Tobacco Mosaic Virus Regulates the Expression of Its Own Resistance Gene N

Michal Levy, Orit Edelbaum, and Ilan Sela*

The Hebrew University of Jerusalem, Faculty of Agricultural, Food and Environmental Quality Sciences, Robert H. Smith Institute for Plant Science and Genetics, Virus Laboratory, Rehovot 76100, Israel

The N gene of tobacco (Nicotiana tabacum) is a typical resistance (R) gene engendering localization of tobacco mosaic virus (TMV) infection and the elicitation of a hypersensitive necrotic response. The consensus model for R gene-derived resistance is at the level of protein:protein interactions, in which proteins of the pathogen interact with already present receptor-like proteins produced by the plant’s R genes. This article demonstrates, by quantitative real-time reverse transcription-PCR analysis, that in tobacco carrying the dominant allele N, a basal level of transcription indeed occurs in noninfected plants. However, accumulation of N-mRNA in infected plants indicates that transcription is stimulated by TMV infection (up to 38-fold in locally infected leaves and up to 165-fold in upper, noninoculated leaves). Potato virus Y infection did not result in accumulation of N-mRNA, indicating a specific TMV-related phenomenon. The possible uncoupling of viral restriction from necrosis is discussed.

Plants carry resistance (R) genes that often engender resistance to specific pathogens. The current consensus model is based on Flor’s (1942, 1956) gene-for-gene theory, whereby a product of a pathogen’s gene (avirulent gene; avr) interacts with a receptor-like protein produced from the plant’s R gene (Keen, 1992). This triggers a cascade of downstream-transduced events leading to resistance. Several avr and R genes have been isolated, substantiating the gene-for-gene model (e.g. van der Ackerveken et al., 1993; Matthieu et al., 1994; Whitham et al., 1994; Bent, 1996; De Wit, 1997; Warren et al., 1998; Ellis et al., 1999; Richter and Ronald, 2000). The model suggests a protein:protein interaction for the initiation of the resistance pathway, in which the R-gene product is a cytoplasmic receptor and the pathogen gene provides the ligand. Leu-rich repeat (LRR) domains of proteins are known to be involved in protein:protein interactions (Lee and Vallee, 1990; Suzuki et al., 1990; Warren, et al., 1998).

The tobacco (Nicotiana tabacum) resistance gene N is a typical R gene, introduced into tobacco from Nicotiana glutinosa (Holmes, 1938). Native tobacco cultivars (tobacco N) are susceptible to tobacco mosaic virus (TMV) infection, allowing the systemic spread of the virus and causing mosaic symptoms. Tobacco cultivars into which the N. glutinosa N gene has been introgressed (tobacco N) localize TMV infection to cells adjacent to the site of viral entry and develop a hypersensitive response in the form of local necrotic lesions. The avr gene carried by TMV is the helicase domain of the viral 126-kD protein that is part of the virus replicase complex, since a mutation in this viral gene overcomes localization (Padgett and Beachy, 1993) and the expression of this fragment in transgenic plants engenders necrosis in tobacco (Abbink et al., 1998; Erickson et al., 1999). The N. glutinosa N gene has been isolated and analyzed (Whitham et al., 1994). It was found to be a typical receptor, carrying a sequence similar to the Drosophila Toll and the mammalian interleukin-1R (TIR) receptor. It also carries nucleotide-binding (NBS) and LRR domains. Several R-gene products carry similar motifs (e.g. van der Biezen et al., 2002).

Alternative splicing of the N gene’s primary transcript is stimulated by TMV infection, and the resultant proteins are required for full resistance (Dinesh-Kumar and Baker, 2000). Structural-functional analysis has indicated that the three N domains (TIR, NBS, and LRR) play a role in N-induced resistance (Dinesh-Kumar et al., 2000). The involvement of protein kinases has also been indicated in the N-derived hypersensitive response (Jin et al., 2003). This article indicates that N-gene transcription is also up-regulated by TMV infection.

RESULTS

Expression of the N Gene and Its Homologs in Tobacco Leaves

Tobacco carries a multitude of N-related gene sequences, which are probably clustered together (Whitham et al., 1994). Therefore, any expression analysis needs to differentiate between the expression of the N gene itself and possible expression of the N-homologous sequences. To that end, we chose a section of the 3’ variable region of N to serve as a probe

1 This work was supported by the TEVEL consortium and by the Minerva Otto Warburg Center for Agricultural Biotechnology.

* Corresponding author; e-mail sela@agri.huji.ac.il; fax 972-8-9473-402.

Article, publication date, and citation information can be found at www.plantphysiol.org/cgi/doi/10.1104/pp.104.044859.
in northern analyses and to be amplified in real-time reverse transcription (RT)-PCR assays. The variable-region sequence should also differentiate between the \(N \) gene and other \(R \) genes sharing motifs such as NBS and LRR.

We amplified, by RT-PCR, a 140-bp segment of the variable region from a total RNA preparation extracted from noninfected and TMV-infected leaves of tobacco\(^{NN} \) and obtained a single, homogenous band. No such band was observed by similarly amplifying RNA extracted from TMV-infected tobacco\(^{nn} \) (Fig. 1, top, lane 1). To determine that no other sequence of similar size was amplified along with the \(N \)-specific band, we performed a temperature-dissociation analysis (Fig. 1, bottom), which indicated that the amplified product was indeed a single band. Figure 2 shows that the sequence of the amplified product was identical to the published one (GenBank accession no. U15605), indicating \(N \)-gene specificity. Furthermore, as described below, the amplified PCR product, serving as a probe in northern analyses, hybridized to \(N \)-derived RNA. Hybridization to \(n \)-derived RNA was negligible, if at all (Fig. 3). We thus concluded that the aforementioned PCR product is \(N \) specific and that this sequence is not expressed by any other \(N \)-related gene. This amplicon was therefore selected for the quantitative analyses of \(N \) mRNA.

Expression of the \(N \) Gene in Tobacco\(^{NN} \) and Tobacco\(^{nn} \)

Northern-blot analyses were carried out with total RNA extracts from noninfected and TMV-infected tobacco\(^{NN} \) and tobacco\(^{nn} \). The aforesaid \(N \)-specific PCR product of the 3' variable region of \(N \) served as a probe. Figure 3 indicates that tobacco\(^{NN} \) hardly transcribe any detectable \(N \) sequence, while tobacco\(^{nn} \) did transcribe \(N \) mRNA. The northern analysis also indicated a basal level of \(N \) expression in noninoculated leaves, which was stimulated in locally infected leaves as well as in upper, noninfected ones.

The primary transcripts of \(N \) are alternatively spliced, resulting in two types of mRNAs, both playing a role in \(N \) functions. However, the two transcripts differ in size by only 70 bases (Dinesh-Kumar and Baker, 2000) and are therefore inseparable upon northern analysis. The band reacting with the \(N \)-specific probe is approximately 3,400 bases long, agreeing with the expected size of 3,430 bases deduced from the aforementioned GenBank sequence.

Quantifying Levels of \(N \)-Gene Expression in TMV-Infected Tobacco Leaves

Real-time RT-PCR was employed to corroborate the results of the northern analysis indicating

![Figure 1. Top, Electrophoretic pattern of the product amplified by RT-PCR with primers derived from the 3' variable region of the \(N \) gene. Primer sequences are shown in "Materials and Methods." RNA templates served for RT-PCR were extracted from tobacco. Lane 1, Size markers. Lane 2, Noninfected tobacco\(^{NN} \). Lane 3, Noninfected tobacco\(^{nn} \). Lane 4, A noninfected systemic leaf of tobacco\(^{NN} \), locally infected with TMV. Lane 5, A TMV-infected systemic leaf of tobacco\(^{nn} \). Bottom, Temperature dissociation curve of the band shown in lane 3 of the top frame.](image1)

![Figure 2. FASTA analysis between the sequence of the PCR product of the 3' variable region of \(N \) (lane 3 of Fig. 1) and the actual sequence of that region of the \(N \) gene.](image2)
was carried out with the same quantity of template RNA in all samples, we checked the levels of another housekeeping gene (actin) in the same RNA samples used for the real-time PCR assays. RT-PCR was performed to only 22 cycles, so that it would not reach saturated levels for ethidium bromide detection. Figure 4 demonstrates that expression of actin was at about the same level in all samples.

The stimulation of N expression could be attributed to a TMV-specific response or to a nonspecific disease (or stress) response. In addressing this problem, similar experiments were carried out with Potato virus Y (PVY)-infected tobaccoNN. RNA extracts from 72-h PVY-infected tobaccoNN leaves were subjected to quantitative RT-PCR assays (Fig. 5). N-mRNA bands in both noninfected and PVY-infected assays became noticeable at the same cycle, indicating similar levels of N-mRNA accumulation. Consequently, it seems that the increase in N-mRNA accumulation is specific to TMV infection and is not a general response to stress or infection.

DISCUSSION

Since Nicotiana spp. carry sequences homologous to that of the tobaccoNN N gene, it was necessary to establish that we were specifically detecting only N expression. To that end, we compared tobaccoNN, which does not carry the N gene, to its isoline (tobaccoNN) harboring that gene. Northern-blot analysis indicated that tobaccoNN does not express N-derived mRNA, therefore interference from other N-related genes was not likely to occur when studying N expression. However, being such a crucial point, we corroborated this by RT-PCR as well. We chose the 3’ variable region of N for amplification because it is present in both types of the alternatively spliced N-mRNA, and it is not part of any of the common R-gene domains, making interference from other R genes unlikely as well. The resultant RT-PCR product was shown to be homogenous (and by temperature-dissociation analysis also unique). The sequence of the RT-PCR product was identical to that segment of the N gene (Fig. 2).

Table 1. Accumulation of N-mRNA in locally infected leaves of tobaccoNN

<table>
<thead>
<tr>
<th>Time after TMV Inoculation</th>
<th>Δct</th>
<th>Fold Accumulation over Noninfected Leaves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noninoculated</td>
<td>0.0074</td>
<td>–</td>
</tr>
<tr>
<td>20 h</td>
<td>0.660</td>
<td>× 8.9 ± 1.62</td>
</tr>
<tr>
<td>30 h</td>
<td>0.283</td>
<td>× 38.2 ± 1.01</td>
</tr>
<tr>
<td>40 h</td>
<td>0.236</td>
<td>× 31.89 ± 1.27</td>
</tr>
</tbody>
</table>

*Average of triplicates. †Accumulation of RNA was calculated against internal standards of rRNA as described in “Materials and Methods.”

Figure 3. Northern analysis of N-gene expression. Top, Ethidium bromide-stained gel pattern. Bottom, Pattern of fluorescent bands following hybridization of the gel shown in the top frame to the DIG-bromide-stained gel pattern. Bottom, Pattern of fluorescent bands following hybridization of the gel shown in the top frame to the DIG-bromide-stained gel pattern. Bottom, Pattern of fluorescent bands following hybridization of the gel shown in the top frame to the DIG-bromide-stained gel pattern.
postinoculation.

The current consensus for R-gene activity is based on interactions between proteins. The product of the R gene is constitutively expressed, and following activation of the R protein by a product of the pathogen’s avr gene, a pathway leading to resistance begins (Flor, 1942; Bent, 1996; De Wit, 1997; Warren et al., 1998; Ellis et al., 1999; Richter and Ronald, 2000). This article reports on the stimulation of one R gene’s expression by a pathogen.

The N gene is a representative of R genes that encode putative receptors. The results indicate constitutive expression of the N gene, as N-mRNA was detected in noninoculated tobaccoNN leaves. Therefore, possible interaction between a pre-existing N protein and an incoming viral-directed protein activator cannot be ruled out. Upon infection, however, the rate of N-mRNA accumulation increased considerably. In leaves that were actually inoculated with TMV, maximum N-mRNA accumulation (at 30 h after inoculation) was about 38-fold that of noninoculated leaves and leveled off at 40 h. At this point, the leaves started to show necrosis, and the cessation of mRNA stimulation may be attributed to the beginning of apoptosis. The lack of N-mRNA stimulation in PVY-infected tobaccoNN indicated that accumulation of N-mRNA is probably specific to TMV infection and not a general stimulation caused by other infections or stress.

It is particularly interesting to note the accumulation of N mRNA to higher levels in upper, noninoculated leaves. N-mRNA accumulation in upper leaves of TMV-infected plants was 165-fold higher than that in noninfected plants. Accumulation increased for 72 h and remained at an elevated level for at least 10 d. These leaves were TMV-free and did not develop necrosis. Moreover, they have been shown to develop resistance toward several viruses (Ross, 1961; Loebenstein, 1963; Bozarth and Ross, 1964). It has been suggested that restriction of viral replication and movement is due to a virus-induced viral inhibitor and that antiviral substances do appear following viral infection, particularly in tobaccoNN (Sela and Appelbaum, 1962; Loebenstein and Ross, 1963; Sela et al., 1964, 1978; Antignus et al., 1975, 1977; Sela, 1986; Edelbaum et al., 1990; Gera et al., 1990). The transduction of a signal for N-mRNA accumulation from inoculated to upper leaves is coupled to the induction of systemic resistance that develops without activation by a viral component. This suggests that the transduced development of resistance is an event occurring downstream of N-protein activation. Since the induction signal for a necrotic pathway is not systemically transduced, the two downstream events known to result from N-protein activation by the virus are uncoupled. It may be postulated that activation of the N protein by a viral product leads to direct or indirect activation of a transcription factor(s), as suggested by Whitham et al. (1994). These, in turn, stimulate several different metabolic pathways. Necrosis and viral restriction may result from two different, simultaneously activated pathways, producing seemingly coupled phenotypes (Greenberg et al., 1994; Lamb, 1994). They may also interact functionally, namely, the activation of a certain cascade of events needs TMV in order to result in necrosis, and, hence, the restriction of TMV also restricts necrosis to the TMV lesions. The N-originated resistance mechanism develops in upper leaves and affects several viruses (Ross, 1961). However, in these cases, necrosis does not develop due to the lack of TMV.

![Figure 4](image1.png)

Figure 4. RT-PCR of tobaccoNN RNA with primers of actin. PCR was conducted as described in ‘‘Materials and Methods.’’ Lane 1, Template RNA from noninoculated leaf. Lane 2, Template RNA from a leaf locally infected with TMV, 20 h postinoculation. Lane 3, Template RNA from a systemic leaf from a plant locally infected with TMV, 72 h postinoculation.

![Figure 5](image2.png)

Figure 5. Quantitative RT-PCR of N-mRNA from noninfected and PVY (72 h postinoculation)-infected leaves. Left, PCR with 18S-rRNA-specific primers. Right, PCR with N-specific primers. In each section, the top row represents samples from noninfected tobaccoNN and the bottom row those from PVY-infected leaves. Cycle numbers are shown above each section.

<table>
<thead>
<tr>
<th>Time after TMV Inoculation</th>
<th>Δct*</th>
<th>Fold Accumulation over Noninoculated Leaves#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noninoculated</td>
<td>0.29</td>
<td>–</td>
</tr>
<tr>
<td>24 h</td>
<td>1.18</td>
<td>$\times 4.06 \pm 1.22$</td>
</tr>
<tr>
<td>42 h</td>
<td>2.44</td>
<td>$\times 8.41 \pm 1.20$</td>
</tr>
<tr>
<td>72 h</td>
<td>47.83</td>
<td>$\times 164.93 \pm 1.56$</td>
</tr>
<tr>
<td>10 d</td>
<td>21.86</td>
<td>$\times 75.38 \pm 1.16$</td>
</tr>
</tbody>
</table>

*Average of triplicates. #Accumulation of RNA was calculated against internal standards of rRNA as described in ‘‘Materials and Methods.’’

Table II. Accumulation of N mRNA in upper, noninfected leaves of TMV-inoculated tobaccoNN
MATERIALS AND METHODS

Upon request, all novel materials described in this publication will be made available in a timely manner for noncommercial research purposes, subject to the requisite permission from any third-party owners of all or parts of material. Obtaining any permission will be the responsibility of the requestor.

Plants

The following plants were used throughout the project: *Nicotiana tabacum* var. Samsun (referred to as tobacco/C176), developing systemic mosaic symptoms but not necrosis upon TMV infection, and *N. tabacum* var. Samsun NN (referred to as tobacco/NN), into which the *N. glutinosa* has been introgressed and which reacts locally upon TMV infection, restricting the viral spread and causing local necrotic lesions. Tobacco/NN and tobacco/C176 are, in fact, isolines of the tobacco var Samsun. Information about the genetic makeup of these two tobacco variants is summarized in Sela (1981). Plants were grown in an insect-proof greenhouse at 24°C ± 2°C under a 16-h photoperiod of regular neon lighting.

Extraction of Nucleic Acids

For RNA extraction, tissue samples were collected, immediately frozen in liquid nitrogen, and then kept at -80°C. Total RNA was extracted from these tissues using the RNAeasy plant mini kit (Qiagen, Valencia, CA), including the QiAshredder spin columns. RNase-free DNase was then added to the column, and after 40-min incubation with the DNase, the RNA was eluted with RNase-free water. About 3 µg of RNA was obtained from 100 mg of leaf tissue.

Real-Time RT-PCR

Measured amounts of RNA (100 ng for N-gene expression analyses and 100 pg for 18S rRNA internal controls) were subjected to one-step RT-PCR using the SYBR Green PCR master mix with Taqman reverse transcriptase (Applied Biosystems, Foster City, CA). Real-time RT-PCR was conducted in GeneAmp PCR System 5700 (Applied Biosystems). Precautions were taken to ascertain reliable quantitative results: Log-linear dilution curves were performed with primers for the N gene as well as with primers for the 18S RNA. The selected amplicon was small (140 bp). The correlation value of the N-gene curve was 0.997221 and that of the 18S rRNA curve was 0.983780; both values and the amplification efficiency were 92.81% and 92.97%, respectively. The correlation value of the 18S rRNA curve was 0.983780; both values and the amplification efficiency were 92.81% and 92.97%, respectively. The correlation value of the 18S rRNA curve was 0.983780; both values and the amplification efficiency were 92.81% and 92.97%, respectively.

The following are the primers for all N-related RT-PCR assays, including real-time RT-PCR. Forward primer (bases 1,142–1,161 of the N gene; GenBank accession no. U15065): 5'-TTCTTTACCCATTTGCTGGCTAT3'. Reverse primer (bases 6,259–6,232 of the above): 5'-CTCTGTCTTCTTTTATACACCAAAAC3'. Temperature-dissociation analysis (displayed by the GeneAmp 5700 system) confirmed the homogeneity of the PCR product (Fig. 1). The amplified region was from exon 4, which is not spliced out upon alternative splicing (Dinesh-Kumar and Baker, 2000). Similarly, a primer pair for tobacco rRNA was selected from the published sequence (GenBank accession no. AJ236016). The sequence of the forward primer was 5'-AGGATGAGCG-GAAAGGCAATAC3' (bases 1,142–1,161 of 18S-rRNA). The sequence of the reverse primer was 5'-GTTCGGCCAGAACATCTAAG3' (bases 1,466–1,446 of the above). Amplification of rRNA served as an internal control for expression of a housekeeping gene. The primers were selected by the Primer Express software of GeneAmp.

RT-PCR and Quantitative RT-PCR

RT-PCR for the expression of actin was performed on 100 ng of RNA with the following primers. The forward primer was 5'-GGCTCCTGGATGGTG-

TAGCC3' (bases 4,282–4,301 of accession no. X63603) and the reverse primer was 5'-CCCTATCGAATTCCGAGGAAAAC3' (bases 4,756–4,735 of the above). For quantitative PCR, measured amounts (25 ng for N-gene expression analysis and 50 pg for 18S rRNA) of total RNA extracts of noninfected and PVY-infected tobacco/C176 (72 h post inoculation) were subjected to RT-PCR with the same aforementioned primers used for real-time PCR. Samples were drawn at three-cycle intervals and analyzed by gel electrophoresis. The system was calibrated so that the appearance of the 18S-rRNA-specific band in noninfected and PVY-infected RNA extracts will not differ by more than a single cycle, ascertaining that similar levels of RNA were used as template in reactions from noninfected and PVY-infected leaves. The first cycle showing a visible band was indicative on the relative amount of RNA.

Northern-Blot Analysis

Total RNA was extracted from noninfected and TMV-infected tobacco/C176 leaves and from noninfected and TMV-infected tobacco/NN leaves, as well as from upper, noninfected leaves of locally infected tobacco/C176. Formaldehyde was added to the RNA to 1.8% and warmed to 65°C. The RNA, 15 µg per lane (in light of the real-time PCR results, only 1.5 µg of RNA was loaded in the case of upper leaves of inoculated plants), was electrophoresed on a 1.2% agarose gel at 70 V, 4°C with stirring. The previously described amplified N-RNA product was digoxigenin labeled and served as a probe for hybridization. Detection was performed with the DIG luminescent detection kit (Roche Diagnostics GmbH, Mannheim, Germany). RNA sizes were estimated by comparison to electrophoresed RNA Molecular Weight Markers I (Roche). Hybridization was carried out at high stringency (0.1% SSC; 65°C).

ACKNOWLEDGMENT

We thank the Wolfson Foundation for the use of facilities contributed to the Plant Science Institute.

Received April 28, 2004; returned for revision May 10, 2004; accepted May 10, 2004.

LITERATURE CITED

Bozarth RF, Ross AF (1964) Systemic resistance induced by localized virus infection: extent of change in uninfected plant parts. Virology 24: 446–455

Downloaded on January 4, 2021. - Published by https://plantphysiol.org
Copyright (c) 2020 American Society of Plant Biologists. All rights reserved.
Flor HH (1942) Inheritance of pathogenicity in a cross between physiological races 22 and 24 of Melampsora lini. Phytopathology 32: 5
Holmes FO (1938) Inheritance of resistance to tobacco mosaic disease in tobacco. Phytopathology 28: 553–561
Loebenstein G (1963) Further evidence on systemic resistance induced by localized necrotic virus infections in plants. Phytopathology 53: 306–308
Ross AF (1961) Systemic acquired resistance induced by localized virus infection in plants. Virology 14: 340–358