K⁺-Selective Inward-Rectifying Channels and Apoplastic pH in Barley Roots

Anna Amtmann*, Till C. Jelitto, and Dale Sanders

The Plant Laboratory, Department of Biology, University of York, P.O. Box 373, York YO1 5YW, United Kingdom

Changes in apoplastic pH are involved in many physiological processes in plants, such as development, growth, leaf movement, gas exchange, and pathogen defense (Grignon and Sentenac, 1991; Kutschera, 1994; Palmgren, 1998, and refs. therein). Stimuli for these changes are diverse and include light, plant hormones, mechanical stress, osmotic potential, and nutrient availability. Changes of apoplastic pH can be achieved via modulation of the activities of H⁺-extruding ATPase or H⁺-coupled nutrient transporters in the plasma membrane, as well as by export of acid metabolites and CO₂ evolution. The role of apoplastic pH in H⁺-coupled uptake of nutrients such as high-affinity uptake of K⁺ (Maathuis and Sanders, 1994) is evident: apoplastic protons not only act as a substrate for the transport system but also affect the electrical driving force for this charged transport process through modulation of the membrane potential. Although low-affinity uptake of K⁺ is not physically coupled to that of H⁺, charge compensation for K⁺ uptake is achieved by H⁺ extrusion (Behl and Raschke, 1987; Kochian and Lucas, 1988).

Low-affinity K⁺ uptake by plants is mediated by KIRCs that activate at negative membrane potentials when K⁺ concentrations are in the high micromolar or millimolar range, ensuring that K⁺ movement is directed inward (Maathuis et al., 1997; Hirsch et al., 1998). In strong contrast to KIRCs in animal cells, which are blocked by extracellular protons (Coulter et al., 1995; Sabirov et al., 1997), KIRCs in the plasma membrane of plant guard cells have been shown to be activated by acidification of the external medium, both in planta and after heterologous expression (Blatt, 1992; Hedrich et al., 1995; Müller-Röber et al., 1995; Véry et al., 1995; Iln et al., 1996; Hoth et al., 1997). It was further demonstrated that H⁺ activation of a KIRC cloned from potato guard cells (KST1) is mediated by a His residue in the outer-pore region of this channel (Hoth et al., 1997). Sequence alignment of many cloned animal and plant KIRCs revealed that the relevant His residue is well conserved among plant channels but is not present in their animal counterparts. The alignment included cDNAs of AKT1-type plant KIRCs, which have been shown to be expressed in root tissue (Basset et al., 1995; Lagarde et al., 1996) and are likely to play a significant role in K⁺ uptake (Hirsch et al., 1998). The authors therefore concluded that proton activation from the extracellular side of the membrane is a typical feature of all plant KIRCs. This hypothesis was strengthened by a study of SKT1, a KIRC cloned from potato (Zimmermann et al., 1998), the mRNA of which was detected in root tissue. This KIRC was activated by external protons when heterologously expressed in baculovirus-infected insect cells.

In contrast to the findings on H⁺-induced activation of Iᵣ,KIRC, work on suspension-cultured cells from Arabidopsis demonstrated that currents through the KIRCs of these cells decreased upon acidification of the external medium (Giromini et al., 1997). This observation coincides with a report indicating that currents through the Arabidopsis KIRC AKT3 are blocked by H⁺ when expressed in Xenopus laevis oocytes (Marten et al., 1998). In neither case is the tissue localization of the respective channels known.

We studied the effect of apoplastic pH on the Iᵣ,KIRC of root cells and show activation of this channel type by

1 This work was supported by the European Union and the Biotechnology and Biological Sciences Research Council of the United Kingdom.

* Corresponding author; e-mail aa15@york.ac.uk; fax 44–1904–434–317.

Abbreviations: Gᵣ,m, limit conductance; Iᵣ,KIRC, KIRC current(s); KIRC, K⁺-selective inward-rectifying channel; V₁/₂, half-activation potential.
external protons (as was previously described for guard cells) and a partial dependence of the pH effect on the external KCl concentration. Our study also included measurements of the apoplastic pH in root tissue, which enabled us to put channel activity into a physiological context.

MATERIALS AND METHODS

Growth of Plant Material

Seeds of barley (*Hordeum vulgare* L. cv Puffin) were sown in washed grit-sand and grown at 22°C/18°C day/night temperatures with a 14-h photoperiod and 200 to 350 μmol m⁻² s⁻¹ PAR. RH was maintained at 60% to 80%. After 5 d young plants were transferred to hydroponic conditions (20 plants per 2 L of growth medium, changed twice a week). The growth medium contained 9 mM NaNO₃ or KNO₃, 0.5 mM NaH₂PO₄, 0.5 mM KH₂PO₄, 1 mM CaCl₂, 1 mM Ca(NO₃)₂, 1.5 mM MgSO₄, 0.1 mM FeNaEDTA, and 0.1 mM NaCl, plus trace elements (23 μM H₂BO₃, 10 μM MnSO₄, 0.7 μM ZnSO₄, 0.25 μM CuSO₄, and 0.65 mM [NH₄]₂MoO₄). In patch-clamp experiments 4- to 6-week-old plants were used, whereas determination of apoplastic pH was performed on younger plants (10–14 d old).

Preparation of Protoplasts

For protoplast preparation 3- to 4-cm distal segments of primary roots (excluding about 1 cm at the root tip) were chopped and incubated with 1.5% (w/v) cellulase (“Onozuka” Yakult Honsha Co., Tokyo, Japan), 0.15% (w/v) pectolyase (Sigma), and 0.1% (w/v) BSA in solution A for 2 h at room temperature. Protoplasts were released from the tissue by gentle squeezing in solution B, washed, and collected. Solutions A and B contained 10 mM KCl, 2 mM MgCl₂, 2 mM CaCl₂, and 2 mM Mes at pH 5.7 (Tris) and were adjusted to 600 mM osm (solution A) and 400 mM osm (solution B) with sorbitol. Alternatively, cortical tissue was stripped off and discarded before enzyme incubation. Protoplasts obtained from whole-root and stelar preparations were very similar in size, appearance, and features, and we therefore assumed that both preparations produced stellar protoplasts only, probably originating from xylem parenchyma (Wegner and Raschke, 1994).

Patch-Clamp Setup and Data Acquisition and Analysis

Standard patch-clamp techniques (Hamill et al., 1981) were applied. Details for pipette preparation, voltage-clamp, and recording equipment were as described by Amtmann et al. (1997). Protoplasts of similar size (approximately 30 μm in diameter) were chosen for the experiments. Whole-cell inward currents were elicited by 3-s bipolar voltage pulses from holding potentials more positive than E_K (equilibrium potential for K⁺) filtered at 300 Hz, and recorded with a sample frequency of 1.5 kHz. The access resistance was measured with the amplifier but not corrected for; measurements were discarded when errors in the clamp voltage larger than 5% arose from high access resistance. Conductance of the instantaneous current component was ohmic over the whole voltage range analyzed. Therefore, leak subtraction was used as the general method for obtaining time-dependent I_{KIRC}. Steady-state I_{KIRC} were measured 3 s after onset of the voltage pulse and averaged over three identical voltage protocols. Values are means ± se. Curve fitting was carried out using the program FigP (Biosoft, Cambridge, UK).

Experimental Solutions

Patch pipettes contained 100 mM KCl, 1 mM MgCl₂, 1 mM CaCl₂, 1.4 mM EGTA (4 mM KOH), 1.5 mM MgATP, and 2 mM Hepes or Tes buffered to pH 7.4 with Tris. The free Ca²⁺ concentration was 176 nM, as calculated with the CALCIUM program (Föhrl et al., 1993). Bath solutions contained 10 or 1 mM KCl, 1 mM MgCl₂, and 1 mM CaCl₂, at various pH values (2–5 mM Mes, Tes, or Hepes and Tris or NaOH). Liquid junction potentials were measured and corrected when larger than 3 mV according to the method of Amtmann and Sanders (1997). All solutions were adjusted to 500 mM osm with sorbitol and sterile-filtered before use.

Determination of Apoplastic pH

Calibration and Dye Loading

Stock solutions (10 mM) of the pH-sensitive dye NERF-DM (Molecular Probes, Leiden, Netherlands) were prepared in 20 mM Mes buffer, pH 6.3, and stored at 4°C. For calibration measurements the dye was diluted to 10 μM in 100 mM phosphate buffer at an appropriate pH. Calibration points were fitted with Equation 3 (see “Results”). pH sensitivity (ratio_max − ratio_min = 0.54) and affinity (pK = 4.9) of the in vitro calibration were satisfactory (compare with Whitaker et al., 1992). For in situ calibration, 1-cm-long fragments of barley roots (2 cm above the tip) were incubated for 2 h in 10 μM NERF-DM. Imaging of root fragments was performed immediately after they were rinsed in dye-free buffer. We found that root fragments had to be exposed to buffer concentrations greater than 200 mM to influence apoplastic pH. However, when 1 mM KCN, 1 mM salicylhydroxamic acid, and 1 μM carbonyl cyanide p-trifluoromethoxyphenylhydrazone (all from Sigma) were added during dye incubation, in situ calibration was achieved in 100 mM phosphate buffers. Compared with the in vitro calibration, ratio values were shifted to higher values in situ (by 0.24 unit on average) and the sensitivity of the dye was slightly reduced (ratio_max − ratio_min = 0.49), whereas the affinity for H⁺ was only slightly affected (pK 5.1). The in situ calibration curve is shown in Figure 6. For in vivo measurements root fragments were incubated for 1 h in 100 μM Mes-Tris, pH 5.9, and 10 μM NERF-DM with and without 5 μM fusicoccin. The ethanol concentration in both solutions was 0.5% (v/v).

Dye localization in the cell wall was confirmed by comparison of NERF-DM 70-kD dextran-loaded cells and NERF-DM-loaded cells. No difference in dye localization was apparent. Furthermore, barley root protoplasts incubated for 2 h in 200 μM NERF-DM did not show any
fluorescence, even at an increased laser intensity (data not shown).

Imaging

Confocal fluorescence imaging (model MRC 1000, Bio-Rad) was controlled by CoMOS and TCSM software (Bio-Rad). The confocal system was interfaced with an upright microscope (Optiphot 300, Nikon). Imaging was performed using a ×60 (1.4 numerical aperture) oil-immersion objective (PlanApo, Nikon) and a ×3.5 electronic zoom. Fluorescence images were acquired using the 514- and 488-nm excitation lines of an argon laser at intensities between 1% and 10%, depending on dye loading into the cell walls. Emission was recorded using the integral emission filter (540 DF 30, Nikon) of the confocal microscope. The pinhole size (4) and gain setting (900) were chosen to give optimal fluorescence signals at all pH values in the calibration curve and were identical for all experiments. Fluorescence ratio values (514/488 nm) were calculated pixel by pixel using TCSM software. Average ratio values for NERF-DM-loaded cell walls were extracted using the Histogram command in CoMOS. Care was taken not to include areas close to the edge of the cell wall, since low fluorescence intensity caused artifacts in this region.

RESULTS

Typical IKIRC in the Plasma Membrane of Barley Root Cells

Hyperpolarization of the plasma membrane to voltages more negative than −80 mV evoked large inward currents with the typical features of KIRCs, such as time-dependent double-exponential activation, single-exponential deactivation, high selectivity for K⁺ over anions and other cations, and blockage by tetraethylammonium ions. The IKIRC has been described for many plants and in particular for barley root xylem parenchyma cells (Wegner and Raschke, 1994; Wegner et al., 1994).

Response of IKIRC to Varying External pH

Figure 1 shows a typical response of IKIRC to changes in external pH. A shift of pH from 7.5 to 5.5 increased IKIRC considerably. Furthermore, the voltage needed for half-activation of IKIRC was more positive at pH 5.5 than at pH 7.5. The effects of external pH on IKIRC were fully reversible. The reversal potentials (E_{rev}) of the time-dependent currents as determined in tail-current experiments (resolution ± 5 mV) were not significantly different at different pH values: for 10 mM external KCl (n = 5 protoplasts), E_{rev} = −54 ± 2 mV at pH 5.5 and −58 ± 3 mV at pH 7.5; for 1 mM external KCl (n = 4 protoplasts), E_{rev} = −101 ± 4 mV at pH 5.5 and −98 ± 2 mV at pH 7.5.

Fitting the IKIRC-Voltage Relations

Figure 2 depicts typical current-voltage (I-V) relationships of the KIRC at pH 5.5 and 7.5 (same protoplast as in Fig. 1) recorded with 10 or 1 mM KCl in the bathing medium. All I-V relationships were well fitted by a simple function in which the Goldman-Hodgkin-Katz equation for the open-channel current is multiplied by the Boltzman distribution of the open probability, the maximal open probability, and the total number of channels in the protoplast. Thus,

\[
I(V) = \frac{NP(F^2/RT)V([K^+]_o - [K^+]_c)\exp(-FV/RT)}{(1 - \exp(-FV/RT))P(1 + \exp(-z_g(F/RT)(V - V_o))]
\]

where I is the current, V is the membrane voltage, N is the total number of channels, P is the permeability of the open channel for K⁺, [K⁺]₀ and [K⁺]ₙ are the cytosolic and external K⁺ activities, respectively, p is the maximal open probability, z_g is the gating charge, and R, T, and F are the gas constant, absolute temperature, and Faraday’s
constant, respectively. The product NPp was treated as one adjustable parameter. G_{lim} was calculated from:

$$G_{\text{lim}} = NPp(F^2/RT)[K^+]_o$$

(2)

G_{lim} describes the constant conductance at voltages far more negative than E_K with maximal number of channels open. From whole-cell recordings it cannot be decided whether a change in G_{lim} is due to a change in P or in p. Fitted parameters for z_g were very similar at all external pH values tested, and the fits were not significantly worse if z_g was fixed to a value of 1.8. Both V_{50} and G_{lim}, however, differed significantly at varying external pH values and the following analysis of the effect of pH on I_{KIRC} concentrates on these two parameters.

V_{50} and G_{lim} at pH 5.5 and 7.5

Figure 3 displays the results of a statistical evaluation of V_{50} and G_{lim} measured at external pH values of 5.5 and 7.5 and external KCl concentrations of 1 and 10 mM. For both external KCl concentrations, mean absolute magnitudes of V_{50} (Fig. 3A) were significantly more positive at pH 5.5 than at pH 7.5. The difference in absolute magnitudes of G_{lim} determined at pH 5.5 and 7.5 was not significant because variation of G_{lim} among different protoplasts was high, probably because of varying channel densities in the membrane (for means, see the legend of Fig. 3A). This problem was overcome by analyzing changes of V_{50} and G_{lim} in response to individual medium-exchange events in each protoplast, where the total number of channels could be assumed to be constant (Fig. 3B). When the external pH changed from 5.5 to 7.5, V_{50} shifted to a more negative value by an average of 28 ± 3 mV in 1 mM external KCl ($n = 5$) and 16 ± 2 mV in 10 mM external KCl ($n = 5$). The G_{lim} at pH 7.5 was, on average, 63% ± 7% (1 mM KCl, $n = 5$) or 61% ± 5% (10 mM KCl, $n = 6$) of the G_{lim} at pH 5.5.

The effect of pH on V_{50} was clearly dependent on the concentration of KCl in the bath, whereas no such dependence was observed for the pH effect on G_{lim}. Also, there was no correlation between the size of ΔV_{50} and the G_{lim} ratio: in the same protoplast pH could have a relatively
strong effect on \(V_{50} \) and a relatively weak effect on \(G_{\text{lim}} \), or vice versa: the correlation coefficient was 0.7 (10 mM external KCl, \(n = 6 \)) and 0.6 (1 mM KCl, \(n = 5 \)), respectively, and in both \(P > 0.1 \). Therefore, external pH affects KIRC activity via two independent modulation mechanisms: the first one shifts the Boltzman distribution of the open probability along the voltage axis (effect on \(V_{50} \)), and the second changes the asymptote of the Boltzman distribution by affecting the maximal open probability or the conductance of the open channel (effect on \(G_{\text{lim}} \)). Both effects of external pH were independent of the type of pH buffer used (Mes or HCl for pH 5.5, Hapes or Tes for pH 7.5, Tris or NaOH) and the buffer concentration (between 2 and 5 mM) used.

To obtain a titration curve for the effect of external pH on \(I_{\text{KIRC}} \), \(V_{50} \), and \(G_{\text{lim}} \), one protoplast was exposed to steps of 0.5 pH unit over a wide range of external pH values (4.3–7.8). The pH range was sampled twice, going from basic to acidic values and vice versa, and a slight hysteresis was observed. \(I_{\text{KIRC}} \) elicited by hyperpolarizing voltage pulses were recorded and the corresponding I-V relationships were determined and fitted with Equation 1. The mean \(I_{\text{KIRC}} \) at a given voltage (Fig. 4A) was then plotted against external pH. At all voltages, \(I_{\text{KIRC}}(\text{pH}) \) followed a simple function expected from a single titratable binding site of H⁺:

\[
X(\text{pH}) = X_{\text{Min}} + (X_{\text{Max}} - X_{\text{Min}})/(1 + 10^{\text{pH} - \text{pK}}) \tag{3}
\]

where \(X \) is the \(I_{\text{KIRC}} \) and \(X_{\text{Min}} \) and \(X_{\text{Max}} \) are the minimal and maximal \(I_{\text{KIRC}} \) at very high and very low external pH, respectively. pK values of \(I_{\text{KIRC}} \) were very similar for all voltages (5.9 and 6.0). However, the proportion of \(I_{\text{KIRC}} \) affected by external pH was voltage dependent. The relative \(X_{\text{Min}}(X_{\text{Min}}) \) as a percentage of the \(X_{\text{Max}} \) decreased with positive-going voltages from 46% at −200 mV to 44% at −180 mV, 40% at −160 mV, 34% at −140 mV, 19% at −120 mV, and 0% at 0 mV. Equation 3 (with \(X \) now representing \(V_{50} \) or \(G_{\text{lim}} \)) was also sufficient to fit \(V_{50} \) and \(G_{\text{lim}} \) derived from I-V relationships of this protoplast at different pH values (Fig. 4, B and C). pK values were 6.5 and 5.8 for \(V_{50} \) and \(G_{\text{lim}} \) respectively. \(G_{\text{lim}} \) was 48% of \(G_{\text{lim Max}} \).

Apoplastic pH in Barley Roots

To assess the physiological relevance of low-pH-induced activation of \(I_{\text{KIRC}} \), we measured apoplastic pH in barley root tissue using the pH-dependent fluorescent dye DMNRF. Confocal microscopy confirmed that the dye accumulated selectively in the cell walls of barley roots (Fig. 5). The mean fluorescence ratio measured in root fragments was 0.93 ± 0.02 (\(n = 4 \) plants, three fragments per plant). The fluorescence ratio was significantly lower (0.82 ± 0.01) in root fragments of the same four plants that had been incubated for 1 h with 5 \(\mu \)M fusicoccin. The apoplastic pH was determined as 5.9 ± 0.1 for control root tissue and as 5.3 ± 0.05 for fusicoccin-treated tissue from a comparison with the in situ calibration performed in root fragments exposed to 100 mM phosphate buffer and respiratory blockers added (Fig. 6).

DISCUSSION

Effects of Apoplastic pH on KIRCs in Different Cell Types

Effects of apoplastic pH on \(I_{\text{KIRC}} \) were described previously for intact guard cells from fava bean (Blatt, 1992), for guard cell protoplasts from fava bean (Ilan et al., 1996) and potato (Hoth et al., 1997), and after heterologous expression of guard cell KIRC mRNA in \(X. \) laevis oocytes (KAT1: Hedrich et al., 1995; \(\text{KST1: Müller-Röber et al., 1995; } \text{KST1: Mülle} \), Véry et al., 1995; Hoth et al., 1997). Although reports regarding guard cells are unanimous in describing an activating effect of external protons on KIRCs, they differ in the number and type of parameters reported as affected (\(V_{50}, G_{\text{lim}}, \) and the time constants of activation and deactivation, \(\tau_{\text{act}} \) and \(\tau_{\text{deact}} \)). Blatt, 1992, and Ilan et al., 1996; \(G_{\text{lim}} \); Véry et al.,
Mechanisms of KIRC Activation by External Protons

The effect of external pH on V_{50} reflects proton-dependent modulation of channel gating. Ilan et al. (1996) suggested that external protons affect V_{50} by decreasing the negative surface-charge density in the vicinity of the channel gates. Our observation that the effect of external protons on V_{50} was attenuated by increasing external KCl concentrations points to the same conclusion. One possibility is that protons act on V_{50} by screening the surface potential of the entire membrane, which would result in a different proportion of clamp voltage being sensed by the channel. The second possibility is that the pH effect on V_{50} involves protonation and charge screening of intrinsic channel sites that are exposed to the extracellular side of the membrane. Analysis of mutations performed on KST1 suggested that a His residue situated in the outer-pore region of the channel is crucial for the proton action on V_{50} (Hoth et al., 1997) and the pK of 6.5, which in our study was derived from the pH titration of V_{50} and is approximately the pK of His protonation (Creighton, 1993).

The observed effect of external pH on G_{lim} could be due to pH dependence of either P or p (Eq. 2), and a final statement can be derived only from single-channel studies. pH titration of currents through the KIRC at different voltages (Fig. 4A) reflects the combined effect of pH on V_{50} and G_{lim}. However, the pK of I_{KIRC} (pH) was always approximately the pK of G_{lim} (pH) and was voltage independent. pK values for V_{50} and G_{lim} were probably not different enough to cause a significant shift in the pK of I_{KIRC} (pH) with voltage.

The fact that G_{lim} is not reduced to 0 at high pH (Fig. 4C) is reflected in the residual I_{KIRC} at very negative voltages. Although current activation still exhibited double-exponential

Figure 6. In situ calibration of the fluorescent dye DM-NERF and measurements of apoplastic pH in barley roots. In situ calibration (○), means ± se; $n = 9$) was obtained by ratio-imaging NERF-DM fluorescence from barley root cells incubated in 100 mM phosphate buffers and respiratory inhibitors (see “Materials and Methods”). The curve was fitted with Equation 3 (in which X was replaced by the fluorescence ratio), and the 95% confidence band is indicated with dashed lines. Solid symbols show mean ratio/pH values (± se; n = 4) measured in barley root segments without (●) and with (▲) 5 μM fusicoccin.
kinetics in these conditions (compare with Fig. 1), we cannot disregard the possibility that the pH-independent component of \(I_{\text{KIRC}} \) is due to a different channel type with similar gating kinetics (compare with Amtmann et al., 1997).

Contrasting Responses of Plant KIRCs to External Protons

Recent studies established that the Arabidopsis \(K^+ \)-channel AKT3 displays unique properties with respect to pH sensitivity (Marten et al., 1998), even though its cDNA sequence is highly similar to that of the other Arabidopsis KIRCs, KAT1 and AKT1 (Ketchum and Slayman, 1996). When expressed in *X. laevis* oocytes, AKT3 shows weak inward rectification and blockage by external protons. Acidification of the external medium does not affect \(V_{50} \) but decreases \(G_{\text{fun}} \) because of a decrease in single-channel conductance (Marten et al., 1998). From these findings one may speculate that the KIRC of cultured Arabidopsis cells, which is inhibited by external protons (Giromini et al., 1997), is closely related to or identical to AKT3. Similarities between other characteristics of both channel currents have been highlighted previously (Colombo and Cerana, 1991; compare with Ketchum and Slayman, 1996). The expression pattern of AKT3 in the plant has not yet been established. pH dependence and gating properties clearly relate the barley root KIRC to AKT1 and SKT1 but not to AKT3-type channels.

Implications of the Effect of External pH on \(I_{\text{KIRC}} \) for Low-Affinity \(K^+ \) Uptake

KIRCs have been shown to be the major pathway for low-affinity \(K^+ \) uptake by plant cells (Maathuis et al., 1997). Any change in KIRC activity caused by changes in the external pH can therefore be expected to change \(K^+ \)-uptake rates. However, it has to be taken into account that a change in the amount of \(K^+ \) inward current may influence the membrane potential and, since the KIRC is voltage dependent, this will also affect its activity. Roelfsema and Prins (1998) calculated that apoplastic acidification would ultimately reduce \(K^+ \) influx into guard cell protoplasts from Arabidopsis since activation of the KIRC caused a strong depolarization. However, experimental modification of apoplastic pH as applied by Roelfsema and Prins (1998) does not reflect the physiological conditions in which acidification is generated. In many cases apoplastic acidification is achieved via enhanced proton-pumping activity (Palmgren, 1998), which will not only acidify the apoplast but also hyperpolarize the membrane. To assess pH-linked effects on low-affinity \(K^+ \) uptake, both parameters, apoplastic pH and membrane potential, would have to be measured simultaneously.

Apoplastic pH in Barley Root Tissue

To determine whether the pH effects on the KIRC in root cells could have a physiological role we measured the steady-state pH in cell walls of barley roots and found that the pH-dependent fluorescent dye DM-NERF was suitable for measurements of apoplastic pH in root tissue insofar as it failed to permeate the plasma membrane. The values of apoplastic pH determined here are in the same range as those derived for other tissues (Grignon and Sentenac, 1991), e.g. in the vicinity of guard cells (pH 6.0–7.0; Edwards et al., 1988), leaf epidermis (5.2–5.9; Mühling et al., 1995), various leaf tissues (5.5–6.5; Hoffmann and Kose-garten, 1995), and root epidermis (4.5–4.9; Taylor et al., 1996). Furthermore, we found that the apoplastic pH of barley root cells changes when fusicoccin is added. This result agrees well with recent data from maize roots, in which the addition of 2 \(\mu \text{m} \) fusicoccin caused apoplastic acidification from pH 5.6 to 4.8, as measured with pH-sensitive microelectrodes (Felle, 1998). The conclusion that the plasma membrane \(H^+ \)-ATPase strongly regulates apoplastic pH is further supported by our observation that tissue calibration could be achieved only in the presence of respiratory blockers (see "Materials and Methods"). Accordingly, Felle (1998) reported increased apoplastic pH after the addition of KCN and salicylhydroxamic acid. Taking into account that the pH effect on the KIRC has a pk of 5.9, we can predict a tight linkage between activities of KIRC and \(H^+ \)-ATPase via apoplastic pH.

Putative Physiological Roles of pH Modulation of KIRC Activity

One of the few external factors of physiological relevance that has been specifically shown to influence the plasma membrane \(H^+ \)-ATPase is salt stress (Palmgren, 1998). Salt-induced gene expression and increased activity of the \(H^+ \)-ATPase have been reported for many plant species (Braun et al., 1986; Niu et al., 1993; Binzel, 1995; Ayala et al., 1996; Wu and Seliskar, 1998) and seem to be positively correlated with salt tolerance (Niu et al., 1993). Our results are in accord with the notion that activation of the \(H^+ \)-ATPase would acidify the apoplast and increase \(I_{\text{KIRC}} \). This might reverse the inhibitory effect of salt-induced membrane depolarization (Cakirlar and Bowling, 1981; Katsuahara and Tazawa, 1990; Kourie and Findlay, 1990) on the KIRCs and allow the root cells to maintain a relatively high \(K^+ /Na^+ \)-influx ratio under saline conditions (Amtmann and Sanders, 1999).

ACKNOWLEDGMENTS

We thank Alison Karley for assistance with plant maintenance and Frans Maathuis, Steve Roberts, and Richard Parton for useful discussions.

Received September 10, 1998; accepted February 4, 1999.

LITERATURE CITED

sium transport system AKT1 of Arabidopsis thaliana. Plant Mol Biol 29: 947–958
Blatt MR (1992) K⁺ channels of stomatal guard cells. Character-
ization of the inward rectifier and its control by pH. J Gen Physiol 99: 615–644
Braun Y, Hassidim M, Lerner HR, Reinhold L (1986) Studies on
H⁺ translocating ATPases in plants of varying resistance to
salinity. I. Salinity during growth modulates the proton pump in the halophyte Atriplex nummularia. Plant Physiol 87: 104–108
Cakirlar H, Bowling DJF (1988) Guard cells extrude
protons prior to stomatal opening: a study using fluorescence
Arabidopsis thaliana. Plant Physiol 97: 1130–1135
tion and molecular localization of a pH-sensing domain for the
inward rectifier potassium channel HIR. Neuron 15: 1157–1168
Creighton TE (1993) Proteins: Structures and Molecular Proper-
ties. WH Freeman, New York
protons prior to stomatal opening: a study using fluorescence
Föhr KJ, Wardiol W, Gratzi L (1993) Calculation and control of free divalent cations in solutions used for membrane fusion
plasma membrane K⁺ channels of Arabidopsis thaliana. cultured
Grignon C, Sentenac H (1991) pH and ionic conditions in the
recording from cells and cell-free membrane patches. Pflügers Arch 391: 85–100
cer potassium channels in plants differ from their animal coun-
the AKT1 potassium channel in plant nutrition. Science 280: 918–921
apoplastic pH and apoplastic pH gradients between various cell
types in sunflower leaves. Physiol Plant 95: 327–335
Hoth S, Dreyer I, Dietrich P, Becker D, Müller-Rübe R, Hedrich
R (1997) Molecular basis of plant-specific acid activation of K⁺
uptake channels. Proc Natl Acad Sci USA 94: 4806–4810
Katsuhara M, Tazawa T (1990) Mechanism of calcium-dependent
Ketchum KA, Slayman CW (1996) Isolation of a ion channel gene
from Arabidopsis thaliana using the H5 signature sequence from
temperature-dependent K⁺ channel. FEBS Lett 378: 19–26
Bot Res 15: 93–178
Kourie JI, Findlay GP (1990) Ionic currents across the plasma-
membrane of Chara inflata cells. II. Effects of external Na⁺, Ca²⁺ and
Lagarde D, Basset M, Lepetit M, Concejero G, Gaymard F, Asturc
AKT1 gene is consistent with a role in K⁺ nutrition. Plant J 9: 195–203
Maathuis FJM, Ichida AM, Sanders D, Schroeder JI (1997) Roles
of higher plant K⁺ channels. Plant Physiol 114: 1141–1149
Maathuis FJM, Sanders D (1994) Mechanism of high-affinity po-
tassium uptake in roots of Arabidopsis thaliana. Proc Natl Acad Sci USA 91: 9272–9276
Arabidopsis K⁺ transporter AKT3 displays unique channel prop-
erties. Presented at the 11th International Workshop on Plant
Membrane Biology, 1998, Cambridge, UK
Exp Bot 46: 377–382
electrophysiological analysis of KST1, an inward rectifying
K⁺ channel expressed in potato guard cells. EMBO J 14: 2499–2416
Niu X, Narasimhan ML, Salzman RA, Bressan RA, Hasegawa PM
expression in a glycophyte and a halophyte. Plant Physiol 103: 713–718
Roelfsema M, Prins HBA (1998) The membrane potential of
Arabidopsis thaliana guard cells; depolarizations induced by
apoplastic acidification. Planta 205: 100–112
on an inward rectifier K⁺ channel (IRK1). Pflügers Arch 433: 428–434
root gravitropism: 13C laser-scanning confocal microscopy mea-
surement. Physiol Plant 97: 35–38
Expression of a cloned plant K⁺ channel in Xenopus oocytes:
analysis of mesoscopic currents. Plant J 7: 321–332
inward rectifier in the plasma membrane of xylem parenchyma
cells from barley roots: effects of TEA⁻, Ba²⁺, La³⁺ and Ca²⁺. J
Membr Biol 142: 363–379
Whitaker JE, Haugland RP, Ryan D, Hewitt PC, Prendergast FG
(1992) Fluorescent rhodol derivatives: versatile, photostable la-
beIs and tracers. Anal Biochem 210: 267–279
H⁺-ATPase in the salt marsh plant Spartina patens: ATP hydro-
Zimmermann S, Täke I, Ehrhardt T, Nast G, Müller-Röber B
(1998) Characterization of SKT1, an inwardly rectifying potas-
sium channel from potato, by heterologous expression in insect