ON THE INSIDE

Peter V. Minorsky

HIGH IMPACT

Variations on a Theme. Regulation of Flowering Time in Arabidopsis. Aleel K. Grennan

GENOME ANALYSIS

The Rice Mitochondrial Genomes and Their Variations. Xiangjun Tian, Jing Zheng, Songnian Hu, and Jun Yu

Genome-Wide Analysis of the ERF Gene Family in Arabidopsis and Rice. Toshitsugu Nakano, Kaoru Suzuki, Tatsuhito Fujimura, and Hideaki Shinshi

RESEARCH ARTICLES

BIOCHEMICAL PROCESSES AND MACROMOLECULAR STRUCTURES

Nickel Deficiency Disrupts Metabolism of Ureides, Amino Acids, and Organic Acids of Young Pecan Foliage. Cheng Bai, Charles C. Reilly, and Bruce W. Wood

On the Cover: MYB proteins contain a conserved DNA-binding domain (MYB domain) and function as transcription factors playing roles in various physiological, developmental, and biochemical processes. In this issue, Deluc et al. (pp. 499–511) describe the phenotype of tobacco plants overexpressing VvMYB5a, a grapevine protein belonging to a small cluster of MYB transcription factors with no assigned biological functions at this time. The cover picture illustrates only one aspect of the phenotype, a strong accumulation of anthocyanin compounds in flowers and especially in stamens. In addition, VvMYB5a overexpression affects the metabolism of flavonols, proanthocyanidins, and lignins. These findings not only confirm the role of some MYB transcription factors in the control of specific branches of the phenylpropanoid pathway in plants but also suggest the ability for a single MYB protein to impact the whole pathway. Cover image by Laurent Deluc. Image layout by Ash Csikos.
BIOENERGETICS AND PHOTOSYNTHESIS

Characterization and Cloning of the Chlorophyll-Degrading Enzyme Pheophorbidase from Cotyledons of Radish. Yasuyo Suzuki, Toyoki Amano, and Yuzo Shioi

CELL BIOLOGY AND SIGNAL TRANSDUCTION

RED AND FAR-RED INSENSITIVE 2, a RING-Domain Zinc Finger Protein, Mediates Phytochrome-Controlled Seedling Deetiolation Responses. Mingjie Chen and Min Ni

Global Patterns of Gene Expression in the Aleurone of Wild-Type and dwarf1 Mutant Rice. Paul C. Bethke, Yong-sic Hwang, Tong Zhu, and Russell L. Jones

Characterization of a Grapevine R2R3-MYB Transcription Factor That Regulates the Phenylpropanoid Pathway. Laurent Deluc, François Barrieu, Chloé Marchive, Virginie Lauvergeat, Alain Decendit, Tristan Richard, Jean-Pierre Carde, Jean-Michel Méroillon, and Saïd Hamdi

The Fertilization-Induced DNA Replication Factor MCM6 of Maize Shuttles between Cytoplasm and Nucleus, and Is Essential for Plant Growth and Development. Thomas Dresselhaus, Kanokorn Srilunchang, Dunja Leljak-Levanić, Daniela N. Schreiber, and Preeti Garg

Evidence for Functional Conservation, Sufficiency, and Proteolytic Processing of the CLAVATA3 CLE Domain. Jun Ni and Steven E. Clark

A Universal Role for Inositol 1,4,5-Trisphosphate-Mediated Signaling in Plant Gravitropism. Imara Y. Perera, Chiu-Yueh Hung, Shari Brady, Gloria K. Muday, and Wendy F. Boss

DEVELOPMENT AND HORMONE ACTION

Ectopic Expression of Pumpkin Gibberellin Oxidases Alters Gibberellin Biosynthesis and Development of Transgenic Arabidopsis Plants. Abeer Radi, Theo Lange, Tomoya Niki, Masaji Koshioka, and Maria João Pimenta Lange

The Grapevine fleshless berry Mutation. A Unique Genotype to Investigate Differences between Fleshy and Nonfleshy Fruit. Lucie Fernandez, Charles Romieu, Annick Moing, Alain Bouquet, Mickael Maucourt, Mark R. Thomas, and Laurent Torregrosa

Continued on next page

Abscisic Acid Stimulates a Calcium-Dependent Protein Kinase in Grape Berry. Xiang-Chun Yu, Mei-Jun Li, Gui-Feng Gao, Hai-Zhong Feng, Xue-Qing Geng, Chang-Cao Peng, Sai-Yong Zhu, Xiao-Jing Wang, Yuan-Yue Shen, and Da-Peng Zhang 558

The Role of OsBRI1 and Its Homologous Genes, OsBRL1 and OsBRL3, in Rice. Ayako Nakamura, Shozo Fujioka, Hidehiko Sunohara, Noriko Kamiya, Zhi Hong, Yoshiaki Inukai, Kotaro Miura, Suguru Takatsuto, Shigeo Yoshida, Miyouko Ueguchi-Taniaka, Yasuko Hasegawa, Hidemi Kitano, and Makoto Matsuoka 580

A Novel Plant-Specific Family Gene, ROOT PRIMORDIUM DEFECTIVE 1, Is Required for the Maintenance of Active Cell Proliferation. Mineko Konishi and Munetaka Sugiyama 591

ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS

Progressive Inhibition by Water Deficit of Cell Wall Extensibility and Growth along the Elongation Zone of Maize Roots Is Related to Increased Lignin Metabolism and Progressive Stelar Accumulation of Wall Phenolics. Ling Fan, Raphael Linker, Shimon Gepstein, Eiichi Tanimoto, Ryoichi Yamamoto, and Peter M. Neumann 603

Double Knockouts of Phospholipases D1 and D2 in Arabidopsis Affect Root Elongation during Phosphate-Limited Growth But Do Not Affect Root Hair Patterning. Maoyin Li, Chunbo Qin, Ruth Welti, and Xuemin Wang 761

GENETICS, GENOMICS, AND MOLECULAR EVOLUTION

Molecular Characterization and Phylogeny of U2AF35 Homologs in Plants. Bing-Bing Wang and Volker Brendel 624

Sucrose-Specific Induction of the Anthocyanin Biosynthetic Pathway in Arabidopsis. Cinzia Solfanelli, Alessandra Poggi, Elena Loreti, Amedeo Alpi, and Pierdemonico Perata 637

Exposed Loop Domains of Complexed 14-3-3 Proteins Contribute to Structural Diversity and Functional Specificity. Paul C. Sehnke, Beth Laughner, Helene Cardasis, David Powell, and Robert J. Ferl 647

PLANTS INTERACTING WITH OTHER ORGANISMS

Architecture of Infection Thread Networks in Developing Root Nodules Induced by the Symbiotic Bacterium Sinorhizobium meliloti on Medicago truncatula. Hannah Monahan-Giovanelli, Catalina Arango Pinedo, and Daniel J. Gage 661

Continued on next page
WHOLE PLANT AND ECOPHYSIOLOGY

Evidence for Involvement of Photosynthetic Processes in the Stomatal Response to CO₂.
Susanna M. Messinger,
Thomas N. Buckley, and Keith A. Mott
771

[OA] Photosynthesis, Productivity, and Yield of Maize Are Not Affected by Open-Air Elevation of CO₂ Concentration in the Absence of Drought.
Andrew D.B. Leakey, Martin Uribelarrea, Elizabeth A. Ainsworth, Shawna L. Naidu, Alistair Rogers, Donald R. Ort, and Stephen P. Long
779

SYSTEMS BIOLOGY, MOLECULAR BIOLOGY, AND GENE REGULATION

Mitosis-Specific Promoter of the Alfalfa Cyclin-Dependent Kinase Gene (Medsa;CDKB2;1) Is Activated by Wounding and Ethylene in a Non-Cell Division-Dependent Manner.
Miroslava K. Zhiponova, Aladár Pettkó-Szandtner, Éva Stelkovics, Zsuzsanna Neer, Sándor Bottka, Tibor Krenacs, Dénes Dudits, Attila Fehér, and László Szilák
693

[O] Indicates Web-only data.

[OA] Open Access articles can be viewed online without a subscription.