The maize (Zea mays) genome is teeming with LTR retrotransposons. Transposable elements nest within one another to form repeat clusters, making identification and reconstruction of broken segments challenging. TEnest, presented in this issue by Kronmiller and Wise (pp. 45–59), is a Web-based and downloadable software package specifically designed for automated genome-wide annotation and visualization of nested plant transposable elements. Analysis of finished maize BAC contigs with TEnest shows LTR retrotransposons have experienced periods of rapid proliferation. The Opie phylogenetic tree displayed here reveals clades that also cluster based on millions of years since their insertion, indicating evolution of related LTR retrotransposons occurs within discrete time bursts.

ON THE COVER:

BREATHROUGH TECHNOLOGIES

Development and Application of Novel Constructs to Score C:G-to-T:A Transitions and Homologous Recombination in Arabidopsis. Gert Van der Auwera, Joke Baute, Melanie Bauwens, Ingrid Peck, Denis Piette, Michael Pycke, Pieter Asselman, and Anna Depicker

RESEARCH ARTICLES

A Bifunctional Locus (BIO3-BIO1) Required for Biotin Biosynthesis in Arabidopsis. Rosanna Muralla, Elve Chen, Colleen Sweeney, Jennifer A. Gray, Allan Dickerman, Basil J. Nikolau, and David Meinke

Combined Metabolomic and Genetic Approaches Reveal a Link between the Polyamine Pathway and Albumin 2 in Developing Pea Seeds. Helene Vigeolas, Catherine Chinoy, Ellen Zuther, Bernard Blessington, Peter Geigenberger, and Claire Domoney

Continued on next page
Continued from preceding page

[OA] Functional Analyses of Cytosolic Glucose-6-Phosphate Dehydrogenases and Their Contribution to Seed Oil Accumulation in Arabidopsis. Setsuko Wakao, Carl Andre, and Christoph Benning 277

BIOENERGETICS AND PHOTOSYNTHESIS

Expression and Inhibition of the Carboxylating and Decarboxylating Enzymes in the Photosynthetic C₄ Pathway of Marine Diatoms. Patrick J. McGinn and François M.M. Morel 300

CELL BIOLOGY AND SIGNAL TRANSDUCTION

[W][OA] Trehalose-6-Phosphate Synthase/Phosphatase Regulates Cell Shape and Plant Architecture in Arabidopsis. S. Narasimha Chary, Glenn R. Hicks, Yoon Gi Choi, David Carter, and Natasha V. Raikhel 97

DEVELOPMENT AND HORMONE ACTION

Continued on next page
ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS

Involvement of Polyamine Oxidase in Wound Healing. Riccardo Angelini, Alessandra Tisi, Giuseppina Rea, Martha M. Chen, Maurizio Botta, Rodolfo Federico, and Alessandra Cona 162

Salt Modulates Gravity Signaling Pathway to Regulate Growth Direction of Primary Roots in Arabidopsis. Feifei Sun, Wensheng Zhang, Haizhou Hu, Bao Li, Youning Wang, Yankun Zhao, Kexue Li, Mengyu Liu, and Xia Li 178

GENETICS, GENOMICS, AND MOLECULAR EVOLUTION

A Versatile Transposon-Based Activation Tag Vector System for Functional Genomics in Cereals and Other Monocot Plants. Shaohong Qu, Aparna Desai, Rod Wing, and Venkatesan Sundaresan 189

Recurrent Deletions of Puroindoline Genes at the Grain Hardness Locus in Four Independent Lineages of Polyploid Wheat. Wanlong Li, Li Huang, and Bikram S. Gill 200

PLANTS INTERACTING WITH OTHER ORGANISMS

Glufosinate Ammonium-Induced Pathogen Inhibition and Defense Responses Culminate in Disease Protection in bar-Transgenic Rice. Il-Pyung Ahn 213

Starch Serves as Carbohydrate Storage in Nematode-Induced Syncytia. Julia Hofmann, Dagmar Szakasits, Andreas Blöchl, Miroslaw Sobczak, Sabine Daxböck-Horvath, Wladyslaw Golinskiw, Holger Bohllmann, and Florian M.W. Grundler 228

Powdery Mildew Induces Defense-Oriented Reprogramming of the Transcriptome in a Susceptible But Not in a Resistant Grapevine. Raymond W.M. Fung, Martin Gonzalo, Csaba Fekete, Laszlo G. Kovacs, Yan He, Ellen Marsh, Lauren M. McIntyre, Daniel P. Schachtman, and Wemping Qiu 236

SYSTEMS BIOLOGY, MOLECULAR BIOLOGY, AND GENE REGULATION

A Genomic and Expression Compendium of the Expanded PEBP Gene Family from Maize. Olga N. Danilevskaya, Xin Meng, Zhenglin Hou, Evgeni V. Ananiev, and Carl R. Simmons 250

Discrete Developmental Roles for Temperate Cereal Grass VERNALIZATION1/FRUITFULL-Like Genes in Flowering Competency and the Transition to Flowering. Jill C. Preston and Elizabeth A. Kellogg 265

Physiological Roles of the β-Substituted Alanine Synthase Gene Family in Arabidopsis. Mutsumi Watanabe, Miyako Kusano, Akira Oikawa, Atsushi Fukushima, Masaaki Noji, and Kazuki Saito 310

Continued on next page
CORRECTIONS

AtREV1, a Y-Family DNA Polymerase in Arabidopsis, Has Deoxynucleotidyl Transferase Activity in Vitro.

S. Takahashi, A.N. Sakamoto, A. Tanaka, and K. Shimizu

[CI] Some figures in this article are displayed in color online but in black and white in the print edition.

[W] Indicates Web-only data.

[OA] Open Access articles can be viewed online without a subscription.