Mechanism of Arsenate Resistance in the Ericoid Mycorrhizal Fungus *Hymenoscyphus ericae*

Jade M. Sharples, Andrew A. Meharg¹, Susan M. Chambers, and John W.G. Cairney*

Mycorrhiza Research Group, School of Science, University of Western Sydney, P.O. Box 10, Kingswood NSW 2747, Australia (J.M.S., S.M.C., J.W.G.C.); and Institute of Terrestrial Ecology, Monks Wood, Abbots Ripton, Huntingdon, Cambridgeshire PE17 2LS, United Kingdom (J.M.S., A.A.M.)

Arsenate resistance is exhibited by the ericoid mycorrhizal fungus *Hymenoscyphus ericae* collected from As-contaminated mine soils. To investigate the mechanism of arsenate resistance, uptake kinetics for arsenate (H$_2$AsO$_4^-$), arsenite (H$_3$AsO$_3$), and phosphate (H$_2$PO$_4^-$) were determined in both arsenate-resistant and -non-resistant *H. ericae*. The uptake kinetics of H$_2$AsO$_4^-$, H$_3$AsO$_3$, and H$_2$PO$_4^-$ in both resistant and non-resistant isolates were similar. The presence of 5.0 μM H$_2$PO$_4^-$ repressed uptake of H$_2$AsO$_4^-$ and exposure to 0.75 mm H$_2$AsO$_4^-$ repressed H$_2$PO$_4^-$ uptake in both *H. ericae*. Mine site *H. ericae* demonstrated an enhanced As efflux mechanism in comparison with non-resistant *H. ericae* and lost approximately 90% of preloaded cellular As (1-h uptake of 0.22 μmol g$^{-1}$ dry weight h$^{-1}$ H$_2$AsO$_4^-$) over a 5-h period in comparison with non-resistant *H. ericae*, which lost 40% of their total absorbed H$_2$AsO$_4^-$ As lost from the fungal tissue was in the form of H$_3$AsO$_3$. The results of the present study demonstrate an enhanced H$_2$AsO$_4^-$ efflux system operating in mine site *H. ericae* as a mechanism for H$_2$AsO$_4^-$ resistance. The ecological significance of this mechanism of arsenate resistance is discussed.

As is ubiquitous in nature with As levels being elevated by mining, industrial, and agricultural activities (Meharg et al., 1994). In the southwest of England, the mining and processing of As ore has led to highly contaminated mine spoil soils. As may be present in these spoil soils at 35 mmol kg$^{-1}$ with arsenate being the dominant form of available soil As (Colbourn et al., 1975). Within the pH range 2.0 to 6.5 arsenate exists predominantly as H$_3$AsO$_3^-$ (Fergusson, 1990). The dominant vegetative cover on these mines is *Calluna vulgaris*, which is present in ericoid mycorrhizal association with the ascomycete fungus *Hymenoscyphus ericae* (Sharples et al., 2000). Ericoid mycorrhizal symbiosis is considered to be critical to the survival of plants in the order Ericales on natural heathland sites and sites contaminated with toxic metals. The principle benefit conferred upon plants by ericoid mycorrhizal association is fungus-mediated access to otherwise unavailable sources of organic nitrogen and phosphorus, whereas the fungus may also alleviate toxic metal stress under some circumstances (Smith and Read, 1997).

H$_2$AsO$_4^-$ resistance is exhibited by the ericoid mycorrhizal fungus *H. ericae* (Sharples et al., 1999, 2000) and selected angiosperms, including *Holcus lanatus* (Meharg and Macnair, 1990), *Agrostis capillaris*, and *Deschampsia cespitosa* (Meharg and Macnair, 1991, 1992), collected from As-contaminated mine soils. H$_3$AsO$_3$ is a H$_2$PO$_4^-$ analog and competes with H$_2$PO$_4^-$ as a substrate for the H$_2$PO$_4^-$ uptake system in angiosperms (Asher and Reay, 1979; Ullrich-Eberius et al., 1989), fungi (Rothstein and Donovan, 1963; Jung and Rothstein, 1965; Beever and Burns, 1980), mosses (Wells and Richardson, 1985), lichens (Nieboer et al., 1984), and bacteria (Silver and Misra, 1988). Resistance mechanisms to H$_3$AsO$_3^-$ in the bacteria, *Staphylococcus aureous* and *Escherichia coli*, involve reducing cellular concentrations of As and rapidly effluxing them via a plasmid-encoded arsenical pump (Rosen, 1986; Silver and Misra, 1988). Meharg and Macnair (1990) demonstrated that H$_2$AsO$_4^-$ resistance in the grass *H. lanatus* was due to suppression of the high affinity H$_2$PO$_4^-$ uptake system in H$_2$AsO$_4^-$ tolerant plants, which led to reduced uptake of both H$_2$PO$_4^-$ and H$_2$AsO$_4^-$.

Sharples et al. (2000) recently isolated populations of arsenate-resistant *H. ericae* from roots of *C. vulgaris* on As-contaminated mine spoil soils in southwestern England. Populations of the mycorrhizal fungus have evolved resistance to arsenate contamination in parallel with the host plant, and it seems likely that the presence of the mycorrhizal fungus in roots of *C. vulgaris* is essential its establishment and persistence on As-contaminated sites (Sharples et al., 2000). The present study investigated the mechanism of H$_2$AsO$_4^-$ resistance in an isolate of *H. ericae* from an As-contaminated mine site.

RESULTS

Effect of H$_2$AsO$_4^-$ and H$_2$AsO$_3$ on Biomass Production

The heathland *H. ericae* isolate demonstrated significantly greater sensitivity to H$_2$AsO$_4^-$ and H$_2$AsO$_3$...
than the mine site isolate (Fig. 1). Growth of the heathland isolate was almost completely inhibited at 1.33 mM H$_2$AsO$_4^-$ and above, whereas growth of the mine site isolate was inhibited by only 40% at the highest concentration tested (13.3 mM) (Fig. 1A). Biomass yield of the heathland isolate was 15 µg h$^{-1}$ in the presence of 13.3 mM H$_3$AsO$_3$, whereas the mine isolate produced a mean biomass yield of approximately 45 µg h$^{-1}$ at the same H3AsO3 concentration (Fig. 1B). Growth of both isolates was more severely affected by the presence of H$_2$AsO$_4^-$ than H$_3$AsO$_3$.

Kinetics of High Affinity H$_2$AsO$_4^-$ and H$_2$PO$_4^-$ Uptake

In H$_2$PO$_4^-$-deficient tissue the rate of H$_2$AsO$_4^-$ and H$_2$PO$_4^-$ uptake was dependent on concentration, and the uptake of both ions displayed saturation kinetics (Figs. 2 and 3). Single Michaelis-Menten functions were fitted to the data, representing the high affinity uptake carrier, which would predominate at low-substrate concentrations used here (Meharg and Macnair, 1990). Kinetics of both H$_2$AsO$_4^-$ and H$_2$PO$_4^-$ uptake were similar for the two H. ericae isolates (Table I). There was no significant difference in the uptake of H$_2$AsO$_4^-$ between the heathland and mine site H. ericae isolates, as determined by ANOVA (data not shown). Growth in the presence of 5 µmol H$_2$PO$_4^-$ prior to uptake suppressed H$_2$AsO$_4^-$ uptake in both the mine site and heathland isolates (Fig. 2). At 0.75 mM H$_2$AsO$_4^-$ in inorganic phosphate-sufficient tissue, the rate of H$_2$AsO$_4^-$ uptake was approximately 2 to 3 times lower than the rate of uptake in the absence of H$_2$PO$_4^-$ (Fig. 2). Michaelis-Menten kinetic parameters could not be determined for isolates precultured on high concentration H$_2$PO$_4^-$ media, and a linear regression was fitted to the data (Fig. 2).

Figure 1. A, Growth of mine site (▼) and heathland (●) H. ericae over a range of H$_2$AsO$_4^-$ concentrations. Bars = mean ± se (n = 3). B, Growth of mine site (▼) and heathland (●) H. ericae over a range of H$_3$AsO$_3^-$ concentrations. Bars = mean ± se (n = 3).

Figure 2. H$_2$AsO$_4^-$ influx in the absence of H$_2$PO$_4^-$ for mine site (▼, dashed line) and heathland (●, solid line) H. ericae. H$_2$AsO$_4^-$ influx after growth in the presence of 5 mmol H$_2$PO$_4^-$ for mine site H. ericae (▼, dashed line) and heathland H. ericae (●, solid line). Bars = mean ± se (n = 3).

Figure 3. H$_2$PO$_4^-$ influx for mine site (▼, dashed line) and heathland (●, solid line) H. ericae. Bars = mean ± se (n = 3).
Increasing $H_2PO_4^-$ concentrations up to 0.1 mm resulted in an increase in the rate of $H_2PO_4^-$ uptake in both isolates (Fig. 3). At concentrations above 0.1 mm, $H_2PO_4^-$ uptake was not further enhanced. Apparent kinetic parameters for both isolates were similar (Table I). There was no significant difference between the rates of $H_2PO_4^-$ uptake in the heathland or mine site isolate as determined by ANOVA (Minitab, SPSS, Chicago).

In comparison with the rate of $H_2AsO_4^-$ uptake, $H_2PO_4^-$ uptake was much greater in both $H. ericae$ isolates at all concentrations. Both isolates demonstrated a much higher V_{max} and a lower K_m value for $H_2PO_4^-$ in comparison with $H_2AsO_4^-$ (Table I), indicating a much higher affinity for $H_2PO_4^-$ uptake.

Repression of $H_2AsO_4^-$ and $H_2PO_4^-$ Uptake

Repression of $H_2AsO_4^-$ uptake by $H_2PO_4^-$ and $H_2PO_4^-$ uptake by $H_2AsO_4^-$ was investigated at fixed concentrations. Uptake of 0.75 mm $H_2AsO_4^-$ from solution in heathland and mine site $H. ericae$ isolates was reduced by pre-exposure of fungal mycelium to $H_2PO_4^-$ (5.0 μM $H_2PO_4^-$). The initial rate of $H_2AsO_4^-$ uptake in the absence of $H_2PO_4^-$ in mine site $H. ericae$ was 0.22 μmol g$^{-1}$ dry weight h$^{-1}$, which was lower than the initial rate of uptake in the heathland isolate (Fig. 4A). After 20 min of exposure to $H_2PO_4^-$, a rapid decrease in $H_2AsO_4^-$ uptake was observed for both isolates with mine site and heathland isolates demonstrating uptake rates of 0.14 and 0.29 μmol g$^{-1}$ dry weight h$^{-1}$, respectively. After 2 h of $H_2PO_4^-$ uptake, $H_2AsO_4^-$ uptake by both isolates was almost completely suppressed (Fig. 4A).

Uptake of 0.1 mm $H_2PO_4^-$ was repressed by pre-exposure to 0.75 mm $H_2AsO_4^-$ (Fig. 4B). Initially, the rate of $H_2PO_4^-$ exposure in the heathland isolate was greater than the mine site isolate, however, on exposure to $H_2AsO_4^-$, rates of $H_2PO_4^-$ uptake decreased in both isolates (Fig. 4B). After 20 min of exposure to $H_2AsO_4^-$, the rate of $H_2PO_4^-$ uptake was suppressed considerably, however, after 24 h of exposure to $H_2AsO_4^-$, $H_2PO_4^-$ uptake in both isolates was completely inhibited (Fig. 4B). There was no difference between the effects of $H_2AsO_4^-$ on $H_2PO_4^-$ uptake and $H_2PO_4^-$ on $H_2AsO_4^-$ uptake between the heathland and mine site isolate.

Efflux of As from Fungal Cells

In the methylation experiment, As was not present in the HgCl$_2$ traps for either mine site or heathland isolates. Because HgCl$_2$ complexes all volatile methylated arsines as well as AsH$_3$, this indicates that...
neither isolate methylated $H_2AsO_4^-$ (data not shown).

Efflux of As from mine site $H. ericae$ mycelia was more rapid than for the heathland isolate (Fig. 5). After 1 h of incubation in $0.75 \text{mm} H_2AsO_4^-$ (to load cells with As) and transfer to $H_2AsO_4^-$-free media for time periods of up to 24 h, As concentration in the mine site isolate tissue decreased significantly ($P < 0.001$) (Fig. 5). After 5 h in $H_2AsO_4^-$-free media, the mine site isolate lost 83% of its initial As concentration in comparison with the heathland isolate, which lost 13%, showing enhanced As cell efflux in the mine site $H. ericae$ isolate. Similar trends were found after loading for 10 min, 20 min, and 4 h exposure to 0.75 mm $H_2AsO_4^-$ (data not shown). Of the total As effluxed from cells, 71.6% was H_3AsO_3 with the remainder of As being lost as $H_2AsO_4^-$. The majority of As lost from the heathland isolate similarly was in the form of H_3AsO_3 (71.3%). These results indicate an enhanced H_3AsO_3 efflux mechanism in the mine site $H. ericae$ isolate.

Uptake of $H_2AsO_4^-$ over Time

The long-term uptake of $H_2AsO_4^-$ was much greater in the heathland $H. ericae$ isolate than the mine site isolate (Fig. 6). Accumulation of $H_2AsO_4^-$ by the heathland isolate did not differ significantly from linearity with respect to time ($r^2 = 0.973$) over 2 h, however, after 2 h of exposure, decreased accumulation was observed (Fig. 6). This decrease in As accumulation after 2 h seems likely to reflect a response to $H_2AsO_4^-$ toxicity. In contrast, while the mine site isolate demonstrated increased accumulation of As over 20 min there was no increase in accumulation after 2 h and this was sustained for up to 24 h.

Uptake of $H_3AsO_3^-$

The rates of H_3AsO_3 uptake by heathland and mine site $H. ericae$ isolates were similar with uptake in both isolates increasing linearly in response to increasing H_3AsO_3 concentrations (Fig. 7). Although Michaelis-Menten functions could be fitted to the data, linear models demonstrated the best fits (Table I). Uptake of H_2AsO_3 in mine site and heathland $H. ericae$ isolates at low H_3AsO_3 concentrations ($0.01 \text{mm} H_3AsO_3$) was 3- to 4-fold less than the rate of $H_2AsO_4^-$ uptake at the same concentration (Figs. 2 and 6). At $0.75 \text{mm} H_2AsO_3$, the rate of H_3AsO_3 uptake was 15 times less than the rate of $H_2AsO_4^-$ uptake with both isolates having a lower affinity for H_3AsO_3 than $H_2AsO_4^-$.

DISCUSSION

Populations of $H_2AsO_4^-$-resistant $H. ericae$ have been isolated from As/Cu mine soils (Sharples et al.,
Mechanism of $H_2AsO_4^-$ Resistance in Hymenoscyphus ericae

Pregrowth of $H. ericae$ in the presence of 5 mM $H_2PO_4^-$ significantly suppressed the uptake of $H_2AsO_4^-$ for both mine site and heathland isolates (Fig. 2). Suppression of $H_2AsO_4^-$ uptake by long-term exposure to $H_2PO_4^-$ has also been demonstrated in the plant *Hordum vulgare* and *Silene vulgaris* (Lee, 1982; Palouris and Hutchinson, 1991). In the case of *H. vulgare*, plants grown in the presence and absence of 0.5 mM $H_2PO_4^-$ demonstrated $H_2AsO_4^-$ uptake rates of 27.7 and 81.6 nmol g$^{-1}$ fresh weight h$^{-1}$, respectively (Lee, 1982). Meharg and Macnair (1991) suggest that $H_2AsO_4^-$ resistance in *H. lanatus* is due to a decrease in the concentration of protein carriers in the plasma membrane rather than a change in the carrying capacity of the protein.

$H_2AsO_4^-$ uptake was rapidly repressed on exposure to $H_2PO_4^-$ in both mine site and heathland *H. ericae* (Fig. 4). Similarly, the presence of $H_2AsO_4^-$ rapidly repressed $H_2PO_4^-$ uptake (Fig. 4). Rapid repression of the high affinity $H_2PO_4^-$ uptake system in plants under high plant $H_2PO_4^-$ status has long been reported (Meharg and Macnair, 1992). The nature of this repression differs for different species. Repression may occur by a decrease in V_{max} with little or no change in the K_m which occurs in algae (McPharlin and Bielecki, 1987), bacteria (Beever and Burns, 1980), and selected plants (Anghinoni and Barber, 1980; Lee, 1982; Cigliatti and Santa Maria, 1990; Jungk et al., 1990). Repression of the high affinity uptake system in the vesicular arbuscular mycorrhizal fungus *Gigaspora margarita* is achieved by increase in the apparent K_m with little change in the apparent V_{max} (Thompson et al., 1990), whereas repression in the plant, *Solanium tuberosum*, is achieved by both an increase in apparent K_m and a decrease in apparent V_{max} (Cigliatti and Clarkson, 1983). Changes in $H_2PO_4^-$ uptake with changing $H_2PO_4^-$ status may be under allosteric control (Leevbre and Glass, 1982; Schorring and Jensen, 1984) and by the synthesis and breakdown of transport sites (Jeanjean, 1973; Drew et al., 1984). Because the speed of repression is too rapid to be explained by protein turnover, under short exposure times it is likely that for *H. ericae* both $H_2PO_4^-$ and $H_2AsO_4^-$ act allosterically.

Short-term uptake of $H_2AsO_4^-$ was similar between isolates, however in the longer term, accumulation of As by the heathland isolate decreased significantly in 24 h (Fig. 6). Such a decrease in the rate of As accumulation in the heathland isolate may reflect cell death in response to $H_2AsO_4^-$ toxicity. Arsenate causes toxicity in fungi and plants by interfering with aerobic phosphorylation, following intracellular reduction of $H_2AsO_4^-$ to $H_2AsO_3^-$ which then breaks down protein sulphydryl groups (Ullrich-Eberius et al., 1989).

The present study demonstrates the ability of an isolate of *H. ericae* from a mine site to efflux $H_2AsO_4^-$ from its hyphae (Fig. 5), which may provide $H_2AsO_4^-$ resistance to this isolate. $H_2AsO_4^-$ efflux has
been reported as a mechanism of H_2AsO_4^- resistance in the bacterium S. aureus (Broer et al., 1993) and the yeast S. cerevisiae (Wysocki et al., 1997) and contrasts to the mechanism of resistance reported in higher plants (Meharg and Macnair, 1990). Arsenate resistance in S. cerevisiae is mediated by an H_3AsO_3 transporter (Wysocki et al., 1997), and in the case of S. aureus, intracellular H_2AsO_4^- is reduced to H_3AsO_3 before being actively exported from the cells (Broer et al., 1993). The present study suggests a similar mechanism of As resistance in H. ericae at As-contaminated mine sites. The steady state of As accumulation observed in the mine site isolate after 20 min is probably not due to a suppression of the high affinity uptake system but rapid internal reduction of H_2AsO_4^- to H_3AsO_3, which then initiates efflux of H_3AsO_3 from the hyphae. The ability of the mine site H. ericae isolate to efflux H_3AsO_3 from cells into the surrounding soil indicates a need for enhanced resistance to H_3AsO_3. Arsenate was much more toxic to H. ericae than H_3AsO_3 (Fig. 1), which supports efflux of H_2AsO_3 as the mechanism of H_2AsO_3^- resistance in H. ericae.

The mechanism of H_2AsO_3^- resistance we have described in H. ericae is likely to be of ecological importance for its host plant (C. vulgaris) on contaminated mine sites. Arsenite efflux enables the fungus to retain its ability to transport inorganic phosphate from the soil (much of which will, in turn, be transferred to the host plant), whereas effluxing absorbed H_2AsO_3^- enables the fungus to transport inorganic phosphate to the host (Sharples et al., 2000). Efflux of H_3AsO_3 from the fungal cells into the soil also ensures that re-uptake of As from the soil is limited.

MATERIALS AND METHODS

Fungal Material

The arsenate-resistant *Hymenoscyphus ericae* genotype was isolated from roots of *Calluna vulgaris* obtained from the Gawton United Mine (Devon, S.W. UK) whereas the non-resistant genotype was obtained from *C. vulgaris* roots from an uncontaminated natural heathland site at Aylesbeare Common (Devon, S.W. UK). These fungal isolates were randomly selected from approximately 25 isolates from each site and were previously identified by PCR-RFLP analysis (Sharples et al., 2000). Although the characteristics of arsenate absorption and arsenite efflux have only been studied in detail for single isolates from each population, preliminary experiments for absorption and efflux by further isolates indicate consistent patterns for absorption/efflux within the mine site or heathland populations (data not shown). The fungi were maintained on modified Melin Norkrans agar medium (MMN) containing: 3.79 mm (NH$_4$)$_2$HPO$_4$; 2.21 mm KH$_2$PO$_4$; 0.57 mm MgSO$_4$·7H$_2$O; 0.23 mm CaCl$_2$·6H$_2$O; 0.43 mm NaCl; 0.034 mm FeEDTA; 55.5 mm D-Glc; and 0.3 mm thiamine, adjusted to pH 5.5, and incubated at 25°C. In H_2AsO_3^- and H_3AsO_3 uptake experiments, mycelia were grown in liquid MMN for 17 d and transferred to H_2PO_4^--free MMN for 48 h prior to uptake analysis. To determine the effects of H_2PO_4^- on H_3AsO_3 uptake, mycelia were grown in liquid MMN containing 5 μm H_2PO_4^- for 17 d before H_2AsO_4^- uptake. Mycelia for H_2PO_4^- uptake studies were grown on liquid MMN containing 0.01 mm H_2PO_4^- for 17 d at 25°C.

Effect of H_2AsO_4^- and H_3AsO_3 on Biomass Production

Two plugs (6-mm diameter) of each *H. ericae* isolate were cut from the edge of actively growing mycelia on MMN and inoculated into 9-cm-diameter Petri dishes containing 25 mL of liquid MMN. After 11 d of incubation at 25°C, fungal plugs were transferred to 25 mL of liquid MMN supplemented with either H_3AsO_3^- or H_2AsO_4^-, supplied as Na$_2$HAsO$_4$ and NaAsO$_2$, respectively, at concentrations of 0, 0.67, 1.33, and 4.67 mm. For all treatments, H_2PO_4^- concentration in the medium was adjusted to 0.01 mm. After 7 d of incubation, mycelial mats were removed from basal medium, dried overnight (80°C), and the biomass increase determined gravimetrically. All treatments were replicated three times.

Kinetics of H_2AsO_4^- and H_2PO_4^- Uptake

To determine H_2AsO_4^-, H_3AsO_3^-, and H_2PO_4^- uptake, three replicate mycelial mats of each isolate were incubated in 25 mL of aerated test solution for 20 min (except when uptake was determined with respect to time). Test solutions contained 10 mm 2-(N-morpholino) ethanesulfonic acid (MES), 0.5 mm Ca(NO$_3$)$_2$, and different concentrations of either H_2AsO_4^-, H_3AsO_3^-, or H_2PO_4^- in the form of Na$_2$HAsO$_4$·7H$_2$O, NaAsO$_2$, and Na$_2$HPO$_4$, respectively. In the experiments to determine the rate of H_2PO_4^- uptake, $[^32P]$ (as Na$_3$HPO$_4$, supplied by Amersham) was added to give an activity of 37 kBq mL$^{-1}$. Using the methodology of Meharg and Macnair (1990), uptake was terminated by rinsing mycelia in 25 mL of an ice-cold solution containing 1 mm Na$_2$HPO$_4$, 10 mm MES, and 0.5 mm Ca(NO$_3$)$_2$. Mycelia were transferred to 25 mL of an aerated ice-cold solution of the same composition for 10 min to ensure desorption of H_2AsO_4^-, H_3AsO_3^-, or $[^32P]$ from the cell-free space. Mycelia were dried (80°C, 24 h) and biomass determined gravimetrically before analysis.

Repression of H_2PO_4^- and H_3AsO_3^- Uptake

To investigate the effects of H_3AsO_3^- on H_2AsO_4^- uptake, three replicate mycelial mats of each isolate were pre-incubated in liquid MMN containing 5 μm H_2PO_4^- for 0, 20, 60, 120, 240, or 1,440 min prior to H_2AsO_4^- uptake (as described above). The effects of H_2AsO_4^- on H_2PO_4^- uptake were determined by pre-incubating three replicate mycelia in 0.75 μm H_3AsO_4^- for 0, 20, 60, 120, 240, or 1,440 min before exposure to $[^32P]$-uptake solution.

Methylation and Efflux of As by Fungi

Methylation of H_2AsO_4^- was investigated using a modified method of Gates et al. (1997), involving the chemofo-
cussing of volatile As species on mercuric chloride. Conical flasks were inoculated with 20 mL of a solution containing 10 mM MES, 0.5 mM Ca(NO₃)₂, and 0.67 mM H₂AsO₄⁻ for mine site *H. ericae* mycelia and 0.27 mM H₂AsO₄⁻ for heathland *H. ericae*. These H₂AsO₄⁻ concentrations were the approximate H₂AsO₄⁻ EC₅₀ values of the mine and heathland population (preliminary data by Sharples et al., 2000) (data not shown). Polyurethane plugs were soaked in 0.1 M HgCl₂ and oven dried at 50°C for 12 h before being placed inside a glass condenser fitted to the conical flasks. Three replicate flasks were set up for each isolate. The presence of As was indicated by brown discoloration of the HgCl₂ plugs and after 24 h of incubation, HgCl₂ plugs were removed and analyzed for As by atomic absorption spectrometry.

To investigate the mechanism of H₂AsO₄⁻ resistance, mycelia of each isolate (*n* = 3) were exposed to H₂AsO₄⁻ uptake solution for 10 min, 20 min, 1 h, 4 h, or 24 h. After termination of uptake, mycelia were transferred to 25 mL of liquid MMN containing no H₂PO₄⁻ for 0, 30 min, 90 min, 5 h, or 24 h. Mycelia were then dried (80°C, 24 h) and biomass determined gravimetrically before As analysis.

Speciation of As

Three replicate mycelia of each isolate were incubated in 0.75 mM H₂AsO₄⁻ uptake solution for 1 h. Uptake was terminated and mycelia transferred to a 2-mL test tube containing 1 mL of H₂PO₄⁻-free liquid MMN. Fresh liquid MMN was continually pumped into and out of the test tube at a flow rate of 0.7 mL min⁻¹ and removed from the tube at the same rate for 5 h. After 5 h, fungal material was dried, digested, and analyzed for As. Two milliliters of MMN pumped from the test tube was also analyzed for H₃AsO₄⁻ and H₃AsO₃ using atomic absorption spectrometry (Glaubig and Goldberg, 1988).

Analysis

To determine [³²P]H₂PO₄⁻ uptake, dried fungal mycelia were placed in 20-mL glass scintillation vials, to which 10 mL of deionized water was added. [³²P]-activity was determined by Cherenkov counting using a Tri Carb 2100TR liquid scintillation counter (Packard Bell, Sacramento, CA) with data corrected for quenching. As was determined by digesting mycelia in 2 mL of concentrated nitric acid (Aristar grade) using a block digester, for 1 h at 120°C followed by 1 h at 180°C, to evaporate the samples to dryness. The As residue was redissolved in 20 mL of a solution containing 5% (v/v) HCl (Analar grade) containing 20 mM potassium iodide. The amount of As present in the digestes was determined using hydride generation interfaced with an atomic absorption spectrometer (ThermoUnicam Solaar 929, Cambridge, UK). As species were determined using pH selectivity, H₂AsO₄⁻ reduced to arsenite (AsH₃) by NaBH₄ at pH < 6, whereas H₃AsO₄⁻ reduced to AsH₃ at pH 7.

Statistical Analysis

Data were analyzed by ANOVA using the computer package Minitab v. 11 (Minitab, State College, PA). Curve fitting was carried out using the fitting regimes within the computer package Sigma Plot (Jandel Scientific, Erkrath, Germany), which uses the Marquardt non-linear curve fitting algorithm (Marquardt, 1963).

Received March 2, 2000; accepted July 27, 2000.

LITERATURE CITED

Cagliatti DH, Clarkson DT (1983) Physiological changes in, and phosphate uptake by potato plants during development of, and recovery from phosphate deficiency. Physiol Plant 58: 287–294

Wells JM, Richardson DHS (1985) Anion accumulation by the moss Hylocomium splendens: uptake and competition studies involving arsenate, selenate, selenite, phosphate, sulphate, and sulphite. New Phytol 101: 571–583