than LHT1 (446 amino acids). In addition, AAT1 contains 14 putative transmembrane domains (Frommer et al., 1995), whereas our analysis suggests that LHT1 is composed of 9 to 10 putative transmembrane helices (Fig. 5B). This is also less than the 11 transmembrane domains we have mapped in the NAT2/AAP1 gene family (Chang and Bush, 1997). We believe that LHT1 belongs to a unique class of amino acid transporters in Arabidopsis. We realize, however, that more detailed analysis of the evolutionary relationships among the plant amino acid transporters may uncover a common ancestral progenitor. A putative amino acid transporter recently cloned in tobacco appears to be a LHT1 ortholog (Lalanne et al., 1995).

Two basic amino acid transporters, CAN1 (Hoffmann, 1985; Ahmad and Bussey, 1986) and LYP1 (Sychrova and Chevallier, 1993), have been identified in budding yeast. CAN1 encodes a peptide containing 590 amino acids and LYP1 encodes one with 611 amino acids. Although both were predicted to contain 12 transmembrane domains, gene-fusion experiments with CAN1 suggest that it contains only 10 membrane-spanning regions (Ahmad and Bussey, 1988). The Lys transporter (LysP) in E. coli is also longer than LHT1 (489 residues; Steffes et al., 1992), and gene-fusion experiments have identified 12 transmembrane domains (Ellis et al., 1995). LHT1 is more closely related to the yeast and E. coli transporters than to AAT1 (Fig. 6).

An intriguing feature of the basic amino acid transporters we have examined is that the amino-terminal domains are highly acidic regions that contain many Glu and Asp residues. The acidic amino acid content for the amino terminus of these porters is 25% for LHT1, 19% for LYP1, 24% for CAN1, and 15% for LysP. Steffes et al. (1992) proposed that a glutamate residue, E-16, in LysP may play a role in substrate binding. LHT1 contains a glutamate residue at the E-25 position that may correspond to the E-16 position in LysP. Mutations in this position of the transporter will help define the role of these acidic residues in basic amino acid transporters. In addition to this acidic region, LHT1 also shares two conserved His's found in the NAT2/AAP gene family. These His residues have been mutated and shown to be essential for NAT2/AAP1 function (Chen, 1997).

Many of the plant amino acid transporters identified so far have wide substrate specificity. Although LHT1 is somewhat intermediate in this characteristic in that it is a particularly active Lys and His transporter. The other amino acids tested had less than 35% of the Lys transport activity, and even the K_m for the third most-active substrate, Leu, was 25-fold higher than that for His (11 mM, data not shown). Although Leu clearly moves through LHT1, we do not think it is a major substrate for this transporter, because plant cells generally contain low levels (<1 mM) of this amino acid (Winter et al., 1992).

The substrate specificity of LHT1 distinguishes it from AAT1, the functionally related Arabidopsis cationic amino acid transporter, and from basic amino acid transport activities previously described in barley, castor bean, and tobacco (Sodinal and Nissen, 1978; Berry et al., 1981; Harrington and Henke, 1981; Bright et al., 1983; Weston et al., 1995). More recently, two transport mutants were described in Arabidopsis (rlt11 and rac1) that have reduced Lys transport in the substrate concentration range in which LHT1 is active. Thus, it is possible that one of them could be a LHT1 mutant (Heremans et al., 1997). AAT1 transports both Lys and Arg, as did the amino acid transport activities described in barley and tobacco. In contrast, LHT1 is not an effective Arg transporter. This was demonstrated by the low rates of transport over a range of pH values (pH 4.0–7.0; Fig. 2 and data not shown). In addition, Arg was not a competitive inhibitor of Lys transport by LHT1, even when it was present at 10 times the concentration of Lys (Fig. 4). AAT1 substrate competition analysis showed that Arg was an excellent competitor for Lys transport in that transporter (Frommer et al., 1995). Although LHT1 and AAT1 are both basic amino acid transporters in Arabidopsis, their transport properties clearly differentiate them as unique amino acid transporters. This observation supports our earlier investigations with purified membrane vesicles, which suggested the presence of two cationic amino acid transport systems based on biphasic transport kinetics (Li and Bush, 1990).

Both RNA gel-blot analysis and whole-mount, in situ hybridization indicate that LHT1 is most strongly expressed in pollen, siliques, and on the root surface (Fig. 8). We infer from this expression pattern that LHT1 may be involved in Lys transport into heterotrophic tissue systems. This conclusion is supported by the observation that the related tobacco ortholog was isolated from a pollen-specific library (Lalanne et al., 1995). The functionally related cationic amino acid transporter (AAT1) identified in Arabidopsis is most strongly expressed in vascular tissue and flowers (Frommer et al., 1995). The expression patterns of LHT1 and AAT1 complement one another, suggesting that LHT1 may be involved in nutrient uptake in sink tissues, whereas AAT1 may contribute to long-distance transport.

LHT1 is an excellent candidate for using biotechnology to modify the nutritional value of harvested tissues (Bush, 1998). For example, many cereals are poor sources of protein for humans and animals because they are low in Lys (Kriz and Larkins, 1991; Galli, 1995). One strategy for increasing the content of basic amino acids in some of these deficient crops favor a subgroup of related amino acids with lower K_m values and higher rates of transport. LHT1 is somewhat intermediate in this characteristic in that it is a particularly active Lys and His transporter. The other amino acids tested had less than 35% of the Lys transport activity, and even the K_m for the third most-active substrate, Leu, was 25-fold higher than that for His (11 mM, data not shown). Although Leu clearly moves through LHT1, we do not think it is a major substrate for this transporter, because plant cells generally contain low levels (<1 mM) of this amino acid (Winter et al., 1992).
would be to use targeted expression of LHT1 to enhance the Lys content of harvested seed. Targeted expression of LHT1 in the phloem of mature leaf tissue may increase the amount of Lys and His transported per unit of C. This would increase the Lys and His content of developing seeds when the Lys-enriched translocate is released from the phloem. The success of this approach is dependent on several unknown variables. For example, reciprocal increases in mesophyll synthesis and release must occur as these amino acids are actively transported into the phloem, and sink tissues must be capable of storing the excess free amino acids. There is a precedent for increased rates of synthesis under increased demand; Heldt’s work (Riens et al., 1991; Winter et al., 1992) suggests that the mesophyll amino acid pools are dynamically linked to phloem loading and, thus, active loading by a high-affinity transporter may shift the equation to increased synthesis. Likewise, many cells store excess amino acids in the vacuole. We are currently generating transgenic plants to test this approach.

Received April 21, 1997; accepted July 25, 1997.
Copyright Clearance Center: 0032-0889/97/115/1127/08.

The accession number for the sequence reported in this article is U39782.

LITERATURE CITED

Ahmad M, Bussey H (1988) Topology of membrane insertion in vitro and plasma membrane assembly in vivo of the yeast argi-
nine permease. Mol Microbiol 2: 627–635
ology. Greene and John Wiley & Sons, New York
Li Z-C, Bush DR (1992) Structural determinants in substrate rec-

logical analysis of the lysine-specific permease of Escherichia coli. Mol Microbiol 141: 1927–1935

Downloaded from on October 15, 2017 - Published by www.plantphysiol.org
Copyright © 1997 American Society of Plant Biologists. All rights reserved.


