A model defining carbon isotope discrimination ($\Delta^{13}C$) for crassulacean acid metabolism (CAM) plants was experimentally validated using Kalanchoe daigremontiana. Simultaneous measurements of gas exchange and instantaneous CO$_2$ discrimination (for ^{13}C and ^{18}O) were made from late photoperiod (phase IV of CAM), throughout the dark period (phase I), and into the light (phase II). Measurements of CO$_2$ response curves throughout the dark period revealed changing phosphoenolpyruvate carboxylase (PEPC) capacity. These systematic changes in PEPC capacity were tracked by net CO$_2$ uptake, stomatal conductance, and online $\Delta^{13}C$ signal; all declined at the start of the dark period, then increased to a maximum 2 h before dawn. Measurements of $\Delta^{13}C$ were higher than predicted from the ratio of intercellular to external CO$_2$ (p_i/p_a) and fractionation associated with CO$_2$ hydration and PEPC carboxylations alone, such that the dark period mesophyll conductance, g_v, was 0.044 mol m$^{-2}$ s$^{-1}$ bar$^{-1}$. A higher estimate of g_v (0.085 mol m$^{-2}$ s$^{-1}$ bar$^{-1}$) was needed to account for the modeled and measured $\Delta^{18}O$ discrimination throughout the dark period. The differences in estimates of g_v from the two isotope measurements, and an offset of -5.5% between the ^{18}O content of source and transpired water, suggest spatial variations in either CO$_2$ diffusion path length and/or carbonic anhydrase activity, either within individual cells or across a succulent leaf. Our measurements support the model predictions to show that internal CO$_2$ diffusion limitations within CAM leaves increase $\Delta^{13}C$ discrimination during nighttime CO$_2$ fixation while reducing $\Delta^{13}C$ during phase IV. When evaluating the phylogenetic distribution of CAM, carbon isotope composition will reflect these diffusive limitations as well as relative contributions from C$_3$ and C$_4$ biochemistry.

The metabolic and ecological plasticity associated with the crassulacean acid metabolism (CAM) cycle has allowed the use of stable isotopes both to define the occurrence of the CAM pathway (Bender et al., 1973; Osmond et al., 1973) and to investigate the interplay between activities of Rubisco (by day) and nocturnal phosphoenolpyruvate carboxylase (PEPC; O’Leary and Osmond, 1980; Griffiths et al., 1990; Dodd et al., 2003). The phases of CAM, as defined by Osmond (1978), include phase I, when nocturnal uptake of CO$_2$ is mediated exclusively by PEPC, and phase III, when Rubisco operates with stomata closed in the light and CO$_2$ is regenerated from malic acid.

There are also two transient phases showing the switch between the major carboxylases, one early in the light period prior to stomatal closure (phase II) and the other in the late afternoon, when assimilation of atmospheric CO$_2$ initially occurs directly via Rubisco (phase IV). The carbon isotope signal of organic material is traditionally thought to reflect the balance between the magnitude of these four phases (Osmond, 1978; Pierce et al., 2002a; Winter and Holtum, 2002). During phase I of CAM, the fractionation of carbon isotopes during CO$_2$ fixation was shown to reflect both photosynthetic biochemistry and fractionation during CO$_2$ diffusion through stomata, as shown by comparing the isotopic composition of the C4 carbon in malate with that of atmospheric CO$_2$ (O’Leary and Osmond, 1980; Farquhar et al., 1982; Holtum et al., 1983; Deleens et al., 1985). Although PEPC operates without the company of Rubisco at night (in contrast to C$_4$ plants by day), the isotopic composition of malate was more depleted in ^{13}C than could be predicted from the model of discrimination proposed by O’Leary and Osmond (1980), which accounted for isotope fractionation by diffusion in air, CO$_2$ hydration, and PEPC carboxylation. Holtum et al. (1983) also noted that carbon isotope discrimination ($\Delta^{13}C$) was higher than predicted from gas exchange ratios of internal to external
CO₂ partial pressure \((p_i/p_a) \) and hypothesized that the differences might be due to a number of factors, including additional diffusion limitation in the liquid phase. Similar results have been observed during real-time measurements of \(\Delta^{13}C \) concurrently with gas exchange in phase I (O’Leary et al., 1986; Griffiths et al., 1990; Griffiths, 1992; Borland et al., 1993; Roberts et al., 1997, 1998).

The initial model of discrimination during CAM was also used to account for the activity of carbonic anhydrase (CA) in contrasting CAM plants (Holtum et al., 1984). The activity of CA was initially thought to limit certain CAM plants, such as Kalanchoe daigremontiana (Tsuzuki et al., 1982). However, Holtum et al. (1984) elegantly used the exchange of isotopically enriched \(^{18}O\) during the CA-catalyzed hydration of CO₂ to show that \(K. \ daigremontiana \) has a 40-fold excess of CA activity relative to PEPC, inferring that there would be little influence of the CO₂ hydration on \(\Delta^{13}C \). Subsequently, the recognition that gas exchange measurements can be used to define the flux of \(^{12}CO₂\) while the \(^{13}C\) composition can be solved for specific fractionation effects, has allowed more detailed gas exchange and isotope discrimination models for \(C_3 \) and \(C_4 \) plants to be developed. These have been based on CO₂ draw down and the sum of discrete fractionations across boundary layer, stomata, cell wall, and internal diffusion to carboxylation, as well as accounting for the effects of (photo) respiratory fractionations and bundle sheath leakage for \(C_4 \) (Farquhar et al., 1982; Farquhar, 1983). For CAM plants, the integrated \(^{13}C\) isotope signal was suggested from a theoretical model (Farquhar et al., 1989) or derived directly from the proportional contribution of PEPC and Rubisco signals to isotope discrimination during gas exchange (Griffiths et al., 1990). To date, however, no systematic approach to modeling the changes in extent of discrimination during specific phases of CAM has been undertaken, to our knowledge.

The recent development of a direct, real-time mass spectrometric system allows concurrent measurements of CO₂ uptake and \(\Delta^{13}C \) to be made at rapid time intervals (Cousins et al., 2006a). It has also been possible to measure, in parallel, the extent of \(^{18}O\) discrimination, which has been used to determine both the extent of CA equilibration and real-time evaporative fractionation during transpiration. The extent of \(^{18}O\) enrichment can be measured indirectly in CO₂, exchanging with tissue water and retrodiffusing from the leaf and directly in the evaporated water vapor signal (Cousins et al., 2006b). In this study, we have used the constitutive CAM plant \(K. \ daigremontiana \) to measure online \(^{13}C\) and \(^{18}O\) discrimination throughout the dark period, as compared to the transitional phases II and IV. Our study was framed by the paucity of data on the extent of nighttime (phase I) \(\Delta^{13}C \) and concomitant measurements of \(p_i/p_a \) and the need to develop a comprehensive model to reconcile instantaneous and organic carbon isotope signals in CAM plants (Griffiths, 1992; Roberts et al., 1997). To do this, we have developed a quantitative model for \(\Delta^{13}C \) during the CAM cycle, which allows for a systematic analysis of the overall determinants of the integrated \(^{13}C\) signal seen in the tissues of CAM plants. By analogy with the \(C_3 \) system (Evans et al., 1986), we show that fractionation factors during nighttime CO₂ uptake for CAM reflect both biochemical and internal constraints of diffusion across cell walls and mesophyll cytosol, leading to \(\Delta^{13}C \) varying with photosynthetic rate in addition to \(p_i/p_a \). Thus, changes in PEPC carboxylation capacity (perhaps mediated by changing activation by PEPC kinase; Dodd et al., 2003), which we demonstrate from a series of CO₂ response curves, are important determinants of nocturnal \(\Delta^{13}C \). We also show that the \(^{13}C\) and \(^{18}O\) signals in CO₂ allow different components of the mesophyll conductance \((g_s) \) to be resolved, reflecting diffusive path lengths within cells and leaves.

Recently, there has been a resurgence of interest in using carbon isotopes to explore the potential contribution that CAM makes to organic material, as well as in determining the phylogenetic origins of CAM within an array of families (e.g. Pierce et al., 2002b; Holtum and Winter, 2003; Crayn et al., 2004). The agreement between modeled and measured \(\Delta^{13}C \) values suggests that leaf internal CO₂ diffusion characteristics (influenced by leaf anatomy) determine the draw down of CO₂ from intercellular airspace to sites of PEPC (or Rubisco) carboxylation. When used to survey populations for CAM, carbon isotope composition should be considered to reflect both the proportion of \(C_3 \) and \(C_4 \) carboxylation as well as the extent of internal diffusive limitations.

THEORY

Model of \(\Delta^{13}C \) during CAM Photosynthesis

The model was developed around the likely fractionations associated with the four phases of the CAM cycle described in the introduction and is designed to be used in the analysis of short-term measurements of \(\Delta^{13}C \) during CO₂ uptake. The discrimination of the naturally occurring isotopes of carbon (\(^{12}C\) and \(^{13}C\)) in the process of photosynthesis is influenced by environmental and biochemical factors (Vogel, 1980; O’Leary, 1981). Theory developed by Farquhar et al. (1982) and Farquhar (1983) showed that net fractionation by \(C_3 \) and \(C_4 \) photosynthesis can be described by an equation having diffusion and biochemical-dependent terms.

The overall isotope effect during carbon fixation in leaves in general is:

\[
R_s/R_p = \frac{(1 + a_b)p_b - p_h}{p_s} + \frac{(1 + a) p_l - p_i}{p_s} + \frac{(1 + b_s + a_i) p_l - p_m}{p_s} + \frac{R_m}{R_p} \frac{P_m}{p_s}
\]

where \(R_s, R_p \) and \(R_m \) are the molar abundance ratios (\(^{13}C\) to \(^{12}C\)) of the carbon in the atmosphere at the site.
of mesophyll carboxylation and of the carbon fixed. The symbols p_t, p_a, and p_m denote leaf surface, intercellular, and mesophyll CO2 partial pressures (pCO_2). The symbol a_b is the fractionation occurring during diffusion in the boundary layer (2.9×10^{-3}), a is the fractionation during diffusion in air (4.4×10^{-3}), b_a is the fractionation as CO2 enters solution (1.1 m), and a_i is the fractionation occurring during diffusion in water (0.7×10^{-3}, Farquhar et al., 1982).

The magnitude of the isotopic effects generally exceeds unity by a small amount only, so following (Farquhar and Richards, 1984), our results are generally expressed as the discrimination or fractionation, Δ, where

$$\Delta = R_a/R_p - 1.$$

The derivation of the isotopic effect, R_a/R_p, for CAM is similar to the derivations of R_a/R_p for C_3 and C_4 species outlined by Farquhar et al. (1982) and Farquhar (1983), and the same arguments are followed using the Δ notation.

If the boundary layer conductance is large, it is convenient to contract $(1 + a_b)(p_a - p_i)/(p_a) + (1 + a)(p_i - p_i)/(p_a)$ in Equation 1 to $(1 + a')(p_a - p_i)/(p_a)$, where

$$a' = \frac{(1 + a_b)(p_a - p_i) + (1 + a)(p_i - p_i)}{(p_a - p_i)},$$

such that

$$R_a/R_p = (1 + a')\frac{p_a - p_i}{p_a} + (1 + b_a + a_i)\frac{p_i - p_m}{p_a} + \frac{R_m p_m}{R_p p_a}.$$

Equation 4 can be rewritten in the Δ notation by subtracting 1 from both sides, such that

$$\Delta = a' + (b_a + a_i - a')\frac{p_i}{p_a} + (\Delta_{bio} - b_a - a_i)\frac{p_m}{p_a},$$

where

$$\Delta_{bio} = R_m/R_p - 1$$

and Δ_{bio}, the integrated net biochemical discrimination, depends on the biochemistry of net CO2 uptake, with expressions for the four phases of the CAM cycle given below.

The p_m is dependent on the net CO2 assimilation rate, A, and the conductance to CO2 diffusion from the intercellular airspace to the site of carboxylation, g_i, where

$$A = g_i(p_i - p_m).$$

It is useful to substitute $p_i - A/g_i$ for p_m in Equation 5, then

$$\Delta = a + (\Delta_{bio} - a')\frac{p_i}{p_a} - (\Delta_{bio} - a_i - b_i)\frac{A}{g_i \times p_a}.$$

The influence of the internal diffusion conductance on $\Delta^{13}C$ can be calculated from the measured Δ as

$$\Delta - \Delta_i = - (\Delta_{bio} - a_i - b_i) \frac{A}{g_i p_a},$$

where Δ_i is the carbon isotope predicted when g_i is infinite.

$\Delta^{13}C$ during CAM photosynthesis has been used as a diagnostic tool to estimate the biochemical fractionation. Equation 8 can also be solved for Δ_{bio} and

$$\Delta_{bio} = \frac{\Delta - a' \left(1 - \frac{p_i}{p_a}\right) - (b_a + a_i)\frac{A}{g_i p_a}}{\frac{p_i}{p_a} - \frac{A}{g_i p_a}}.$$

The Biochemical Fractionation, Δ_{bio}, during CAM Photosynthesis

Assimilation rate during CAM photosynthesis can be written as a general equation

$$A = V_p + V_c - F - M - V_D$$

where V_p and V_c are the rates of PEPC and Rubisco carboxylation, respectively, and F is the rate of photorespiration, M the rate of mitochondrial respiration, and V_D is the rate of malate decarboxylation. Following the scheme of CAM photosynthesis outlined in Figure 1, we used Equation 11 to derive a general expression for Δ_{bio} of CAM photosynthesis (described in "Materials and Methods"):

$$\Delta_{bio} = b_3 - x(b_3 - b_4) + \frac{fE + eM + dV_D}{V_c + V_p},$$

where $x = V_p/(V_c + V_p)$ and b_3 (29.9%: Roeske and O'Leary, 1984) and b_4 are the fractionations associated with Rubisco carboxylation and the combined fractionation of CO2 hydration and PEP carboxylation. The fractionation factor b_4 is temperature dependent because of the temperature dependence of the hydration and dehydration reaction, which is given by

$$b_4 = - (9.483 \times 10^3)/(273 + T_i[^{\circ}C]) + 23.89 + 2.2$$

if CA is in excess (Mook et al., 1974; Henderson et al., 1992; Cousins et al., 2006a).

The fractionation factor f for photorespiration has been estimated to be about 8% (Ghashghaie et al., 2003). The fractionation factors e and d could be intrinsic fractionations occurring during respiration and decarboxylation but could also be variable describing the fact the substrate being respired or decarboxylated has a different isotopic composition, R_p, to the current photosynthate, R_s (i.e. $R_p[i/e = R_p/R_p - 1]$). Such a change in internal source CO2 could be particularly important for malate decarboxylation, as the value of the fractionation factor d for malate decarboxylation is uncertain. The carbon being decarboxylated has the isotopic signature of the previous dark period photosynthetic
discrimination with an added discrimination factor because of the fumarase randomization of the 13C signal in C1 and C4 of malate (Osmond et al., 1988). Deleens et al. (1985) noted that the decarboxylation of malate is known to show a large fractionation (near 30%) but pointed out that if the release of malate from the vacuole is the limiting step, this large fractionation would not be expressed, which was supported by their experimental data.

Equation 12 will differ for the different phases of CAM as indicated in Figure 1. For example, during phase I, in the dark period, the fixation of inorganic carbon is mediated by cytosolic PEPC, with HCO$_3^-$ substrate replenished by CA, and V_c, V_D, and F will be 0 and $x = 1$, such that

$$\Delta_{bio} = b_1 + eM/V_p.$$ (14)

Phase II and IV represent transitional stages. In phase II, after-dawn PEPC is usually rapidly down-regulated, and the activity of Rubisco progressively increases in the light (Griffiths et al., 1990; Dodd et al., 2002). The extent of phase IV depends on water and light availability and primarily represents the direct fixation of CO$_2$ by Rubisco, although PEPC may contribute toward the end of the light period (Griffiths et al., 1990). In both these phases, A can be described by Equation 11 and Δ_{bio} by Equation 12 with the possibility that $V_D = 0$. In the early part of phase IV, the equation is the one typical for C$_3$ photosynthesis, when $V_D = 0$ and PEPC carboxylation has not yet started ($x = 0$).

$$\Delta_{bio} = b_1 + \frac{fF + eM}{V_c}. $$ (15)

In phase III, the decarboxylation phase, stomata close as high levels of internal CO$_2$ are regenerated from malic acid and high Rubisco catalytic activities prevent excessive leakage of CO$_2$ (Griffiths et al., 2002) and $V_p = 0$ ($x = 0$).

$$\Delta_{bio} = b_1 + \frac{fF + eM + dV_D}{V_c}. $$ (16)

although F will be close to zero if internal pCO$_2$ is high. This equation is not particularly useful, because it is difficult, if not impossible, to make online measurements of Δ^{13}C during this phase when stomata are closed.

Figure 1. A diagram showing the major factors that determine Δ^{13}C during CO$_2$ exchange in CAM species during the four phases of the CAM cycle according to Equations 5 and 12. The terms p_a, p_i, and p_m are the partial pressures of CO$_2$ in the atmosphere, the intercellular airspace, and in the mesophyll cells. PCR and PCO refer to the photosynthetic carbon reduction and oxygenation cycles, respectively. The associated fractionation factors are shown by lowercase letters and are described in the "Theory" section.
\[\Delta^{13}C \text{ during Phase III from Malate to Fixed Carbon} \]

The equations presented above are useful for the interpretation of measurements of online \(\Delta^{13}C \). To help interpret the integrated signal of dry matter \(\Delta^{13}C \), the discrimination occurring in the steps of malate decarboxylation and refixation by Rubisco need to be considered. In this case, we use an expression for the ratio \(R_p / R_p' \), where \(R_p \) is the \(^{13}C/^{12}C \) ratio of the malate fixed in the previous dark period and \(R_p' \) that carbon fixed by Rubisco. Using the equation

\[V_c = V_D + M - L, \quad (17) \]

where \(L = g_p m \) is the leak rate of \(CO_2 \) out of the leaf, it can be shown that

\[R_p' / R_p = 1 - \phi (b_3 - a - d) + eM / V_D. \quad (18) \]

Both photorespiration and \(CO_2 \) diffusion into the leaf have been assumed to be negligible because of high internal \(pCO_2 \). This equation is similar to the one derived by Farquhar et al. (1989), where \(a, b, d, \) and \(e \) were assumed to be 0. Similar to the case of Rubisco in the bundle sheath of \(C_4 \) species, Rubisco fractionation can only occur if there is some leakage of the decarboxylated \(CO_2 \). If there is no \(CO_2 \) leakage out of the leaf, the other potential influence on dry matter carbon isotope composition, other than secondary fractionations during remobilization and export, is the fractionation associated with malate decarboxylation, such as fumarase randomization of malate (as discussed above) or fractionation associated with respiration. If \(R_d / R_p' - 1 = \Delta_4 \) is the discrimination during the \(C_4 \) fixation in Phase I, then \((\Delta_4 + 1) R_p' / R_p - 1 \) gives the overall discrimination occurring to carbon initially fixed by PEPC.

RESULTS

Dark Period PEPC and Stomatal Responses to \(CO_2 \)

\(CO_2 \) response curves of \(A \) to intercellular \(pCO_2 \) (\(A/p_i \) curves) were conducted from early evening (phase IV), throughout the dark period (Phase I), and into the light (phase II) on different leaves for three successive nights, having programmed the gas exchange system to undertake a \(CO_2 \) response curve every 2 h. Data are plotted as five representative, individual \(A/p_i \) curves from a single leaf (Fig. 2A), with the associated stomatal conductance (\(g_s \)) responses to \(p_i \) shown in Figure 2B. First, we note that in the light periods, \(A/p_i \) are typical for a \(C_3 \) system, with a high \(CO_2 \) compensation point and a photosynthetic rate of around 25 \(\mu mol \) m\(^{-2}\)s\(^{-1}\) at high \(p_i \) (Fig. 2A; 19:00 h, 08:25 h). Second, the maximum assimilation capacity of PEPC, as well as the maximum \(g_s \) changed throughout the dark period (Fig. 2, A and B). The PEPC \(A/p_i \) response (Fig. 2A) and \(g_s \) (Fig. 2B) declined early in the dark period, then increased until 2 h before dawn before again decreasing. It is interesting to note that although the maximum conductance varies, stomata are responsive to \(CO_2 \) concentration at all times in the light and the dark. To explore change in the kinetic parameters of PEPC in more detail for all of the leaves measured at each 2-h time interval, we plotted the initial slope of the \(A/p_i \) responses and maximum assimilation rate (\(A_{max} \)) values (respectively, in Fig. 3, A and B) throughout the dark-light measurement cycle. The initial slope and \(A_{max} \) show a similar pattern, showing a statistically significant increase from the middle of the dark period. Most importantly, there was a linear relationship between the initial slope and \(A_{max} \) during the dark period (see inset to Fig. 3A), suggesting changes in maximal activity of PEPC (\(V_{pmax} \)) and a role for changing PEPC capacity in regulating net assimilation through the night.

Gas Exchange and \(\Delta^{13}C \)

The continuous tracking of gas exchange characteristics was also undertaken for late phase IV, throughout the dark period, and into phase II in conjunction with the online mass spectrometric determinations (Fig. 4). The measurements, initially started in the light, show that \(A \), \(g_s \), and \(p_i/p_s \) decline at the start of the dark period (Fig. 4, A–C), with \(A \) then gradually recovering over the next 6 h of the dark period. We
note that \(p_i / p_a \) does not immediately decline during the early part of the dark period, although the large relative variation in this data set was due to one replicate leaf showing higher conductance early in the dark period (Fig. 4C). Toward the middle and end of the dark period, \(p_i / p_a \) was much more tightly coupled to \(g_s \) and \(A \), reaching a minimum 2 h before dawn, coincident with maximum \(A \) and \(g_s \). These continuous measurements reflect the changing activation state of PEPC, determined from the \(CO_2 \) response data shown in Figure 2.

\[D^{13}C, \text{ measured by the mass spectrometer simultaneously during gas exchange (Fig. 5), showed typically high values in the light when Rubisco is largely operating in the absence of PEPC (Griffiths et al., 1990; Dodd et al., 2002). There was a progressive increase in measured } D^{13}C \text{ throughout the dark period, with values lowest (around 0%) when } g_s \text{ was maximal at the start of the dark period (Figs. 4B and 5) and reaching a maximum of around 5.5 when } g_s \text{ was maximal at the start of the dark period (Figs. 4B and 5). The data of } A \text{ and } p_i / p_a \text{ were used in Equation 9 to calculate a mean } g_i = 0.044 \text{ mol m}^{-2} \text{ s}^{-1} \text{ bar}^{-1} \text{ (Fig. 5, dashed line). When using an infinite } g_i \text{ (effectively using } p_i / p_a), \text{ predicted } D^{13}C \text{ values were consistently 2% to 3% lower than measured data (Fig. 5, continuous line).} \]

Transpiration, Evaporative Enrichment, and Determinants of \(\Delta C^{18}O \)

The constraints to PEPC activity in the dark (Figs. 2 and 3) will reflect the balance between the likely physical (wall and \(g_s \)) and biochemical (PEPC and CA activities) determinants. To derive these components from the \(^{18}O \) signals in \(CO_2 \) and transpired water, we first considered how transpiration rate and leaf-to-air vapor pressure difference (VPD) responded between light and dark cycles, as modified by stomatal responses during the dark period (Fig. 6, A and B; see also Fig. 4B). These factors contribute to the derivation of \(\delta^o_e \), the isotopic composition of water at the site of evaporation calculated from the Craig-Gordon (Eq. 20 in “Materials and Methods”) and are required for the...
interpretation of 18O in CO$_2$. The higher transpiration rate and conductance in the light when leaf temperatures were higher are entirely consistent with the lower evaporative enrichment seen in d_e during the late afternoon phase IV (Fig. 6C). Throughout most of the dark period, VPD was at steady state, and so the slight increase in conductance from the middle of the dark period (Fig. 4B) resulted in a slight but progressive decrease in d_e. As maximum CO$_2$ assimilation declined from 2 h before dawn (Fig. 4A), d_e then increased, driven by the increase in VPD at that time (Fig. 6, B and C). During phase II, the relatively low g_s and transpiration rates (Figs. 4B and 6B) resulted in a relatively constant d_e (Fig. 6C). However, we note that the predicted d_e is always higher than the 18O isotope composition measured directly in transpired water vapor (d_t), which was trapped at 2-h intervals throughout the dark period (Fig. 6C).

The predicted evaporative site enrichment, d_{es}, is needed for the comparison with measured values of oxygen isotope discrimination (Δ^{18}O; Fig. 7). The latter values are measured by the mass spectrometer in the air flow downstream of the leaf cuvette on CO$_2$, which has retrodiffused from the leaf (Farquhar and Cernusak, 2005). The CO$_2$ has first equilibrated with the cell-water 18O signal, catalyzed by the action of CA. It is interesting that Δ^{18}O increases sharply at the start of the dark period (Fig. 7, around 50%o) when it is strongly regulated by g_{es}. The wide variation in discrimination values is entirely consistent with the range of p_l/p_a calculated from gas exchange (Fig. 4, B and C). When PEPC activity reaches a maximum toward the end of the dark period (Figs. 2 and 3), Δ^{18}O values are lower (around 20%o) and more tightly constrained (Fig. 7), consistent with g_{es} and evaporation rate at this time (Figs. 4B and 6A).

The values of Δ^{18}O increased with p_l/p_a and p_m/p_a, as predicted from Equation 23 ("Materials and Methods"; Fig. 8). The two modeled curves in each part of Figure 8 relate the predicted isotopic discrimination when in equilibrium with either source water ($\delta_{sw} = -5.5\%_o \pm 0.3\%_o$ versus the Vienna Standard Mean Oceanic Water [VSMOW] standard, dotted line) or measured δ_e (mean measured value, $-12.2\%_o \pm 1.1\%_o$; see individual data in Fig. 6C), showing that the impact of changing between δ_{sw} and δ_e on each plot is relatively minor. The measured values were always lower than predicted for full isotopic equilibrium, with an assumed constant Δ_{ea} of 45%o or 51%o for...
either δ_t or δ_s values, respectively, when used in Equation 23 with an infinite wall and cytoplasmic conductance assumed (i.e. there is no draw down from p_i to p_m^{∞} Fig. 8A). The offset in $\Delta^{18} \text{O}$ as a function of mesophyll $p\text{CO}_2$ depended on the magnitude of the wall conductance and cytoplasmic g_i used to calculate p_m for Equation 23 (“Materials and Methods”; Fig. 8, A–C). Measurements made in both the light and the dark show a much better fit when the wall and cytoplasmic g_i is estimated as 0.085 mol m$^{-2}$ s$^{-1}$ bar$^{-1}$ (Fig. 8B), whereas the lower internal conductance, which provided a good predictor of $\Delta^{13} \text{C}$ (0.044 mol m$^{-2}$ s$^{-1}$ bar$^{-1}$), overestimated the $\Delta^{18} \text{O}$ signal across the board (Fig. 8C).

DISCUSSION

$\Delta^{13} \text{C}$ by the CAM pathway has traditionally been used to partition the extent of C_3 and C_4 carboxylation during the contrasting phases of CAM (Osmond, 1978; Griffiths et al., 1990; Griffiths, 1992; Roberts et al., 1997). A lack of consistency between theoretical and measured $\Delta^{13} \text{C}$ suggested a need to reevaluate these approaches (Griffiths, 1992) and was highlighted by the difficulties of inferring the proportion of CAM species in various plant communities from carbon isotope composition (Pierce et al., 2002a; Holtum and Winter, 2003). In this study, we derived a model to evaluate instantaneous measurements of $\Delta^{13} \text{C}$ in the contrasting CAM phases based on biochemical and diffusional constraints to carboxylation for both Rubisco and PEPC. Experimentally, we have focused on carbon uptake during the dark period to explore the actual variations in $\Delta^{13} \text{C}$ in relation to the theoretical predictions from the model.

The interplay between g_s and PEPC activity were previously shown to regulate inorganic carbon supply, CA activity, and metabolic partitioning in determining carbon isotope composition of malate synthesized in

Figure 7. $\Delta^{18} \text{O}$ measured in CO2 and in association with gas exchange, from late afternoon (phase IV) and throughout the dark period (phase I) and into the light period (phase II), with data (white circles, ± SEM) for three replicate leaves from plants of *K. daigremontiana* maintained in a controlled-environment chamber on a reverse light/dark cycle.

Figure 8. $\Delta^{18} \text{O}$ as a function of p_i/p_a (A) and p_m/p_a (B and C). In A, no correction was made for g_i, whereas in B and C, p_m was derived by assuming a g_i of 0.0.85 or 0.044 mol m$^{-2}$ s$^{-1}$ bar$^{-1}$, respectively. The lines are not fitted to the data but represent the theoretical relationship of $\Delta^{18} \text{O}$ and p_i/p_a or p_m/p_a at full isotopic equilibrium, where $a = 7.7\%$ and $\Delta_{\text{iso}} = 45\%$ or 51\% using either the average δ_t or δ_s values, respectively, in Equation 24. The value of $g_i = 0.085$ in B was estimated from minimizing the variance between measured and theoretical $\Delta^{18} \text{O}$ calculated with the average δ_t. The CO2 supplied to the leaf had a $\Delta^{18} \text{O}$ of 24\% relative to VSMOW. Data points in each section represent the individual samples collected during light (white circles) and dark (black circles) from three replicate leaves of *K. daigremontiana* (for details, see Figs. 2 and 5, legends above).
the dark period (O’Leary and Osmond, 1980; Holtum et al., 1984; Osmond et al., 1988; Kalt et al., 1990). The opportunity to couple a gas exchange system directly to a mass spectrometer allowed us to explore instantaneous discrimination against 13C during the dark period. Concomitant measurements of 18O discrimination in CO$_2$ were used to highlight the internal diffusive constraints to Rubisco and PEPC carboxylation (in chloroplast and cytoplasm, respectively) and the potential interplay between CA activity, evaporation, and leaf water turnover (for the analogy with C$_4$ pathway see Cousins et al., 2006a, 2006b). For online gas exchange and mass spectrometric measurements, partial pressures of CO$_2$ and O$_2$ were typical for those used to optimize the system in previous studies (Cousins et al., 2006a, 2006b).

Gas Exchange and PEPC Carboxylation Capacity during the Dark Period

The systematic changes in A during the dark period were associated with changes in PEPC carboxylation capacity (Figs. 2–5). Continuous measurements of gas exchange throughout the dark period, as well as the individual A/p_i responses and the correlation between initial slope and A_{max}, confirmed this observation. In particular, it seemed that PEPC activity was driving assimilation, because proportionally, there was a more modest stomatal response throughout the middle of the dark period, when p_i/p_a declined to a minimum (Fig. 4).

One question remains, however, as to the nature of the regulation underlying the shifts in PEPC capacity and A_{max} seen in our data. The low CO$_2$ assimilation at the start of the dark period (Fig. 4), and subsequent recovery during the middle of the night, was tracked by catalytic capacity of PEPC (Figs. 2 and 3). This is consistent with the need to activate PEPC via PEPC kinase as malic acid accumulates, because high malic acid concentrations are likely to inhibit PEPC (Nimmo et al., 2001; Dodd et al., 2002), and PEPC kinase expression tends to occur rather late in the dark period in K. daigremontiana (Borland and Griffiths, 1997).

g_i and Determinants of Instantaneous Δ^{13}C at Night

Previously, estimates of carbon isotope composition have inferred the extent of daytime (Rubisco) and nighttime PEPC carboxylation, together with the varying contribution during phases II and IV, to overall organic material (Osmond, 1978; Griffiths, 1992; Roberts et al., 1997). Estimates of Δ^{13}C for PEPC (without the company of Rubisco, as in C$_4$ plants) have resulted in measured δ^{13}C for newly fixed C in malate closer to theoretical predictions from p_i/p_a (Holtum et al., 1984; Deleens et al., 1985; Roberts et al., 1997). By including conductance for CO$_2$ diffusion from intercellular airspace to the cytosol (g_i), the model presented in this article provides a more effective representation of Δ^{13}C during the CAM cycle, particularly across the dark period. Experimentally, by tracking gas exchange and real-time Δ^{13}C throughout the dark period with measurable g_i (Figs. 2 and 4), we could derive mesophyll limitations, which proved to dominate overall Δ^{13}C.

Diffusion limitation from intercellular airspace to the chloroplast stroma was shown to reduce Δ^{13}C in C$_3$ species (see Eq. 8; Evans et al., 1986) This is because the large value of Δ_{bio}, which is the result of a large Rubisco fractionation, is tempered by the diffusive draw down to carboxylation site. In C$_4$ species, the internal CO$_2$ diffusion limitation has very little influence on Δ^{13}C, because the Δ_{bio} is close to 0 as the fractionation associated with Rubisco counter balances the fractionation associated with the hydration and PEPC carboxylation of CO$_2$. Our theory shows that the internal diffusion limitation in CAM species can lead to a decrease in discrimination during phase II and IV, where Rubisco is active and stomata are open, but will increase discrimination during nighttime PEPC carboxylation. In our experiments, leaf temperatures were 20°C and $\Delta_{\text{bio}} = -6.27\%$o and we could partition approximately 3.5%o to the internal diffusion limitation at high assimilation rates. The mean value for the g_i to PEPC derived from our measurements of Δ^{13}C during the dark phase brought convergence between measured and modeled Δ^{13}C throughout the night (Fig. 5; 0.044 mol m$^{-2}$ s$^{-1}$ bar$^{-1}$). This value will be important for modeling the isotopic correlates of the C$_4$ pathway. In Figure 9, we show that, depending on assimilation rate, as the value of the g_i decreases, there is a predictable increase in Δ^{13}C with values of 6%o to 8%o potentially associated with PEPC activity alone when constrained internally by CO$_2$ diffusion. Accurate estimates of g_i are also important if online measurements of Δ^{13}C are to be used to partition CO$_2$ uptake between

![Figure 9. Modeled predictions (Eqs. 8 and 14) of Δ^{13}C for two contrasting assimilation rates and a $p_i/p_a = 0.45$ using $b_2 = 6.27\%$ at a leaf temperature of 20°C plotted as a function of varying g_i during phase I.](image-url)
Rubisco and PEPC carboxylations in phase II and IV. A low \(g_i \) will decrease \(\Delta^{13}C \) during these phases, and if not taken into account, the contribution from PEPC is overestimated (see Eqs. 10 and 12). The model provides a consistent explanation for the rather high values of \(\Delta^{13}C \) often found in many constitutive CAM plants, which have traditionally been used to infer the contribution from daytime Rubisco processes. One remaining question, however, relates to the effective path length through which \(CO_2 \) diffuses to PEPC, which maybe distinguishable by the offset of cytoplasmic diffusion and effective wall conductance as determined by \(\Delta^{13}C \) and \(\Delta^{18}O \) seen in retrodiffusing \(CO_2 \).

Evaporation, Isotopic Exchange, and CA Equilibrium at Night

The \(\Delta^{18}O \) data provided an additional insight into diffusional constraints to \(CO_2 \) fixation during the dark period. The \(^{18}O \) in \(CO_2 \) exchanging across the leaf surface, carrying the adopted evaporative signal, was primarily controlled by \(g_e \) (compare Fig. 7 with Fig. 4, B and C) unlike \(\Delta^{13}C \) (Fig. 5). However, as well as providing the extent of evaporative enrichment in relation to the exchange of \(CO_2 \), the \(^{18}O \) signal can be used to infer the extent of CA equilibration (Cousins et al., 2006b). It is intriguing that we needed to use a higher value of \(g_m \) to model \(^{18}O \) exchange, and in general terms, the \(\Delta^{18}O \) signal clearly tracked \(p_i/p_a \). While \(\Delta^{13}C \) was somewhat independent of \(p_i/p_a \) early in the dark period, a lower value \(g_e \) was needed throughout, perhaps implying that PEPC is limited for \(CO_2/\) HCO\(_3\) supply deep within cells or succulent tissues or perhaps that there is spatial variation in CA distribution and activity (Cousins et al., 2006a, 2006b). In contrast, the \(^{18}O \) signal of \(CO_2 \) could reflect those sites closer to airspaces that are in evaporative equilibrium. Finally, the \(-5.5\%\) offset between \(\delta^{18}O \) and \(\delta^{13}C \) (measured directly; Fig. 6) implied that evaporated water is not in equilibrium with source water, which occurs during isotopic steady state. This may be due to the large capacitance of succulent leaves (Smith et al., 1987) or the isotopic exchange of the water vapor signal that can occur at high humidities (Farquhar and Cerneck, 2005). While this is extremely important for CAM plants and their nocturnal stomatal opening under natural conditions (Hilli and Griffiths, 2007), it was precluded by our measurements at low ambient humidity.

Implications for Carbon Isotope Signals in Natural Vegetation

The model of \(\Delta^{13}C \) presented in this article can account for much higher values of discrimination than are normally associated with dark \(CO_2 \) uptake and fixation by PEPC during the CAM cycle (Fig. 9). Previously, low values of \(\Delta^{13}C \) have been associated with \(CO_2 \) uptake only at night or the C4 of malate accumulated during the dark period (Nalborczyk et al., 1975; Deelen et al., 1985). In the Clusiaceae, a rather unusual family of hemiepiphytic strangers that show a range of CAM characteristics (Borland et al., 1993; Roberts et al., 1998), measured instantaneous values of online \(\Delta^{13}C \) were extremely low \((-4.8\%\) to \(-6.0\%\) under high \(g_e \) (with \(p_i/p_a \) of 0.7 and above; Roberts et al., 1997). Why, then, are measured \(\Delta^{13}C \) values in organic material so consistently higher than these measurements might predict? Holtum et al. (1984) invoked a number of responses, including the rate of dark respiration and refixation (accounted for in our model by Eq. 18). Rubisco operating in the light can lead to substantial fractionation being expressed, but on a small proportion of \(CO_2 \) in phase III (Griffiths et al., 1990), or can contribute significantly to carbon gain and productivity during phase IV (Borland and Dodd, 2002; Dodd et al., 2002), which would lead to higher overall \(\Delta^{13}C \) in organic material. However, in this article, we have shown that the internal diffusion constraints from intercellular airspace to mesophyll cytosol increase \(\Delta^{13}C \) throughout the dark period in \(Kalanchoe daigremontiana \) (Figs. 5 and 9) compared to the discrimination that would be predicted from the PEPC-mediated \(\Delta^{13}C \) alone. This will help the understanding of observed organic material signals.

Thus, the data presented in this article go some way to explaining two phenomena that arise when evaluating the distribution of CAM from \(\Delta^{13}C \) measurements of entire plant populations. First, even plants fully committed to dark \(CO_2 \) fixation can show relatively high \(\Delta^{13}C \) values because of internal constraints to diffusion during the dark phase (Pierce et al., 2002a; Holtum and Winter, 2003). Second, variations in \(\Delta^{13}C \) have traditionally been thought to be dominated by the extent of direct Rubisco carboxylation during phases II and IV. We have now shown that internal constraints to diffusion can both decrease Rubisco-mediated discrimination in phases II and IV and increase PEPC-mediated discrimination in phase I, with both responses tending to stabilize organic material isotope signals and values tending to be intermediate between \(C_3 \), and CAM ranges. This may be one of the reasons why organic \(\Delta^{13}C \) signals tend to be relatively constant across a wide range of habitats, as noted in a number of field studies and experimental manipulations (Griffiths et al., 1986; Griffiths, 1992).

MATERIALS AND METHODS

Growth Conditions

"Kalanchoe daigremontiana" plants were grown from vegetative plantlets, with material initially grown during the summer months in a glass house under natural light conditions (27°C day and 18°C night temperatures). Two weeks prior to experimentation, plants were acclimated within two controlled-environment, walk-in growth rooms under a photosynthetic photon flux density of 300 \(\text{mol quanta m}^{-2} \text{s}^{-1} \) at plant height and air temperature of 25°C during the day and 18°C at night with a photoperiod of 12 h/d. One of the rooms was set to run under a reverse light/dark cycle to provide plant material for real-time isotope determinations for periods immediately before, during, and after the dark period. Plants were grown in 5-L pots in garden mix with 2.4 to 4.0 g Osmocote/L soil (15:4:8:10:8:1.2 N:P:K: Mg + trace elements: B, Cu, Fe, Mn, Mo, Zn; Scotts Australia) and watered daily.
Online Gas Exchange Measurements

The uppermost fully expanded leaves were placed into the leaf chamber of the LI-6400 2 h prior to the dark period and allowed to acclimate at 300 μmol photons m⁻² s⁻¹, 25°C leaf temperature, and a pCO₂ of 531 μbar for 1 h. The pCO₂ was elevated to reflect conditions in the growth facility. Subsequently, one to three online measurements (see below) were made prior to changing to the corresponding nighttime conditions (0 μmol photons m⁻² s⁻¹, 20°C leaf temperature, and pCO₂ of 531 μbar). Throughout the night period, online measurements were made approximately every 20 min as described below. In coordination with the plants’ day/night cycle, after the 12-h dark period, the leaf cuvette was returned to the corresponding daytime conditions, and several more measurements were made prior to stomatal closure.

Air entering the leaf chamber was prepared by using mass flow controllers (MKS Instruments) to obtain a gas mix of 909 μbar dry N₂ and 48 μbar O₂ (Cousins et al., 2006a, 2006b). A portion of the nitrogen/oxygen air was used to zero the mass spectrometer to correct for N₂O and other contaminates contributing to the 44, 45, and 46 peaks. Pure CO₂ (δ¹³Cᵦνₒ = −29‰, and δ¹⁸Oᵦνₒ = 24‰) was added to the remaining air stream to obtain a pCO₂ of approximately 531 μbar. Low oxygen (48 μbar) was used to minimize contamination of the 46 (mass-to-charge ratio [m/z] 29) and the corresponding nighttime conditions (0 μmol photons m⁻² s⁻¹, 25°C leaf temperature, and a pCO₂ of 531 μbar). About the LI-6400 2 h prior to the dark period and allowed to acclimate at 300 μmol photons m⁻² s⁻¹, 20°C leaf temperature, and pCO₂ of 531 μbar.

Throughout the night period, online measurements were made approximately every 20 min as described below. In coordination with the plants’ day/night cycle, after the 12-h dark period, the leaf cuvette was returned to the corresponding daytime conditions, and several more measurements were made prior to stomatal closure.

The LI-6400 console, and a flow of 200 μmol s⁻¹ was maintained over the leaf. The remaining air stream was vented or used to determine the isotopic composition of air entering the leaf chamber (Cousins et al., 2006a, 2006b). The efflux from the leaf chamber was measured by replacing the match valve line with a line connected directly to the mass spectrometer. Gas exchange parameters were determined by the ISOPRIME mass spectrometer (Cousins et al., 2006b). Masses 44 and 46 were monitored continuously, and the zero values, determined before and after the sample measurements, were subtracted from the values prior to determining the mass ratios. The zero values were typically 3% to 4% of the 44 and 46 peak. Two standard laboratory waters were measured during each measurement to calibrate our measured values against known standards (Cousins et al., 2006b). Our standard waters (S1 = −6.44‰ and S2 = −22.83‰) as compared to the international VSMOW standard at (0‰) were calibrated by the Stable Isotope Facilities in the Earth Environment Group within the Research School of Earth Sciences at The Australian National University. The measured δ¹³O value was corrected for the contribution of oxygen from the CO₂ used for equilibration and normalized against VSMOW, as described in Cousins et al. (2006b; see also Sirmingour, 1995). The precision of analyses, based on the repeated measurements of gas samples sealed in vials, was 0.1‰ (1 s.d., n = 8).

Water at the Site of Evaporation and Δ¹⁸O

The δ¹³O of water at the sites of evaporation within a leaf (δₑ) can be estimated from the Craig and Gordon model of evaporative enrichment (Craig and Gordon, 1965; Farquhar and Lloyd, 1993):

\[\delta_e = \delta_i + \varepsilon + (\delta_i - \delta_a) \frac{\epsilon_a}{\epsilon} \]

where \(\varepsilon \) and \(\epsilon \) are the vapor pressures in the atmosphere and the leaf intercellular spaces. \(\delta \) is the isotopic composition of water vapor in the air. The kinetic fractionation during diffusion of water from leaf intercellular air spaces to the atmosphere (\(\epsilon \)) can be calculated as in Cernusak et al. (2004):

\[\epsilon(\text{air}) = 2.644 - 3.206 \left(\frac{10^T}{T} \right) + 1.534 \left(\frac{10^T}{T} \right)^2 \]

where \(T \) is leaf temperature in degrees Kelvin. Under steady-state conditions, the value of \(\delta_i \) is equal to the isotopic composition of \(\delta_a \) the water taken up by the plant (Harwood et al., 1998).

Discrimination against C¹³O₂ (Δ¹³O) when water at the site of exchange and CO₂ are at full isotopic equilibrium (θ = 1) can be predicted (Farquhar and Lloyd, 1993) as:

\[\Delta^{13}O = -\frac{a + \Delta \delta_n}{1 - \Delta \delta_n} \]

where \(a \) is the diffusional discrimination (7.2‰) and \(a \) is calculated as \(p_o / (p_i - p_o) \). The ¹⁸O enrichment of CO₂ compared to the atmosphere at the site of exchange in full oxygen isotope equilibrium with the water was calculated as in Cernusak et al. (2004):

\[\Delta^{18}O = \frac{\delta(1 + \epsilon_a) + \epsilon_a - \delta_i}{1 - \delta_a} \]

Collection and ¹⁸O Isotopic Measurements of Water Vapor

A line connected directly to the exhaust port of the LI-6400 was used to cryogenically trap transpired water in a modified glass collection line sub-

merged in an ethanol-dry ice bath, as described in detail by Cousins et al. (2006b). Water vapor was collected for 1 to 2 h before (1×), during (6×), and after (1×) the dark period. Because of the low volumes collected (usually less than 50 μL of water), the water was transferred from the collection tubes via a cryogenic trapping line in a stream of dry N₂ gas and subsequently sealed with a gas torch under vacuum in 6-mm-o.d. silica glass vials attached via a Cajon ultra-torr fitting. The glass vials were subsequently scored, and where possible, 25 μL of liquid water was removed with a gas tight microsyringe (SGE) and injected into 10-mL head space vials with crimped tops containing butyl septa (Alltech), which had been previously flushed with 20 μbar CO₂ (in a N₂ background) at atmospheric pressure levels (Cousins et al., 2006b). Water and CO₂ samples were left to equilibrate at room temperature for 48 h.

Prior to the isotopic measurements, the vials were placed for a minimum of 2.5 h on a temperature block set at 25°C. The CO₂ samples were analyzed by injecting 200 μL of the headspace gas into a 500-μL N₂ purged, gas tight, temperature-controlled cuvette containing a Teflon gas permeable membrane linked to the ISOPRIME mass spectrometer (Cousins et al., 2006b). Masses 44 and 46 were monitored continuously, and the zero values, determined before and after the sample measurements, were subtracted from the values prior to determining the mass ratios. The zero values were typically 3% to 4% of the 44 and 46 peak. Two standard laboratory waters were measured during each measurement to calibrate our measured values against known standards (Cousins et al., 2006b). Our standard waters (S1 = −6.44‰ and S2 = −22.83‰, as compared to the international VSMOW standard at (0‰) were calibrated by the Stable Isotope Facilities in the Earth Environment Group within the Research School of Earth Sciences at The Australian National University. The measured δ¹³O value was corrected for the contribution of oxygen from the CO₂ used for equilibration and normalized against VSMOW, as described in Cousins et al. (2006b; see also Sirmingour, 1995). The precision of analyses, based on the repeated measurements of gas samples sealed in vials, was 0.1‰ (1 s.d., n = 8).

CO₂ Response Curves

Using the same background air stream as above, the LI-6400 gas exchange system was programmed (using the 6400-01 CO₂ injector) to run eight automated A/p curves (measured as A and gₛ, as a function of increasing pᵦᵦ, external pCO₂) before (1×) during (6×), and after (1×) the dark period. The leaf was left at steady-state conditions (300 μmol photons m⁻² s⁻¹, 25°C leaf temperature, and pCO₂ of 383 μbar or 0 μmol quanta m⁻² s⁻¹, 20°C leaf temperature, and pCO₂ of 383 μbar) for 1 h before the initiation of each A/p curve. The A/p curves were measured from low to high pCO₂ at the leaf temperature and photon flux density corresponding to the appropriate times in relation to the growth conditions. Measurement of an A/p curve took approximately 35 min.

Collection and ¹⁸O Isotopic Measurements of Water Vapor

A line connected directly to the exhaust port of the LI-6400 was used to cryogenically trap transpired water in a modified glass collection line sub-
where the equilibrium fractionation between water and CO₂ (c_w) can be calculated as in Cernusak et al. (2004):

$$
\frac{c_o}{c_w} = \left(\frac{17.604}{T}\right) - 17.93,
$$

(25)

where T is leaf temperature in degrees Kelvin.

Derivation of an Expression for the Biochemical Fractionation, Δ_{bio} During CAM Photosynthesis

Assimilation rate during CAM photosynthesis can be written as a general equation

$$
A = V_f + V_i - F - M - V_o.
$$

(26)

In phase I:

$$
A = V_o.
$$

(27)

In phase II and IV:

$$
A = V_p + V_i - F - M.
$$

(28)

In phase III:

$$
A = V_i - F - M - V_o.
$$

(29)

Equation 26 can also be written for the assimilation of 13CO₂

$$
A' = V_f + V_i - F' - M' - V_o'.
$$

(30)

and

$$
\frac{A'}{A} = R_p.
$$

(31)

$$
V_i' = V_p R_o / (1 + b_1).
$$

(32)

$$
V_f' = V_i R_p / (1 + b_1),
$$

(33)

$$
F' = F R_p / (1 + f),
$$

(34)

$$
M' = M R_p / (1 + e),
$$

(35)

and

$$
V_o' = V_o R_p / (1 + d).
$$

(36)

The various fractionation factors have been defined in the theory section. Using Equations 26 and 30 to 36, it can be shown that

$$
(V_i + V_p - F - M - V_o) R_p = \frac{V_o R_o}{1 + b_1} + \frac{V_i R_p}{1 + b_1} + \frac{F}{1 + f} + \frac{M}{1 + e} + \frac{V_o}{1 + d} R_p.
$$

(37)

and

$$
\frac{R_o}{R_p} = \frac{A}{\frac{F}{1 + f} + \frac{M}{1 + e} + \frac{V_o}{1 + d} - \frac{V_i + V_p + F + e M + d V_o}{V_i(1 - b_1) + V_p(1 - b_1)}}.
$$

(38)

Using the fact that $1 / (1 + x)$ approximately $(1 - x)$ when $x < 1$, Equation 38 can be rearranged such that

$$
\frac{R_o}{R_p} = \frac{V_i + V_p + F + e M + d V_o}{V_i(1 - b_1) + V_p(1 - b_1)}
$$

(39)

if

$$
x = \frac{V_o}{V_i + V_p}.
$$

(40)

Dividing numerator and denominator by $V_i + V_p$ gives

$$
\frac{R_o}{R_p} = \frac{1 + \frac{F + e M + d V_o}{V_i + V_p}}{1 - (b_1 + x(b_1 - b_1))} \approx \left(1 + \frac{F + e M + d V_o}{V_i + V_p}\right) (1 + (b_1 + x(b_1 - b_1))).
$$

(41)

Multiplying out and ignoring small terms, one can derive the general expression for Δ_{bio}:

$$
\Delta_{bio} = \frac{R_o}{R_p} = 1 - b_1 - x(b_1 - b_1) + \frac{\phi}{1 + \phi} + \frac{\phi}{1 + \phi}.
$$

(42)

This is Equation 12 in the “Theory” section.

To derive the expression for the discrimination that occurs between malate decarboxylation and Rubisco refixation in phase III, one uses Equation 17 and

$$
V_i R_p = \frac{V_o R_o}{1 + \phi} + \frac{\phi}{1 + \phi} V_i R_p + \frac{\phi}{1 + \phi} V_o R_o
$$

(43)

substituting for V_o using Equation 17, dividing both sides of Equation 43 by R_o and using the fact that $V_o = V_i R_o$ and $R_o R_p = (1 + b_1)$ and rearranging gives

$$
\frac{R_o}{R_p} = 1 - d + \phi(b_1 - b - d) + e M / V_o,
$$

(44)

where $\phi = L / V_o = \frac{\phi}{1 + \phi} / V_o$ is the fraction of CO₂ decarboxylated that leaks out of the leaf.

Statistical Analysis

ANOVA was conducted using repeated measures ANOVA in STATISTICA (version 6.0 StatSoft) on the measurements made during the dark period. Fisher LSD test was used for post hoc comparisons.

ACKNOWLEDGMENTS

We thank Chin Wong for helpful advice on collecting transpired water, Hillary Stuart for analyzing the oxygen isotope composition of our CO₂ tank, and Graham Farquhar for his support and helpful discussions.

Received August 14, 2006; accepted November 8, 2006; published December 1, 2006.

LITERATURE CITED

Isotope Discrimination during the Dark Phase of CAM

two tropical tree species exposed to oscillating elevated concentrations of CO2. Planta 218: 152–158
Winter K, Holtum JM (2002) How closely do the delta C-13 values of crassulacean acid metabolism plants reflect the proportion of CO2 fixed during day and night? Plant Physiol 129: 1843–1851