On the Cover: Plants have the ability to form calluses from almost any tissue. However, evidence indicates that a population of living cells is often required to support callus growth, suggesting an involvement of cell-to-cell communication. Phytosulfokine (PSK), a 5-amino-acid sulfated peptide, is the primary signal molecule responsible for this cell-to-cell communication. PSK binds the membrane-localized receptor PSKR1, which is a leucine-rich repeat receptor kinase (LRR-RK) that has been purified from solubilized carrot microsomes by ligand-based affinity chromatography. Matsubayashi et al. (pp. 45–53) have shown that loss-of-function and gain-of-function mutations of the Arabidopsis PSK receptor gene (AtPSKR1) alter cellular longevity and potential for growth without interfering with basic morphogenesis of plants. Leaves of Arabidopsis loss-of-function mutant of AtPSKR1 gradually lost their potential to form calluses as tissues matured and exhibited premature senescence phenotypes. In contrast, leaves of Arabidopsis plants overexpressing AtPSKR1 exhibit greater longevity and significantly greater potential for callus formation than leaves of wild-type plants, irrespective of their age. Combined with the finding that PSK precursor genes are more strongly expressed in mature plant parts than in immature plant parts, these results strongly suggest that PSK represents a new class of peptide hormones that affect the potential for cellular growth and longevity of individual cells. The cover photograph shows the vigorous callus formation from the leaf disks of Arabidopsis plants overexpressing AtPSKR1 (8 d of culture). The image was created by Yoshikatsu Matsubayashi.

ON THE INSIDE

Peter V. Minorsky

EDITORIALS

Marty Gibbs’s 30 Years at the Helm of *Plant Physiology*. **Maarten J. Chrispeels, Natasha V. Raikhel, and Donald R. Ort**

RT-Plant Physiology: Full Open Access Publishing at No Charge to ASPB Members. **Donald R. Ort**

GENOME ANALYSIS

[W][OA]RNA Interference-Based Gene Silencing as an Efficient Tool for Functional Genomics in Hexaploid Bread Wheat. **Silvia Travella, Theres E. Klimm, and Beat Keller**

BREAKTHROUGH TECHNOLOGIES

Efficient Virus-Induced Gene Silencing in Arabidopsis. **Tessa M. Burch-Smith, Michael Schiff, Yule Liu, and S.P. Dinesh-Kumar**

[W]Wounding Stimulates the Accumulation of Glycerolipids Containing Oxophytodienoic Acid and Dinor-Oxophytodienoic Acid in Arabidopsis Leaves. **Christen M. Buseman, Pamela Tamura, Alexis A. Sparks, Ethan J. Baughman, Sara Mautta, Jian Zhao, Mary R. Roth, Steven Wynn Esch, Iyoti Shah, Todd D. Williams, and Ruth Welti**
SCIENTIFIC CORRESPONDENCE
Natural Experiments Indicate That Geomagnetic Variations Cause Spatial and Temporal Variations in Coconut Palm Asymmetry.
Peter V. Minorsky and Natalie B. Bronstein
40

RESEARCH ARTICLES
BIOCHEMICAL PROCESSES AND MACROMOLECULAR STRUCTURES
Cloning and Expression Analysis of a UDP-Galactose/Glucose Pyrophosphorylase from Melon Fruit Provides Evidence for the Major Metabolic Pathway of Galactose Metabolism in Raffinose Oligosaccharide Metabolizing Plants.
Nir Dai, Marina Petreikov, Vitaly Portny, Nurit Katzir, David M. Pharr, and Arthur A. Schaffer
294

Circadian Clock Regulation of Starch Metabolism Establishes GBSSI as a Major Contributor to Amylopectin Synthesis in Chlamydomonas reinhardtii.
Jean-Philippe Ral, Christophe Colleoni, Fabrice Wattebled, David Dauville, Clément Nempont, Philippe Deschamps, Zhongyi Li, Matthew K. Morell, Ravindra Chibbar, Saul Purton, Christophe d’Hulst, and Steven G. Ball
305

SUMO-Conjugating and SUMO-Deconjugating Enzymes from Arabidopsis.
Thomas Colby, Anett Matthaˇi, Astrid Boeckelmann, and Hans-Peter Stuible
318

BIOENERGETICS AND PHOTOSYNTHESIS
The Plant-Like C2 Glycolate Cycle and the Bacterial-Like Glycerate Pathway Cooperate in Phosphoglycolate Metabolism in Cyanobacteria.
Marion Eisenhut, Shira Kahlon, Dirk Hasse, Ralph Ewald, Judy Lieman-Hurwitz, Teruo Ogawa, Wolfgang Ruth, Hermann Bauwe, Aaron Kaplan, and Martin Hagemann
333

CELL BIOLOGY AND SIGNAL TRANSDUCTION
Disruption and Overexpression of Arabidopsis Phytosulfokine Receptor Gene Affects Cellular Longevity and Potential for Growth.
Yoshikatsu Matsubayashi, Mari Ogawa, Hitomi Kihara, Masaaki Niwa, and Youji Sakagami
45

DEVELOPMENT AND HORMONE ACTION
Ectopic Expression of KNOTTED1-Like Homeobox Protein Induces Expression of Cytokinin Biosynthesis Genes in Rice.
Tomoaki Sakamoto, Hitoshi Sakakibara, Mikiko Kojima, Yuko Yamamoto, Hiroshi Nagasaki, Yoshiaki Inukai, Yutaka Sato, and Makoto Matsuoka
54

Hironori Ito and William M. Gray
63

ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS
Differential Expression and Localization of Early Light-Induced Proteins in Arabidopsis.
Mounia Heddad, Hanna Norén, Verena Reiser, Marina Dunaeva, Bertil Andersson, and Ivona Adamska
75

The Role of Pheophorbide a Oxygenase Expression and Activity in the Canola Green Seed Problem.
Davyd W. Chung, Adriana Pruzinská, Stefan Hörtenerstein, and Donald R. Ort
88

Natural Genetic Variation of Freezing Tolerance in Arabidopsis.
Matthew A. Hannah, Dana Wiese, Susanne Freund, Oliver Fiehn, Arnd G. Heyer, and Dirk K. Hincha
98

Continued on next page
Expression of CAP2, an APETALA2-Family Transcription Factor from Chickpea, Enhances Growth and Tolerance to Dehydration and Salt Stress in Transgenic Tobacco. Rakesh K. Shukla, Sumita Raha, Vineeta Tripathi, and Debasis Chattopadhyay

Spatial Imaging, Speciation, and Quantification of Selenium in the Hyperaccumulator Plants Astragalus bisulcatus and Stanleya pinnata. John L. Freeman, Li Hong Zhang, Matthew A. Marcus, Sirine Fakra, Steeve P. McGrath, and Elizabeth A.H. Pilon-Smits

GENETICS, GENOMICS, AND MOLECULAR EVOLUTION

Spatial Imaging, Speciation, and Quantification of Selenium in the Hyperaccumulator Plants Astragalus bisulcatus and Stanleya pinnata. John L. Freeman, Li Hong Zhang, Matthew A. Marcus, Sirine Fakra, Steeve P. McGrath, and Elizabeth A.H. Pilon-Smits

GENETICS, GENOMICS, AND MOLECULAR EVOLUTION

Spatial Imaging, Speciation, and Quantification of Selenium in the Hyperaccumulator Plants Astragalus bisulcatus and Stanleya pinnata. John L. Freeman, Li Hong Zhang, Matthew A. Marcus, Sirine Fakra, Steeve P. McGrath, and Elizabeth A.H. Pilon-Smits

PLANTS INTERACTING WITH OTHER ORGANISMS

The Ethylene-Insensitive sickle Mutant of Medicago truncatula Shows Altered Auxin Transport Regulation during Nodulation. Joko Prayitno, Barry G. Rolfe, and Ulrike Mathesius

Polyamine Oxidase Is One of the Key Elements for Oxidative Burst to Induce Programmed Cell Death in Tobacco Cultured Cells. Hiroshi Yoda, Yoshinobu Hiroi, and Hiroshi Sano

WHOLE PLANT AND ECOPHYSIOLOGY

A Standardized Method for Analysis of Medicago truncatula Phenotypic Development. Bruna Bucciarelli, Jim Hanan, Debra Palmquist, and Carroll P. Vance

A Shift of Phloem Unloading from Symplasmic to Apoplastic Pathway Is Involved in Developmental Onset of Ripening in Grape Berry. Xiao-Yan Zhang, Xiu-Ling Wang, Xiao-Fang Wang, Guo-Hai Xiu, Qiu-Hong Pan, Ren-Chun Fan, Fu-Qing Wu, Xiang-Chun Yu, and Da-Peng Zhang

SYSTEMS BIOLOGY, MOLECULAR BIOLOGY, AND GENE REGULATION

Expression and Functional Analyses of the Plastid Lipid-Associated Protein CHRC Suggest Its Role in Chromoplastogenesis and Stress. Yuvel Leitner-Dagan, Marianna Ovadis, Elena Shklarman, Yigal Elad, Dalia Rav David, and Alexander Vainstein

Desensitization of GSTF8 Induction by a Prior Chemical Treatment Is Long Lasting and Operates in a Tissue-Dependent Manner. Rhonda C. Foley, Pia G. Sappl, Rafael Perl-Treves, A. Harvey Millar, and Karam B. Singh

ZmPIN1a and ZmPIN1b Encode Two Novel Putative Candidates for Polar Auxin Transport and Plant Architecture Determination of Maize. Nicola Carraro, Cristian Forestan, Sabrina Canova, Ian Traas, and Serena Varotto

Genomic Organization, Differential Expression, and Interaction of SQUAMOSA Promoter-Binding-Like Transcription Factors and microRNA156 in Rice. Kabin Xie, Congqing Wu, and Lizhong Xiong

The TATA-Box Sequence in the Basal Promoter Contributes to Determining Light-Dependent Gene Expression in Plants. Kanti Kiran, Suraiya A. Ansari, Rakesh Srivastava, Niraj Lodhi, Chandra Prakash Chaturvedi, Samir V. Sawant, and Rakesh Tuli

Indicates Web-only data.

Open Access articles can be viewed online without a subscription.