Xylem Cavitation in the Leaf of *Prunus laurocerasus* and Its Impact on Leaf Hydraulics

Andrea Nardini, Melvin T. Tyree*, and Sebastiano Salleo

Dipartimento di Biologia, Università degli Studi di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy (A.N., S.S.); and United States Department of Agriculture Forest Service, Aiken Forestry Sciences Laboratory, P.O. Box 968, Burlington, Vermont 05402 (M.T.T.)

This paper reports how water stress correlates with changes in hydraulic conductivity of stems, leaf midrib, and whole leaves of *Prunus laurocerasus*. Water stress caused cavitation-induced dysfunction in vessels of *P. laurocerasus*. Cavitation was detected acoustically by counts of ultrasonic acoustic emissions and by the loss of hydraulic conductivity measured by a vacuum chamber method. Stems and midribs were approximately equally vulnerable to cavitations. Although midribs suffered a 70% loss of hydraulic conductance at leaf water potentials of −1.5 MPa, there was less than a 10% loss of hydraulic conductance in whole leaves. Cutting and sealing the midrib 20 mm from the leaf base caused only a 30% loss of conduction of the whole leaf. A high-pressure flow meter was used to measure conductance of whole leaves and as the leaf was progressively cut back from tip to base. These data were fitted to a model of hydraulic conductance of leaves that explained the above results, i.e. redundancy in hydraulic pathways whereby water can flow around embolized regions in the leaf, makes whole leaves relatively insensitive to significant changes in conductance of the midrib. The onset of cavitation events in *P. laurocerasus* leaves correlated with the onset of stomatal closure as found recently in studies of other species in our laboratory.

Since the 1980s, the vulnerability to cavitation of plants has been widely recognized to be one of the major factors limiting plant growth and productivity (e.g. Tyree and Sperry, 1989; Cochard et al., 1992; Lo Gullo and Salleo, 1993) and, hence, competitiveness for light and available nutrients (Ryan and Yoder, 1997; Meinzer et al., 1999; Nardini and Tyree, 1999). The vulnerability to cavitation of different plant organs has been investigated and we now know that xylem cavitation is much more common in plants than previously thought (Salleo et al., 1996; Kikuta et al., 1997; Buchard et al., 1999) and that it can be advantageous to plants subject to some environmental stresses (Lo Gullo and Salleo, 1992; Salleo et al., 2000). There are, however, no reports on the effect of cavitation on leaf hydraulic conductance.

Sperry and Ikeda (1997) have provided evidence of the higher vulnerability to cavitation of roots compared with stems and of small roots with respect to large ones. Some authors have advanced the hypothesis that under extreme drought, complete cavitation of cortical tissue or vessels of fine roots may result in isolation of roots from the drying soil, preventing extensive cavitation in stems of CAM plants (North and Nobel, 1991, 1992). Petioles of *Juglans regia* have been reported to be more vulnerable to cavitation than stems by Tyree et al. (1993a) who related petiole cavitation to leaf shedding mechanisms and to plant segmentation (Zimmermann, 1983). Whether petioles are more or less vulnerable to cavitation than stems seems to be a species-specific trait; petioles were found to be more resistant than stems in *Betula occidentalis* (Sperry and Saliendra, 1994) and *Alnus glutinosa* (Hacke and Sauter, 1996) or equally resistant in *Quercus robur* and *Q. rubra*, but more vulnerable in *Q. petraea* and *Q. pubescens* (Cochar, et al., 1992).

Recent studies (Sperry et al., 1993; Cochard et al., 1997; Salleo et al., 2000) have suggested that cavitation-induced xylem embolism may act as a rapid hydraulic signal initiating stomatal response because there is a temporal coincidence between the onset of cavitations and initial closure of stomates. However, the mechanism linking cavitations and stomatal closure remains uncertain.

In this paper we investigate the impact of cavitation in the leaf veins on leaf hydraulic conductivity. Only a few studies have appeared in the literature reporting measurements of cavitation in the leaf veins (e.g. Milburn, 1973; West and Gaff, 1976; Kikuta et al., 1997; Salleo et al., 2000). In particular, Kikuta et al. (1997) reported cavitation in the leaf midrib of eight woody species detected acoustically, i.e. counting the ultrasound acoustic emissions (UAE) produced during cavitation events (Tyree and Dixon, 1983). Measurements of cavitation-induced embolism in the leaf veins and its impact on leaf hydraulics are not easy to perform because of the densely branched leaf venation system. Kolb et al. (1996) have recently proposed the vacuum chamber technique for measuring the hydraulic conductance (K) of large and densely branched shrubs and root systems not

1. This work was supported by the Italian Ministry for University and Scientific and Technological Research.

*Corresponding author; e-mail MelTyree@aol.com; fax 802-951–6368.
measurable using the current hydraulic methods (e.g. Sperry et al., 1987; Lo Gullo and Salleo, 1991). In this technique a plant is placed in a vacuum chamber with the base protruding to the outside through a rubber seal and the stem is connected to a water source on a balance. Subatmospheric pressure (P) is applied to suck water into the shoot at measured flow rate (F) and whole-plant hydraulic conductance is calculated from F/P. In this paper we use this method to estimate leaf K (KL) before and after dehydration events to induce cavitation. The high-pressure flow meter (HPFM) method (Tyree et al., 1995) is not suitable for cavitation studies because positive pressure generated during HPFM measurements are likely to dissolve embolisms rapidly in leaf veins.

The purpose of the present study was to measure the vulnerability to cavitation of the leaf midrib and attached stem; to check the impact of midrib cavitation on the overall K; to develop a model of KL in leaf midribs and leaf blades to assess the relative importance of these two pathways of water transport; and to compare methods of measuring K, i.e. the vacuum chamber to evaporative flux methods. In the evaporative flux method, the water potential (CL) and evaporation rates (E) are measured in a transpiring leaf by gas exchange and pressure chamber methods, respectively. The CL at the base of the transpiring leaf (Cx) is estimated by the CL of an adjacent non-transpiring leaf, and the KL of the leaf is equated to E/(C2x CL).

The impact of cavitation in leaf veins on whole-leaf hydraulics is difficult to evaluate because of the complex pattern of leaf vascularization. There are many serial and parallel pathways for water movement and potential for a considerable amount of vascular redundancy, i.e. alternate pathways for water movement around embolized vessels. For example, cavitations in petioles may be more important than cavitations in midribs because water could bypass a blocked segment of midrib by way of minor veins in the leaf blade and then rejoin the midrib if it is still functional above the blocked segment. In contrast, the level of redundancy may not be as great in petioles.

RESULTS

The K of single detached leaves measured using the vacuum chamber technique was not statistically different from that measured by the evaporative flux method (t test, P = 0.649, n = 6), i.e. in terms of the ratio of the leaf transpiration rate (E, milligrams meter−2 second−1) to the CL drop between stem and leaf (C - C). The K per unit leaf area was 111 ± 8 mg s−1 m−2 MPa−1 when measured by the evaporative flux method and 122 ± 22 mg s−1 m−2 MPa−1 when measured using the vacuum chamber method (errors are s of the mean).

Stem and Leaf Midrib Cavitation and Embolism

Xylem cavitation (detected acoustically) started simultaneously in 1-year-old stems and leaf midribs (Fig. 1A) during air dehydration of branches. The cUAE recorded in the two organs increased with the time so that at C = −1.5 MPa, about 850 cUAE were counted in stems and about 250 cUAE in midribs; this difference probably resulted from the larger number of xylem conduits in the former. When cUAE were expressed as percentages of the two maximum counts (Fig. 1B) and plotted versus CL, the two curves were superimposed. Taking as an arbitrary cavitation threshold the number of cUAE corresponding to 10% of the maximum (Salleo et al., 2000), we estimated that the critical C triggering cavitation (PCAV) was −0.71 ± 0.06 MPa (Fig. 1B).

The impact of cavitation on the K of stems, leaves, and midribs is reported in Figure 2A. As dehydration proceeded (and C decreased), stem conductance per unit leaf area (KSL) and midrib conductance per unit leaf area (KML) decreased substantially, but KL per unit leaf area (KLL) remained approximately constant at all the dehydration levels tested.
The “vulnerability curves,” i.e. the plots of loss of conductance expressed in percentage of the maximum PLC of stems, leaves, and midribs versus C_L are reported in Figure 2B. The midribs had the highest PLC at every C_L, 0. At $C_L 52 \pm 1.0$ MPa, i.e. near the minimum diurnal C_L recorded in the field in the winter, PLC of the stem was of the order of 32%, that of midrib was as high as 55%, whereas PLC measured in whole leaves was not significantly different from zero. At a more severe dehydration level ($C_L 5 \pm 1.5$ MPa), PLC of midrib increased further to 70%, but that of whole leaves remained below 10%.

Simulating Complete Blockage of the Midrib: Impact on Leaf Hydraulics

Leaves with midrib cut and sealed with epoxy had K_{LL} about one-third lower than those measured in intact leaves (K_{LL} was 82 ± 14 versus 122 ± 22 mg m$^{-2}$ s$^{-1}$ MPa$^{-1}$, respectively). This suggested that the contribution of the midrib to the overall K_L was rather small because of vascular redundancy provided by alternative pathways in the leaf blade. This was confirmed by photographic evidence of the progress of infiltration of leaves with water under pressure using the HPFM; the pattern of infiltration was the same for leaves with intact and blocked midribs (Fig. 3A). In both cases, water infiltration proceeded from the proximal to the apical zones of the leaf blade and proceeded faster along the leaf margins than through the midrib so that the middle part of the leaf blade appeared to infiltrate with some delay (see Fig. 3A at 20 and 25 min).

Stomatal Responses to Stem and Leaf Cavitation

Leaf conductance to water vapor (g_L) was sensitive to decreasing Ψ_L during dehydration (Fig. 4). After detached branches were exposed to light, g_L began to increase and oscillated between 47 and 60 mmol m$^{-2}$ s$^{-1}$ with average levels of 55 mmol m$^{-2}$ s$^{-1}$; at the same time, Ψ_L decreased, first gradually to about $\Psi_L 5 0.4$ MPa, then more rapidly up to the Ψ_L at cavitation threshold (Ψ_{CAV}) range, i.e. $\Psi_{CAV} 5 0.58$ to $\Psi_{CAV} 5 0.78$ MPa (Fig. 4). As Ψ_L fell below the Ψ_{CAV} range, g_L declined to the dark levels (about 20 mmol m$^{-2}$ s$^{-1}$).

In other experiments the time course of g_L was measured before and after cross-sectioning midribs and stems during free transpiration of branches in contact with water (Fig. 5). As soon as excised branches were exposed to light, g_L increased, reaching peaks of 55 to 60 mmol m$^{-2}$ s$^{-1}$ as recorded in experiments reported in Figure 4. After the midrib was cut, g_L transiently increased by about 15 mmol m$^{-2}$ s$^{-1}$ and then returned to previous values. When stems bearing leaves on which g_L was measured were cut off, thus causing their immediate and substantial embolism, g_L dropped within 10 to 20 min to cuticular levels.

Leaf Blade Conductance of Intact and Cut Leaves

Leaf blade conductance measured by the HPFM was lowest in intact leaves and increased as the blade was progressively cut back from the tip (Fig. 6). These data were fitted to a hydraulic model of water flow in leaves that help explain some of the experiments previously reported (see “Discussion”).

DISCUSSION

Our model (see “Materials and Methods”) was used to fit the data in Figure 6A for steady-state flow during perfusion with a HPFM. The model, which divided the leaf into many square grid elements, required only three parameters, the K of the vessels in grid elements (K_v), the K of the non-vascular pathways (from vessels to mesophyll air spaces, K_{ne}), and a midrib conductance factor (C_0); C_0 is the amount by which the midrib conductance at the base of the leaf would decrease if the midrib were cut off.
Figure 3. A, Time sequence of photographs showing the infiltration of *P. laurocerasus* leaf blades by the HPFM at a perfusion pressure of 0.3 MPa. Perfused tissue appears dark green. The sequence of photos on the right are the same as on the left except that the midrib as been clogged by cutting the midrib 20 mm from the base of the leaf (8- to 10-mm-long cut) and sealing the cut with epoxy resin. B, The theoretical Ψ profiles predicted by the three-parameter model during steady-state flow for HPFM perfusion in an intact leaf. C, The theoretical Ψ profiles predicted during uniform evaporation from the leaf surface at 140 mg m⁻² s⁻¹ (interpret scale as negative quantities). D, The theoretical Ψ profiles predicted for HPFM perfusion in a leaf with tip excised. E, The theoretical Ψ profiles predicted for HPFM perfusion in a leaf with midrib blocked by cutting and sealing with epoxy.
exceeds K_x. At the leaf tip the midrib conductance is assumed equal to K_x and is proportional to leaf area at all points between the base and tip (Fig. 6B). The solid line in Figure 6A is the result from the best-fit values of K_x, K_{me}, and C_0 given in the caption. Fits of similar quality were found for five other leaves. A simpler two-parameter model using only K_x and K_{me} (assuming the midrib conductance equals K_x for all midrib elements) failed to fit the data. Parameters could be found to fit any two points of the curves, but not all points; two examples of the two-parameter model are shown in white symbols.

The leaf hydraulic model was used to generate graphical representations of pressure profiles in the xylem of leaves under various conditions. Figure 3B shows the theoretical pressure profile during perfusion with a HPFM at 0.3 MPa. Note that the higher K of the midrib produces V-shaped pressure isotherms. Figure 3D shows how the pressure profile is altered when the tip of the leaf is cut. Note that the pressure is zero (= atmospheric) at the cut surface. Figure 3C shows the pressure profile during free transpiration. The profiles are qualitatively similar to Figure 3B. Figure 3E shows how the pressure profile is modified by an 8-mm-long cut across the midrib 20 mm from the base of the leaf. Note the steep pressure profiles around the cut and the re-establishment of the V-shaped profiles in the apex of the leaf. This shows that most of the water flows around the cut and re-enters the midrib upstream from the cut. The model predicted a 30% change in leaf conductance in Figure 3E, in agreement with experimental observations. Hence, the model is fairly robust; it is able to predict the results of all the experiments done so far. More work needs to be done to see if the model can predict other types of leaf damage (e.g. caused by insects and wind) and if it can predict the consequences of embolism in leaf blades.

The vacuum chamber method, originally used on densely branched shoots (Kolb et al., 1996), proved to be suitable for measuring single detached leaves. Values of K_L measured with the vacuum chamber method agreed with those measured by the more traditional evaporative flux method. The only inconvenience of the vacuum chamber technique when used on small samples is that the volume flow rates driven by the applied subatmospheric pressures can be quite small, thus requiring balances with better accuracy than ±0.1 mg. In our case, however, flows induced by the smallest partial vacuum applied (80 kPa) were of the order of about 1 mg min$^{-1}$, i.e. about 10 times the resolution of our balance for 1-min readings.

In agreement with previous studies (Kikuta et al., 1997), the leaf midrib of *P. laurocerasus* cavitated during dehydration and cavitation could be detected acoustically (Fig. 1). The increasing numbers of UAE recorded from stems and midribs were probably the expression of xylem cavitation because they were paralleled by measurable PLC, increasing as Ψ_L de-

Figure 4. Time sequence of changes in stomatal conductance and Ψ_L of excised *P. laurocerasus* shoots. At time zero the shoots are in darkness with the cut base in water. At the time indicated by the asterisk in A, the lights are turned on and the shoots are removed from water to induce simultaneous stomatal opening and shoot dehydration. The cross-hatched area in B indicates the Ψ_{cav}. Error bars are sis of the mean; $n = 6$.

Figure 5. Stomatal conductance versus time. Cut shoots have their base immersed in water for the entire experiment. Lights are turned on at about 10 min. The midrib of monitored leaves was cut at about 50 min and first-year stems are cut at about 75 min. Error bars are SEs of the mean; $n = 5$.

*

Figure 4. Time sequence of changes in stomatal conductance and Ψ_L of excised *P. laurocerasus* shoots. At time zero the shoots are in darkness with the cut base in water. At the time indicated by the asterisk in A, the lights are turned on and the shoots are removed from water to induce simultaneous stomatal opening and shoot dehydration. The cross-hatched area in B indicates the Ψ_{cav}. Error bars are sis of the mean; $n = 6$.

Figure 5. Stomatal conductance versus time. Cut shoots have their base immersed in water for the entire experiment. Lights are turned on at about 10 min. The midrib of monitored leaves was cut at about 50 min and first-year stems are cut at about 75 min. Error bars are SEs of the mean; $n = 5$.

Nardini et al.
creased (Fig. 2). The temporal coincidence of the onset of cavitation in stems and midribs (Fig. 1A) suggests that 1-year-old stems of \textit{P. laurocerasus} were potentially more vulnerable to cavitation than leaves because the mean \(C_L\) of transpiring leaves is probably more negative than that of adjacent stems (e.g. Lo Gullo and Salleo, 1988). The cavitation threshold as estimated for leaves (\(C_{CAV} = 0.71 \text{ MPa}, 10\% \text{ of the maximum UAE}\)), was in agreement with similar values reported by Kikuta et al. (1997) for leaves of other woody species and was within the \(C_{CAV}\) range reported by several authors for stems of numerous trees (Cochard et al., 1992; Sperry and Saliendra, 1994; Hacke and Sauter, 1995; Mencuccini and Comstock, 1997; Willingen et al., 2000).

During air dehydration, stems and midribs experienced substantial PLC of the order of 32\% and 55\% respectively at \(C_L = 1.0 \text{ MPa}\) (i.e. near to that recorded in the field in the winter), increasing up to 45\% and 70\%, respectively, at dehydration levels as recorded in the summer (\(C_L = -1.5 \text{ MPa}\)). Despite the high PLCs measured in midribs, whole leaves maintained their \(K_{LL}\) approximately unchanged (PLC of whole leaves was <10\%) at all the dehydration levels tested. This suggests that leaf midrib and the rest of the leaf blade are not in series with one another. If the hydraulic resistance of whole leaves (\(1/K_{LL}\)) was equal to the sum of the resistance of the midrib (\(1/K_{ML}\)) plus that of the leaf blade (\(1/K_{LB}\)) in series, the impact of a 70\% drop in \(K_{ML}\) (\(=3.3\times\) decrease in \(K_{ML}\)) should have had a bigger effect on \(K_{LL}\). We estimate that the PLC should have been about 30\% at \(C_L = 1.5 \text{ MPa}\) if \(K_{ML}\) and \(K_{LB}\) were in series, assuming \(K_{LB}\) remained constant during dehydration. Our model of the hydraulic architecture of a pinnate leaf, which accounts for the redundant parallel and series pathways, predicted a smaller change in whole-leaf conductance consistent with our experimental results.

Infiltrated leaves with intact midrib (Fig. 3A) showed that veins located along the leaf blade margins conducted water faster than the midrib (Fig. 3A at 15, 20, and 25 min) and behaved like water pathways in parallel with the midrib. When the midrib

Figure 6. \(K_L\) (●) of \textit{P. laurocerasus} leaves measured with an HPFM versus the length of leaf remaining. A, The point (●) at the far right is the \(K_L\). Other points are the conductance after the leaf tip is cut off to the distance indicated on the \(x\) axis. The white symbols are the best-fit curves for a two-parameter model of \(K_L\); the solid line is the best-fit curve for a three-parameter model of conductance (see “Discussion” for detail). The parameters used were as follow: Fit1, \(K_x = 37 \text{ mg s}^{-1} \text{ MPa}^{-1}, K_{me} = 1,600 \text{ mg m}^{-2} \text{ s}^{-1} \text{ MPa}^{-1}\); Fit2, \(K_x = 56, K_{me} = 1,250\); and Fit3, \(K_x = 11.5, K_{me} = 1,190, C_0 = 55\) (i.e. midrib conductance at the base of the leaf is \(55 \times K_x\)). B, Illustrates how \(K_m\) at any point depends on the leaf area to the apex of the point in the three-parameter model. C, Illustrates how the \(K_m\) at any point depends on the distance from the base of the leaf. The curvature at the beginning and end of the curve is due to the tapering of the leaf at the apex and base (for a rectangular leaf the relationship shown would have been linear).
was cut and sealed with an epoxy resin, leaf infiltration proceeded along the leaf margins (at 10, 15, and 20 min) and later converged toward the middle part of the leaf blade (at 20 and 25 min). The reason for the above observations is the hydraulic redundancy of leaves provided by the series-parallel nature of the leaf vascularization.

Experiments like that in Figure 5 illustrate the vascular redundancy of leaves. When the midrib is cut there is little change in stomatal conductance, \(g_{L} \), because there are alternative pathways for water flow. However, a cut to the stem (or petiole, not shown) would cause a complete interruption of water flow and decreased \(\Psi_{L} \), resulting in a decline in \(g_{L} \).

UAEs begin in stems and petiole at very mild levels of water stress, i.e., \(\Psi_{cav} = -0.7 \) MPa (Fig. 1), and this corresponds with the onset of loss of K in stems and midribs (Fig. 2). In excised branches, the time of onset of stomatal closure is also coincident with the time at which \(\Psi_{L} \) reaches \(\Psi_{cav} \) (Fig. 4). Such temporal coincidence has been observed in \textit{Laurus nobilis} (Salleo et al., 2000) and may have some evolutionary or mechanistic explanation. The evolutionary explanation might be that plants suffering loss of K by cavitation events are more water stressed and less productive. Hence, natural selection would favor plants with a stomatal physiology that reduces \(\Psi_{L} \) when \(\Psi_{cav} \). A more direct, cause-and-effect (mechanistic) explanation might be that cavitations in the minor veins of leaf blades cause localized dehydration of stomates, hence the localized peristomal \(\Psi_{L} \) may be much more negative than the average \(\Psi_{L} \) measured by the pressure chamber. Peristomal PLC theoretically may be undetectable by our vacuum chamber method of measuring whole-leaf conductance. In the vacuum chamber and HPFM methods, the water flow rate exceeds the rate of evaporation, hence air spaces infiltrate with water. The water flow is induced by a constant pressure difference between the base of the petiole and the mesophyll air space, hence water will follow the shortest and highest-conductance pathway from the minor veins to the nearest air spaces (Tyree et al., 1993b; Yang and Tyree, 1994). But during normal transpiration, the pathway of water movement is rate-limited and controlled by the highest vapor-diffusion pathway, which favors peristomal evaporation (Tyree and Yianoulis, 1980; Yianoulis and Tyree, 1984). Hence, our method of measuring \(K_{1} \) may underestimate the impact of leaf blade cavitations on PLC between the base of the petiole and the peristomal regions where most evaporation may occur.

MATERIALS AND METHODS

All experiments were conducted on stems and leaves collected from one 20-year-old tree of \textit{Prunus laurocerasus} growing in the Botanical Garden of the University of Trieste (Italy). \textit{P. laurocerasus} is an evergreen sclerophyll widely cultivated in northern and central Italy as an ornamental, with a mean leaf surface area of about 8,000 mm\(^{2}\) and with a thick midrib (about 3 mm in diameter) suitable for clamping UAE transducers. All measurements were made between November 1999 and August 2000; all the stems and leaves studied until April 2000 had been produced during spring and early summer 1999. Measurements in July and August 2000 were made on leaves of year-2000 growth. Field measurements of diurnal maximum \(g_{L} \) and minimum \(\Psi_{L} \) of at least 10 sun leaves were performed between 10 AM and 2 PM in November 1999 and January 2000 using a steady-state porometer (model LI-1600; LiCor, Lincoln, NE) for \(g_{L} \) measurements and a pressure chamber (model 3050; Soilmoisture, Santa Barbara, CA) for \(\Psi_{L} \) recordings. These were used to verify whether realistic \(g_{L} \) and \(\Psi_{L} \) values were reproduced during laboratory experiments.

Samples used for measurement of cavitation and changes of \(g_{L} \) and \(\Psi_{L} \) during dehydration were 3-year-old branches about 1.2 m long and 30 mm in basal diameter, bearing at least six 1-year-old stems with four to six leaves each. These branches contain sufficient stored water to sustain transpiration during experiments so that their air dehydration proceeds slowly (Salleo et al., 2000) and they are easier to halt at the desired levels of dehydration than 1-year-old shoots. Branches were excised in the field the evening preceding the experiments under distilled water filtered to 0.1 \(\mu \)m to prevent spurious conduit blockage by embolism and debris, and were then recut under water in the laboratory. They were covered with black plastic bags and maintained in contact with water overnight to allow full rehydration. While still in the dark, five to six leaves were measured for \(g_{L} \) and \(\Psi_{L} \) to get the base values of the two variables. Branches were dehydrated at a temperature of 22\(^\circ\)C ± 1\(^\circ\)C, a relative humidity of 45% ± 5%, and under iodine vapor lamps (HQI-T 1000 W/D, Osram, Danvers, MA) with a photosynthetically active radiation of 350 ± 50 \(\mu \)mol m\(^{-2}\) s\(^{-1}\) as measured at the leaf surface using a quantum sensor (model LI-190 SI, LiCor) connected to the porometer.

Preliminary experiments had shown that branches in contact with water and in the light had \(g_{L} \) of the order of 55 ± 5 mmol m\(^{-2}\) s\(^{-1}\), i.e. not very different from maximum \(g_{L} \) recorded in the field (about 70 ± 10 mmol m\(^{-2}\) s\(^{-1}\)). After \(g_{L} \) and \(\Psi_{L} \) had been measured in the dark, water and plastic bags were removed, the light was switched on, and branch dehydration started.

Measuring Cavitation, \(g_{L} \), and \(\Psi_{L} \) in Excised Branches during Air Dehydration

Leaf and stem cavitation were estimated in terms of continuous counts of UAE (Tyree and Dixon, 1983; Salleo and Lo Gullo, 1986). UAE were simultaneously recorded from 1-year-old stems and from leaf midribs using two UAE transducers (RI151, Physical Acoustic Corp., Princeton, NJ) connected to two different UAE counters (4615 Drought Stress Monitor, Physical Acoustic Corp.). Signals were amplified by 72 dB (52 dB by the main amplifier and 20 dB by the built-in transducers’ amplifier) and were
measured and the conductivity of the stem was scaled by \(\Sigma A_L / (K_{STL} - K_{SL}/\Sigma A_L) \).

Measurements of \(K_{STL} \), \(K_{LL} \) and \(K_{ML} \) were performed at increasing levels of sample dehydration to get their cavitation-induced PLC. The dehydration levels applied were estimated on the basis of sequential \(\Psi_L \) measurements made of leaves harvested from air-dehydrating 3-year-old branches (see above). Starting from branches at near full turgor (\(\Psi_L \approx -0.02 \) MPa), conductance was measured at \(\Psi_L \times 5 \) of \(-0.5\), \(-1.0\), and \(-1.5\) MPa. Embolisms were not reversed by perfusion to get maximum \(K \); instead the PLC was from \(100 \times (1 - K_{stressed}/K_{unstressed}) \).

To the best of our knowledge, this was the first attempt at measuring the \(K \) of single detached leaves using the vacuum chamber method (Kolb et al., 1996). To get better information of the validity of the vacuum method when used on single leaves, \(K_{LL} \) was estimated by the evaporative flux (EF) method. The EF method involves measuring the ratio of leaf evaporative flux density \((E) \) to the \(\Psi \) drop between stem and leaf, i.e. \(\Psi_X - \Psi_L \), where \(\Psi_X \) is the xylem water potential in the stem. In these experiments, 3-year-old branches were allowed to transpire in the light (see above) while in contact with water. Two leaves separated by one internode were measured. The freely transpiring leaf was used to measure \(E \) (using the porometer) and \(\Psi_L \), whereas an adjacent leaf was covered with plastic film and tin foil. Under these conditions, \(\Psi_L \) of the covered leaf is thought to equilibrate with \(\Psi_X \) of the stem xylem. Hence, in the EF method \(K_{LL} \) was calculated as \(E/(\Psi_X - \Psi_L) \).

Epoxy Blockage of Midrib Segments

One of the purposes of the present work was to measure the impact of leaf vein cavitation on leaf hydraulics. We simulated localized PLC by cutting midribs 20 mm from the base of the leaf. The midrib of leaves was cross-sectioned using a new scalpel and epoxy resin was used to seal the two cut surfaces of the midrib. Experiments started 12 h after cutting the midrib to allow the resin to become solid, thus clogging the midrib xylem permanently. Leaves were then connected to the vacuum chamber as described above and \(K_{LL} \) was measured, which was compared with that measured of an equal number of leaves with intact midribs.

HPFM Measurements of \(K_L \)

Single leaves were excised at the base of the petiole and were connected to a HPFM (Tyree et al., 1995). The leaves were perfused at a pressure of \(P = 0.3 \) MPa while measuring \(F \) for 30 min and then the leaf conductance was recorded as \(F/P \). Then the leaf tip was cut off 20 to 30 mm from the leaf tip by cutting with a razor blade perpendicular to the midrib. The cut increased the flow rate (increased the conductance) and the new conductance value was recorded once the flow was stable (1–3 min). Cuts were repeated with a spacing of 20 mm and stable conductances were recorded until only the petiole remained. Data were
fitted to a model for the hydraulic architecture of leaves (see below).

During the initial 30-min perfusion the leaf color changed from light to dark green. The dark green corresponded to regions where the leaf air space was completely infiltrated with water. The progression of this color change was recorded photographically every 5 min for whole leaves and for leaves in which a segment of midrib was blocked by cutting and sealing with epoxy (see above).

Checking Stomatal Response to Stem and Leaf Cavitation

Additional experiments were performed documenting changes in g_L after inducing immediate and substantial embolism in the leaf midrib and stem by cutting them in air. The cuts were made on detached branches maintained in the light (see above) and in contact with water. These experiments were aimed at checking the different stomatal response to the complete embolism of the two water paths (stem and midrib). After g_L had reached sufficiently stable values, the midrib of leaves where g_L was measured was cross-sectioned at its proximal third and about 30 min later, the stem bearing the leaf was also cut off. The g_L was measured every 3 min throughout the entire experiment, i.e. before and after midrib and stem cuttings.

A Model for Leaf Hydraulic Architecture

Leaf hydraulic data were interpreted with the aid of a model for the hydraulic architecture of single leaves. A leaf blade can be quantified by a network of vascular and non-vascular Ks. In principle, the vascular component of K could be computed from laminar flow equations and the dimensions of the vessels in stems and leaves. In practice, such measurements are very time consuming in leaves (Martre et al., 2000) and generally overestimate conductance of vessels by a factor of 2 to 10 (Martre et al., 2000) and generally overestimate conductance and water loss regulation in *Quercus* during drought: evidence for stomatal control of xylem embolism? Ann Sci For 53: 197–206

LITERATURE CITED

West DW, Gaff DF (1976) Xylem cavitation in excised leaves of Malus sylvestris Mill. and measurement of leaf water status with the pressure chamber. Planta 129: 15–18

