Specificity of RCN1-Mediated Protein Phosphatase 2A Regulation in Meristem Organization and Stress Response in Roots1[W][OA]

Joshua J. Blakeslee2, Hong-Wei Zhou2,3, Jeffrey T. Heath4, Kyle R. Skottke, Jorge A. Rodriguez Barrios, Su-Yang Liu5, and Alison DeLong*

Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912

Protein dephosphorylation by the serine/threonine protein phosphatase 2A (PP2A) modulates a broad array of cellular functions. PP2A normally acts as a heterotrimeric holoenzyme complex comprising a catalytic subunit bound by regulatory A and B subunits. Characterization of the regulatory A subunit isoforms (ROOTS CURL IN NAPHTHYLPHTHALAMIC ACID1 [RCN1], PP2AA2, and PP2AA3) of Arabidopsis thaliana PP2A has shown that RCN1 plays a primary role in controlling root and hypocotyl PP2A activity in seedlings. Here we show that hypocotyl and root growth exhibit different requirements for RCN1-mediated regulation of PP2A activity. Roots of rcn1 mutant seedlings exhibit characteristic abnormalities in cell division patterns at the root apical meristem, as well as reduced growth under ionic, osmotic, and oxidative stress conditions. We constructed chimeric A subunit genes and found that restoration of normal root tip development in rcn1 plants requires both regulatory and coding sequences of RCN1, whereas the hypocotyl elongation defect of rcn1 plants can be complemented by either RCN1 or PP2AA3 transgenes. Furthermore, the RCN1 and PP2AA3 proteins exhibit ubiquitous subcellular localization patterns in seedlings and both associate with membrane compartments. Together, these results show that RCN1-containing PP2A has unique functions that cannot be attributed to isoform-specific expression and localization patterns. Postembryonic RCN1 function is required to maintain normal auxin distribution and stem cell function at the root apex. Our data show that RCN1-regulated phosphatase activity plays a unique role in regulating postembryonic root development and stress response.

Regulated dephosphorylation by protein phosphatases (PPs) has emerged as a universal control mechanism in physiology and development. Important roles have been identified for a variety of PP species in plants. For instance, several PP2C enzymes negatively regulate abscisic acid (ABA) response (for review, see Schweighofer et al., 2004; Yoshida et al., 2006), whereas other PP2Cs modulate wound signaling, stress signaling, and meristem development (Stone et al., 1998; Song and Clark, 2005; Schweighofer et al., 2007). Similarly, distinct dual-specificity phosphatases regulate carbohydrate metabolism (Kerk et al., 2006; Niittyla et al., 2006; Sokolov et al., 2006) and oxidative, saline, and genotoxic stress tolerance (Ulm et al., 2002; Lee and Ellis, 2007). PP2A, which constitutes an abundant population of oligomeric enzymes, plays crucial roles in the regulation of growth and development. Altered PP2A activity in plants has been linked to defects in hormone homeostasis and signaling, defense responses, cell division, morphogenesis, and reproduction (for review, see DeLong, 2006). Analysis of Arabidopsis (Arabidopsis thaliana) PP2A mutants suggests that important substrates for PP2A include proteins that control microtubule dynamics (Camilleri et al., 2002) and components of the auxin transport apparatus (Rashotte et al., 2001; Shin et al., 2005; Michniewicz et al., 2007).

The predominant form of PP2A is a heterotrimeric complex containing a catalytic (C) subunit, a scaffolding/regulatory (A) subunit, and a regulatory (B) subunit (Janssens and Goris, 2001). Combinatorial diversity of these heterotrimers enhances the versatility of the enzyme complex. The C and A subunits are abundant, ubiquitous, and highly conserved, whereas B subunits exhibit more specific expression patterns and are encoded by several unrelated gene families. Localization and substrate specificity of PP2A action are controlled largely through the effects of bound A and B subunits.
The regulatory A subunit comprises 15 imperfect repeats of the α-helical HEAT (huntingtin, elongation factor 3, A subunit, and TOR proteins; Andrade and Bork, 1995). The carboxy-terminal repeats bind the catalytic subunit, and the amino-terminal repeats bind the B subunit. Both binding interactions employ a hydrophobic binding interface formed by short and variable loops located in the center of each HEAT repeat (see Supplemental Fig. S1A; Ruediger et al., 1994; Xing et al., 2006). The A subunit performs at least three crucial regulatory functions. First, binding of the A subunit alters the kinetic properties of the C subunit (Price and Mumby, 2000). Second, A subunit binding also allows interaction of C subunits with the diverse B subunits involved in targeting PP2A function to its physiological targets (Ruediger et al., 1994). Third, recent work indicates that A subunit binding is required for acquisition of the fully activated C subunit conformation (Hombauer et al., 2007). A single regulatory A subunit isoform appears to suffice in rice (Oryza sativa) and maize (Zea mays), as well as in several fungi (van Zyl et al., 1992; Kinoshita et al., 1996; Yu et al., 2001), whereas mammalian systems rely on two differentially expressed and functionally distinct isoforms (Zhou et al., 2003; Sablina et al., 2007).

The Arabidopsis genome encodes three functionally distinct A subunit isoforms, ROOTS CURL IN (RCN1), PP2AA2, and PP2AA3 (Slabas et al., 1994; Zhou et al., 2004), with RCN1 alone acting as a key positive regulator of PP2A activity in seedlings. Biochemical and physiological analyses show reduced PP2A enzymatic activity in rcn1 plants, and rcn1 mutant phenotypes result from loss of PP2A activity in vivo (Derouere et al., 1999; Rashotte et al., 2001; Kwak et al., 2002; Larsen and Cancel, 2003). Basipetal auxin transport is increased in hypocotyls and roots of rcn1 seedlings, resulting in altered gravitropic response in both organs (Rashotte et al., 2001; Shin et al., 2005; Muday et al., 2006). RCN1 also functions as a transducer of ABA signals, acting upstream of ABA-induced increases in cytosolic Ca2+ but downstream of the PP2C ABI1 (Kwak et al., 2002), and as a negative regulator of ethylene synthesis (Larsen and Chang, 2001; Muday et al., 2006). Additional data suggest a negative regulatory role for RCN1 in ethylene signaling in shoots (Larsen and Chang, 2001; Larsen and Cancel, 2003).

The abnormal phenotypes of rcn1 mutant plants show that RCN1-containing PP2A species perform regulatory functions that are not mediated by complexes containing the other regulatory A subunit isoforms. Despite gene expression patterns that overlap with that of RCN1, loss of PP2AA2 and/or PP2AA3 function does not significantly alter phosphatase inhibitor sensitivity or produce dramatic mutant phenotypes (Zhou et al., 2004). However, plants carrying a pp2aa2 or pp2aa3 mutation in combination with rcn1 exhibit severe morphological and developmental abnormalities including arrested primary root growth (Zhou et al., 2004; Michniewicz et al., 2007). Degeneration of the primary root apical meristem in rcn1 pp2aa2 and rcn1 pp2aa3 seedlings appears to be caused by loss of auxin signaling, and is associated with relaxed or reversed localization of PIN-FORMED (PIN) proteins in embryos and seedling roots (Michniewicz et al., 2007). The radial cell and organ expansion phenotypes exhibited by these seedlings are similar to those of seedlings grown in the presence of high doses of phosphatase inhibitors, and therefore demonstrate the effect of drastic loss of PP2A activity (Rashotte et al., 2001; Shin et al., 2005; Muday et al., 2006).

We asked whether we could distinguish between functions that specifically require the RCN1 protein sequence and functions that are sensitive to overall A subunit dosage but insensitive to isoform specificity. To address this question, we undertook functional analyses in vivo, using constructs that carry regulatory and coding sequences from different A subunit-encoding genes to rescue rcn1 defects in seedling hypocotyls and roots. The reduced hypocotyl elongation phenotype of rcn1 can be rescued by PP2AA3 constructs; however, restoration of wild-type root tip organization requires both promoter and coding sequences of RCN1. Thus hypocotyl growth is sensitive to A subunit gene dosage but relatively insensitive to isoform specificity, whereas regulation of root growth requires PP2A complexes containing the RCN1 regulatory subunit. We show that loss of rcn1 alone causes increased sensitivity to a broad panel of stress treatments and compromises the maintenance of organized stem cell populations. Inhibition of phosphatase activity in seedlings is sufficient to recapitulate the rcn1 phenotype at the root apex, indicating that RCN1-mediated phosphatase regulation is required postembryonically for normal meristem function. Our data suggest that the RCN1 protein specifically mediates interactions targeting PP2A to substrates required for root stress response and meristem function.

RESULTS

Arabidopsis RCN1-YFP Fusions Retain Biological Activity

To facilitate our investigation of the biological specificity determinants for RCN1 function in plants, we constructed amino- and carboxy-terminal fusions of RCN1 with the yellow fluorescent protein (YFP) reporter (see “Materials and Methods”). We first tested cDNA fusions for biological activity using a complementation assay in the yeast PP2A regulatory A subunit mutant, tpd3-1. The tpd3-1 mutation confers temperature sensitivity and slow growth phenotypes that are complemented by the RCN1 cDNA (Garbers et al., 1996), as well as sensitivity to stress conditions such as nitrogen starvation and osmotic stress (Santhanam et al., 2004). RCN1-YFP amino- and carboxy-terminal fusion proteins were expressed under control of the constitutive alcohol dehydrogenase promoter (Ammerer,
Both constructs rescued growth of tpd3 mutant at high temperature, indicating that the fusion proteins are competent to regulate the yeast PP2A complex (Fig. 1A). YFP fluorescence was detected in yeast cells carrying RCN1-YFP and YFP-RCN (Fig. 1B) and full-length fusion proteins were detected by anti-GFP (Fig. 1C) and anti-RCN1 (see Supplemental Fig. S1B) antibodies. Although the predicted molecular masses of the two fusion proteins were nearly identical (94 kD), the RCN1-YFP fusion consistently exhibited a slightly slower SDS-PAGE migration when extracted from both yeast and plant cells (see below). The RCN1-YFP fusion also complemented the tpd3 stress sensitivity phenotype and rescued growth in the presence of salt (Fig. 1D) and sorbitol (data not shown). Thus fusion of YFP to either terminus does not impair the regulatory A subunit function of RCN1 in yeast.

YFP-RCN1 and YFP-PP2AA3 Fusions Rescue the rcn1 Hypocotyl Elongation Defect

To assay the biological activities of RCN1-YFP fusions in planta, we used a triple-template PCR (TT-PCR) template overlap strategy (Tian et al., 2004) to generate translational fusions in the context of the full-length genomic RCN1 sequence (Fig. 2A). The resulting constructs carried 2.1 kb of genomic sequence upstream from the RCN1 transcript, the transcribed region (including introns), and 550 bp of downstream sequence. Both amino- and carboxy-terminal fusions were generated in the plant transformation vector pPZP221 (Hajdukiewicz et al., 1994) and transformed into rcn1-1 mutant plants. To test for biological function, we assayed for complementation of the rcn1 hypocotyl elongation defect (Fig. 2B). In families segregating for an RCNpro-YFP-RCN1 (RYR) or RCNpro-RCN1-YFP (RRY) fusion, YFP fluorescence segregated with rescued hypocotyl elongation, whereas hypocotyl lengths of YFP-negative siblings matched those of the rcn1 parent and the empty vector control. These data indicate that the YFP fusion proteins provide A subunit function in plants, as well as in yeast.

To allow direct comparison of the localization and biological activities of the RCN1 and PP2AA3 isoforms, we constructed equivalent YFP fusions to the PP2AA3 cDNA (Fig. 2A). In one derivative the YFP-PP2AA3 fusion remained under control of the RCN1 promoter and 5’ untranslated region (RYA), while in the second construct the RCN1 upstream sequences were replaced with a 1.2-kb fragment containing the PP2AA3 leader (including a 312-bp intron), the intragenic region, and the predicted 5’ end of the next gene upstream (AYA). These constructs were designed to drive expression of the YFP-PP2AA3 fusion in the RCN1 and the PP2AA3 domains, respectively. To avoid overexpression artifacts, we focused primarily on transformants carrying single-copy T-DNAs in the rcn1 background. We assayed the ability of these fusions to complement the hypocotyl elongation defect of rcn1 seedlings (Fig. 2C). Hypocotyl growth was fully restored in lines carrying

Figure 1. RCN-YFP fusions supply regulatory A subunit function in yeast. RCN1-YFP and YFP-RCN1 fusions were expressed under control of the constitutive alcohol dehydrogenase promoter (Ammerer, 1983) in tpd3-1 yeast cells (van Zyl et al., 1992). A, Transformants carrying RCN-YFP fusions, an RCN1 construct, or the empty vector were streaked on duplicate YPD plates and incubated at 30°C or 37°C. The diagram at left indicates the construct carried by cells in the corresponding sectors on both plates. B, Cells carrying a native RCN1 construct, YFP-RCN1, RCN1-YFP, or a SUP35:GFP fusion (Satpute-Krishnan and Serio, 2005) were grown to early log phase and mounted for differential interference contrast (bottom panels) or fluorescence (top panels) microscopy. C, Protein extracts of cells carrying the constructs indicated were subjected to SDS-PAGE and immunoblotting, using anti-GFP antibodies to detect the fusion proteins. The positions of the RCN1-YFP (black arrows) and SUP35:GFP (asterisk) proteins are indicated at right. D, Cells carrying the constructs indicated were grown in liquid culture and 10-fold serial dilutions were spotted on plates containing YPD medium or YPD plus 600 mM NaCl. YPD plates were incubated at 30°C or 37°C and YPD NaCl plates were incubated at 30°C.
the YFP-PP2AA3 fusion under control of either the RCN1 or PP2AA3 promoter. Only a slight difference was observed between lines expressing YFP-RCN versus YFP-PP2AA3 fusions, and this difference was eliminated in lines carrying YFP-PP2AA3 in two or more copies (Fig. 2C; lines rcn1 RYA-32 and rcn1 AYA-6 each carry two copies of the fusion T-DNA, whereas line rcn1 AYA16 carries three or more copies. All other lines carry the transgene construct in single copy. Levels of statistical significance as determined by Student’s t test: *, P > 0.15 versus rcn1 and P < 10^{-14} versus Ws; **, P < 10^{-30} versus rcn1 and P < 0.05 versus Ws; ∧, P < 10^{-10} versus rcn1 and P > 0.8 versus Ws.

RCN1-Specific PP2A Regulation Maintains Root Tip Organization

We used confocal imaging to determine whether rcn1 seedlings exhibit root tip disorganization phenotypes consistent with our hypothesis that increased basipetal auxin transport alters auxin distribution in rcn1 roots. The normal root apical meristem exhibits a stereotypical arrangement of initial cells organized around a small population of quiescent center (QC) cells (for review, see Benfey and Scheres, 2000), and root tip architecture is disrupted by factors that alter the position or magnitude of an auxin concentration maximum in the root apex (Sabatini et al., 1999). Although wild-type roots maintained highly regular cell numbers and arrangement in the QC, columella initials, and root cap columella, rcn1 seedlings showed disorganization indicating aberrant cell division patterns (Fig. 3). QC and cortical/endodermal initial cells were difficult to distinguish in rcn1 roots, and cells formed irregular layers and cell numbers varied between different tiers. In several roots with three files of proper columella cells, a flanking file of lateral root cap cells appeared to have been recruited into a “shoulder”
Specificity of PP2A Regulation in Root Growth

Abnormal embryogenesis in *rcn1* *pp2aa2* and *rcn1* *pp2aa3* plants (Zhou et al., 2004; Michniewicz et al., 2007) as well as enhancement of *pin1* and *pid* embryogenesis defects by *rcn1* (Zhou et al., 2004) indicate that *RCN1* is required for normal embryo development. To determine whether the root tip disorganization phenotype reflects an embryonic or a postembryonic requirement for *RCN1* action, we asked whether chemical inhibition of PP activity in seedling roots

- 30% of *RYA* roots, and
- 35% of *AYA* roots exhibited abnormal cell numbers in a columella initial cell layer that frequently was poorly defined. These data suggest that normal root tip organization specifically requires *RCN1* function; *YFP-PP2AA3* constructs that support normal hypocotyl elongation do not fully restore normal root growth. To ensure that fusion to YFP did not impair function of PP2AA3 protein in roots, we also assayed for rescue by a native *PP2AA3* construct (*PP2AA3*~_{pp2aa2} *PP2AA3*). The native *PP2AA3* construct also provided only weak complementation of *rcn1* root tip defects (data not shown). These data show that the requirements for A subunit function are more stringent in the root tip than in the hypocotyl, and suggest that increased PP2AA3 dosage does not completely compensate for loss of *RCN1* function in the root tip.

Our earlier work on A subunit double mutants revealed severe root growth defects in *rcn1* *pp2aa2* and *rcn1* *pp2aa3* double mutants, but not in *pp2aa2* *pp2aa3* double mutant seedlings (Zhou et al., 2004). We asked whether root growth in the *pp2aa2* *pp2aa3* double mutant background was sensitive to decreased *RCN1* dosage. We assessed root tip morphology by visualizing amyloplasts in cleared root tips after staining for starch accumulation. As expected, starch staining revealed a highly regular arrangement of columellar cells in wild-type and *pp2aa2* *pp2aa3* root tips, with clearly defined tiers and files of cells (see Supplemental Fig. S2). In *rcn1* root tips, columellar cell files and tiers often were irregular, indicating aberrant patterns of columella initial divisions. Overall columellar morphology in the *pp2aa2* *pp2aa3* *rcn1*/+ mutant was similar to that observed in the *rcn1* background, with most roots exhibiting four poorly defined tiers of cells, and many lacking part or all of one columellar cell file. Consistent with a recent report (Michniewicz et al., 2007), columellar cell numbers were severely reduced and columellar files and tiers were difficult to identify in *rcn1* *pp2aa2* and *rcn1* *pp2aa3* root tips even at 4 d postgermination (dpg; see Supplemental Fig. S2). We conclude that *RCN1* function is required for normal root tip organization, and root growth is sensitive to *RCN1* dosage. Although *RCN1* becomes haploinsufficient in the *pp2aa2* *pp2aa3* background, the heterozygous *RCN1* dose in *pp2aa2* *pp2aa3* *rcn1*/+ mutants supports more normal development than a homozygous *PP2AA3* dose in the *rcn1* *pp2aa2* double mutant.

Normal Root Development Requires Postembryonic *RCN1* Function

Abnormal embryogenesis in *rcn1* *pp2aa2* and *rcn1* *pp2aa3* plants (Zhou et al., 2004; Michniewicz et al., 2007) as well as enhancement of *pin1* and *pid* embryogenesis defects by *rcn1* (Zhou et al., 2004) indicate that *RCN1* is required for normal embryo development. To determine whether the root tip disorganization phenotype reflects an embryonic or a postembryonic requirement for *RCN1* action, we asked whether chemical inhibition of PP activity in seedling roots
was sufficient to produce a phenocopy of \textit{rcn1} root tip defects. We and others have previously used cantharidin to produce a phenocopy of \textit{rcn1} in organ elongation, root curling, and basipetal auxin transport assays (Deruère et al., 1999; Rashotte et al., 2001; Shin et al., 2005), and other phosphatase inhibitors have been used to mimic the ethylene and ABA response phenotypes of \textit{rcn1} (Kwak et al., 2002; Larsen and Cancel, 2003). We compared the root apex phenotypes of wild-type (Col) seedlings grown in the absence or presence of cantharidin with those of seedlings carrying \textit{rcn1-6}, a T-DNA insertion allele (see “Materials and Methods”). RCN1 protein is undetectable in extracts of \textit{rcn1-6} seedlings, and the gross hypocotyl and root phenotypes of \textit{rcn1-6} seedlings are indistinguishable from those of the \textit{rcn1-1} allele (data not shown). Poorly defined QCs and irregular columnar cell arrangements were observed in 86% of cantharidin-treated wild-type roots ($n = 24$), closely matching the defects exhibited by 94% of \textit{rcn1-6} seedlings grown in the absence of inhibitor ($n = 18$; Fig. 4, A–D). Similar results were obtained with cantharidin-treated wild-type roots of another accession (Ws; data not shown). Thus the \textit{rcn1} phenotype reflects a postembryonic requirement for normal PP2A regulation, as PP inhibition in seedlings is sufficient to disrupt normal root tip development.

\textbf{Figure 4.} Postembryonic PP2A function maintains normal root tip development. Median longitudinal sections of propidium iodide-stained 4-dpg root tips were captured using confocal microscopy. One wild-type (A) and two representative \textit{rcn1-6} mutant (B and C) root tips grown in the absence of cantharidin plus one wild-type root tip grown in the presence of 10 μM cantharidin (D) are shown. Cantharidin-treated wild-type roots show abnormalities around the QC (brackets) and reduced columnar cell file numbers matching those of \textit{rcn1-6} mutant roots. Asterisks indicate cells representative of clearly defined columnar cell files. The \textit{AGL42-GFP} reporter is expressed in QC cells in 4-dpg seedling roots (E), but its expression is severely reduced in seedlings grown in the presence of 10 μM cantharidin (F and G). Each FM4-64-stained seedling was scanned sequentially for GFP fluorescence (upper row) and FM4-64 fluorescence (overlay shown in lower row). Under the imaging conditions used, a low level of background fluorescence is detected in wild-type Col root tips grown in the presence of cantharidin (H). \textit{DR5-GUS} reporter activity is reduced in roots of seedlings carrying the \textit{rcn1-1} mutation in both the Col (I versus J) and Ws (K versus L) genetic backgrounds (see “Materials and Methods”). Scale bars, 25 μm (A–D and I–L) and 20 μm (E–H).
The disrupted columella organization observed in rcn1 roots suggests abnormal function of the stem cell populations, particularly the columella initials and/or QC. We asked whether loss of phosphatase activity altered the expression of a molecular marker for QC identity. In roots the expression of a GFP reporter fused to the AGL42 MADS-box gene is tightly restricted to the QC at 4 dpg (Nawy et al., 2005). Normal root tip organization and clear QC expression of AGL42-GFP were observed in 87% of untreated roots (n = 23; Fig. 4E). Strongly reduced expression of AGL42-GFP and abnormal root tip architecture were observed in 91% of cantharidin-treated seedling roots (n = 23; Fig. 4, F and G). In most cantharidin-treated roots, AGL42-GFP expression was reduced to background levels (Fig. 4, F–H). These observations are consistent with the hypothesis that loss of RCN1-regulated phosphatase activity compromises QC function. Reduced AGL42-GFP expression might be a consequence of decreased auxin accumulation at the root apex; however, we do not observe...
altered AGL42-GFP expression in auxin-treated root tips (data not shown). Furthermore, publicly available microarray data indicate that AGL42 expression changes less than 1.5-fold in response to indole-3-acetic acid or naphthalacetic acid treatment (AtGenExpress Hormone Response and Genvestigator Stimulus data sets).

We asked whether the activity of an auxin-responsive reporter construct was altered in the rcn1 mutant. As described previously (Sabatini et al., 1999), wild-type seedlings carrying the DR5-GUS reporter show most intense staining around the columella initials, with lower GUS activity levels in the QC and throughout the columella (Fig. 4I). In rcn1 DR5-GUS roots, the overall intensity of staining was reduced, and rcn1 roots frequently exhibited more intense staining in the external columella layer than in the region around the columella initials (Fig. 4I). Similar results were obtained with wild-type and rcn1 DR5-GUS lines back-crossed twice into the Ws genetic background (Fig. 4, K and L). Cantharidin-treated wild-type DR5-GUS seedlings also showed a reduction in staining intensity, as was reported previously (Shin et al., 2005; data not shown). Reduced activity of a DR5rev reporter was recently reported for seedlings carrying a pp2aa2 or pp2aa3 mutation in combination with rcn1 (Michniewicz et al., 2007). Our results indicate that even modest reductions in phosphatase activity reduce auxin concentrations around the initial cells and compromise meristem function. The ability of cantharidin treatment to mimic rcn1 defects suggests that auxin distribution and QC identity are regulated by postembryonic RCN1 function.

Abundance and Localization of YFP Fusion Proteins

We assayed the levels of transgene expression in roots via immunoblotting with anti-RCN1 and anti-GFP antibodies (Supplemental Fig. S3). Anti-RCN1 immunoblots show that accumulation of the fusion proteins in the RYR and RRY lines was comparable to that of native RCN1 protein in wild-type plants. Use of anti-GFP antibodies allowed direct comparison of fusion protein abundance, which was similar in RYA, RYR, and RRY lines, and somewhat greater than in AYA lines. These results show that intact fusion protein accumulates at levels comparable to those of the endogenous A subunits and indicate that complementation of the rcn1 defects by YFP-RCN1 does not require gross overexpression of the fusion protein.

We also assayed the expression and subcellular localization of the YFP fusions using confocal microscopy. In a recent study, immunolocalization of an RCN1-YFP fusion in cells of the root apex detected cytoplasmic, perinuclear, and peripheral localization (Michniewicz et al., 2007). Consistent with this result, we observed that both RCN1-YFP fusion proteins were abundant and ubiquitous in root tips, with cytoplasmic and strong perinuclear signal accumulating in all cell types at the root apex (Fig. 5, A–F). Interestingly, although cells in the region of the root apical meristem (and distal elongation zone) exhibited very little nuclear RCN1-YFP signal, vacuolated cells in more mature regions of the root exhibited nuclear as well as cytoplasmic accumulation (Fig. 5, D–F versus G–I). Optical sectioning confirmed that the fusion protein was present inside the nucleus of these cells (data not shown). Cells in the apical meristem and in more mature regions also exhibited strong peripheral signal, indicating enrichment around the plasma membrane; membrane enrichment was especially clear in cortical cells (Fig. 5, G–L; Supplemental Fig. S4, A–C). Strong accumulation of fusion protein also was observed in root hairs and lateral root primordia, with localization in lateral root primordia recapitulating that observed at the primary root tip (data not shown). Light- and dark-grown seedlings carrying the fusion constructs exhibited YFP fluorescence in roots and hypocotyls, with YFP accumulation patterns matching the previously reported RCN1 mRNA expression pattern (Derëure et al., 1999). Like vacuolated root cells, hypocotyl cells exhibited cytoplasmic, nuclear, and peripheral signal, with little or no accumulation evident in chloroplasts (data not shown).

To confirm that membrane localization was characteristic of the native forms of RCN1 and PP2AA3, we assayed the distribution of endogenous A subunits in soluble and microsomal membrane fractions isolated from wild-type seedlings (Fig. 6A). All three A subunits were abundant both in soluble and microsomal fractions, consistent with the analysis of YFP-RCN1 fusion protein localization. The catalytic subunit also was detected in microsomal fractions (data not shown). In contrast to PP2A subunits, the cytosolic PEPC protein was detected in soluble but not membrane fractions, indicating minimal contamination of the membrane fraction with cytoplasmic proteins. We detected PP2AA2 and PP2AA3 in membranes extracted from rcn1
mutant roots, and all three isoforms in the membrane fraction from wild-type roots (Fig. 6B). These data indicate that PP2A complexes associate with membranes in growing seedlings. The presence of all three A subunit proteins in the microsomal fraction indicates that membrane association is not an isoform-specific characteristic. It is possible that recruitment of PP2A to a cellular membrane may allow it to interact with substrate or regulator proteins on the same membrane. Although the primary amino acid sequences of the A and C subunits do not contain motifs that predict membrane localization, several recent studies have shown that PP2A may interact with plasma membrane components, including the plasma membrane H^+-ATPase and the signaling lipid phosphatidic acid (Michniewicz et al., 2007).

Subcellular localization of the YFP-PP2AA3 fusion protein was similar to that of YFP-RCN1. Under control of the RCN1 promoter, accumulation of the YFP-PP2AA3 fusion was similar to that of YFP-RCN1 (see Supplemental Fig. S4D). Expression of YFP-PP2AA3 under control of the PP2AA3 regulatory region resulted in decreased abundance of the fusion protein, with the strongest accumulation evident in the vascular cylinder (Fig. 5, M–O; Supplemental Fig. S4, E and F). At this lower abundance, subcellular localization patterns were difficult to assess, but perinuclear, cytoplasmic, and peripheral localization were detected in most roots. These results suggest that RCN1 is more abundant than PP2AA3 in wild-type roots.

RCN1 Performs an Isoform-Specific Function in Root Stress Response

Given the unique role of RCN1 in regulating root growth and the stress sensitivity of PP2A mutants in

Figure 7. Stress sensitivity is increased in *rcn1* seedlings. Wild-type (black symbols) and *rcn1-1* mutant seedlings (white symbols) were transferred from standard medium to plates containing the indicated concentrations of NaCl (A), KCl (B), mannitol (C), and hydrogen peroxide (D). New growth (elongation from the point of transfer) was measured after 7 d of additional growth. E, Root diameter at the midpoint of the new growth segment was measured for plants grown on NaCl and mannitol. F, Overall root length was measured on wild-type, mutant, and complemented mutant seedlings (transgenic lines R1H9 and R2Q3; see “Materials and Methods”) transferred to NaCl- or hydrogen peroxide-containing plates as described above. For all panels, each value shown represents the average for 12 to 15 seedlings; error bars indicate SD. Asterisks indicate levels of statistical significance as determined by Student’s t test: *, *P < 0.002 for *rcn1* versus wild type; **, *P < 10^-7 versus *rcn1* and *P > 0.2 versus Ws.
yeast, we asked whether rcn1 mutant plants show stress sensitivity similar to that observed in tpd3 yeast cells. Roots of mutant seedlings exhibited increased sensitivity to ionic (Na\(^+\), K\(^+\)), osmotic (mannitol), and oxidative (hydrogen peroxide) stress with decreased elongation across a range of concentrations (Fig. 7, A–D). Sodium and mannitol treatment also caused radial expansion, which was enhanced in the cortical cell layer of rcn1 roots (Fig. 7E; Supplemental Fig. S5). Oxidative stress inhibited elongation (Fig. 7D) but did not cause radial swelling of wild-type or mutant roots (data not shown). Both YFP-RCN1 and RCN1-YFP fusion transgenes restored wild-type stress tolerance to rcn1 mutant roots (Fig. 7F). These data indicate that RCN1 regulation of PP2A activity is required for normal stress tolerance in seedling roots. We did not detect differences in salt sensitivities of adult wild-type and rcn1 plants, suggesting that the stress sensitivity of rcn1 is limited to the seedling stage (data not shown).

Unlike rcn1, the pp2aa2 and pp2aa3 single mutants and the pp2aa2 pp2aa3 double mutant exhibited stress sensitivities that very nearly matched that of the parental wild type (see Supplemental Fig. S6). Despite the presence of PP2AA2 and PP2AA3 proteins in root tissue (Zhou et al., 2004), these regulatory A subunit isoforms do not appear to play an equivalent role in stress tolerance. We asked whether the amino acid sequences for RCN1, PP2AA2, and PP2AA3 proteins in root tissue (Zhou et al., 2004), these regulatory A subunit isoforms do not appear to play an equivalent role in stress tolerance. We asked whether the amino acid sequences for RCN1, PP2AA2, and PP2AA3 exhibit discrete differences that might confer biological specificity. The predicted RCN1 protein shares 86% identity with both PP2AA2 and PP2AA3 (see Supplemental Fig. S1A; Slabas et al., 1994), and most of the strongly conserved residues defined in mammalian A subunits are conserved in all three Arabidopsis isoforms. However, Tyr-450, one putative component of the hydrophobic interaction interface (Ruediger et al., 1994; Groves et al., 1999; Xing et al., 2006), is replaced by a basic residue (His) in PP2AA2 and PP2AA3 (see Supplemental Fig. S1A). Mutagenesis of the RCN1-YFP fusion to generate a His-450 allele does not compromise complementation of temperature, sorbitol, and sodium chloride sensitivity of tpd3 yeast cells (data not shown), suggesting that Tyr-450 does not play a required role in mediating stress tolerance. Intriguingly, database searches suggest that the His-450 A subunit may be a plant-specific variant. A Tyr residue is conserved at this position in A subunits of all vertebrates and insects, in yeast, and in many plant species (pea [Pisum sativum], tobacco [Nicotiana tabacum], Brassica spp., Medicago spp., and Lolium spp.). Rice, maize, several other grasses, many fungi, and Caenorhabditis elegans carry Phe at this position. His-450 isoforms are found only in plant genomes that also encode a Tyr-450 isoform (e.g., those of Vicia, Medicago, Brassica, and Arabidopsis) and in Thellungiella salugiuea, for which limited sequence data are available. The His-450 variant thus appears to be a plant-specific regulatory A subunit isoform, and may occur only in plants that also encode a Tyr-450 isoform.

DISCUSSION

Our analysis of Arabidopsis A subunit functions in vivo demonstrates unique functions for RCN1 in specific cell types in seedlings. The requirement for RCN1 function in maintaining normal root stem cell organization is not explained by cell- or tissue-specific mRNA expression patterns because expression of PP2AA3 under control of the RCN1 promoter does not fully rescue normal cell division patterns. In hypocotyl tissue, rescue of normal cell expansion by PP2AA3 expression demonstrates overlapping function of the A subunit isoforms. Our data support the hypothesis that root growth and stress response are regulated by PP2A substrates specifically targeted by RCN1, whereas targeting of substrates involved in hypocotyl growth is not dependent on a particular A subunit isoform. Organization and function of stem cells at the root apex, as measured by formation of normal columella tiers and expression of a marker for QC identity, is compromised by reduced PP2A function during postembryonic development. Given that the subcellular localization of RCN1 and PP2AA3 proteins appears similar, functional specificity is likely to depend on isoform-specific protein-protein interactions with substrates or regulators of the complex.

Dosage Sensitivity versus Isoform Specificity in A Subunit Function

YFP-PP2AA3 fusion constructs that provide only weak complementation of the rcn1 root tip phenotype robustly rescue hypocotyl elongation. These findings suggest that hypocotyl elongation requires a threshold level of A subunit function, with no stringent requirement for RCN1-specific amino acid sequences. Even a modest level of YFP-PP2AA3 expression in the rcn1 mutant is sufficient to promote normal hypocotyl elongation. Because increased ethylene synthesis in dark-grown rcn1 seedlings contributes significantly to reduced hypocotyl growth (Larsen and Chang, 2001; Muday et al., 2006), this result suggests that PP2A complexes containing the PP2AA3 isoform are competent for down-regulation of ethylene biosynthesis. In contrast, PP2AA3 rescues root tip organization weakly even when expression is driven by the RCN1 promoter, demonstrating a more stringent requirement for A subunit function in the root apical meristem. Although it is possible that high-level overexpression of PP2AA3 could suppress this stem cell defect, our data clearly indicate that RCN1-containing PP2A complexes effectively target the key substrates for root growth at physiological expression levels, whereas PP2AA3-containing complexes do not.

RCN1 may be the preferred interaction partner for C and B subunits most active in seedling roots. The Aα and Aβ isoforms of mammalian PP2A differ in their binding activities (Zhou et al., 2003; Sablina et al., 2007). However, the positive regulatory effect of RCN1 also is consistent with the hypothesis that RCN1 plays
a role in an activation cycle for Arabidopsis C subunits analogous to that of TPD3 in yeast, promoting interaction with PTPA/RRD (Hombauer et al., 2007). The modest effects of loss of PP2A-A2 and PP2A-A3 function could indicate that these scaffolds do not interact efficiently with PTPA/RRD-like activators, and therefore do not have equivalent effects on overall PP2A activity, at least in the presence of functional RCN1.

RCN1 Plays an Isoform-Specific Role in Root Development

Our data provide new insight into the developmental effects of increased phosphorylation of RCN1-specific PP2A substrates, demonstrating that loss of RCN1 regulation alters stem cell function and auxin distribution without producing the meristem collapse phenotype caused by more drastic reductions in PP2A activity. Previous studies have documented ectopic expression of cell identity markers and abnormal cell division patterns caused by treatment with exogenous auxin or loss of auxin transporter function in shoots and roots (Sabetini et al., 1999; Benkova et al., 2003; Biliou et al., 2005). Our results indicate that meristem function is also sensitive to subtle changes in auxin flux, as well as to those more profound ones. Moreover, inhibition of phosphatase function during the seedling phase alone is sufficient to perturb meristem function, showing that root tip patterning is a dynamic process that responds rapidly to altered phosphorylation levels.

RCN1 plays a key role in maintaining the patterns of root meristem cell division and function. Decreased expression of the DR5-GUS reporter in ctn1 roots and of the QC marker AGL42-GFP in cantharidin-treated roots suggests that normal establishment of the local auxin concentration maximum and full expression of QC identity require RCN1-regulated PP2A activity. Because positioning of a local maximum in the auxin pool at the root apex is an important patterning determinant (Sabetini et al., 1999), increased basipetal auxin transport in ctn1 could affect root tip organization by altering the position of the auxin concentration maximum or by more generally increasing flux through the auxin transport stream in the root tip. Consistent with this hypothesis, the strongly reduced expression of DR5-GFP that is observed in ctn1 pp2a-a3 and ctn1 pp2a-a2/+ root tips is rescued by 1-N-naphthylphthalamic acid treatment (Michniewicz et al., 2007).

Previous studies have revealed complex feedback loops connecting ethylene response with auxin homeostasis in roots (Stepanova et al., 2005; Chilley et al., 2006). Furthermore, increased ethylene response was recently shown to stimulate cell divisions in the QC (Ortega-Martinez et al., 2007). Two observations argue against the hypothesis that increased ethylene response accounts for aberrant QC function in ctn1. First, we observed altered root tip morphology in light-grown seedlings, whereas increased ethylene synthesis was observed only in dark-grown ctn1 seedlings (Muday et al., 2006). Second, although ctn1 may enhance ethylene sensitivity in shoots (Larsen and Chang, 2001), ctn1 root phenotypes are suppressed in the ctn1 ctn1 double mutant (Larsen and Chang, 2001; A. DeLong, unpublished data), suggesting that loss of ctn1 reduces ethylene response in roots. Interestingly, ethylene treatment stimulates auxin accumulation in wild-type root tips, and mutations that reduce ethylene-induced auxin production confer weak ethylene insensitivity (Stepanova et al., 2005). Thus increased basipetal auxin transport also may result in decreased sensitivity to ethylene in ctn1 roots.

Subcellular Localization of RCN1 and A3 Proteins

Our data suggest that nuclear localization of RCN1 is developmentally regulated in roots. YFP-RCN1 was abundant in perinuclear and cytoplasmic compartments, but was underrepresented in nuclei of meristematic and central elongation zone cells (Fig. 5). Nuclear localization was observed in more mature cells in and above the proximal elongation zone, with little or no perinuclear accumulation evident in these cells. These data are consistent with the idea that RCN1 localization is dynamic during root cell differentiation, with enrichment in the perinuclear compartment in rapidly dividing cells and nuclear enrichment in postmitotic cells. Interestingly, a GFP fusion to the OXIDATIVE SIGNAL-INDUCIBLE1 (OXI1) protein kinase, a member of the AGC kinase family that also includes the PINOID kinase, suggests that subcellular localization of OXI1 in root hairs also may be developmentally regulated, with nuclear accumulation occurring late in root hair development (Anthony et al., 2004; Rentel et al., 2004). Like RCN1, OXI1 plays a role in oxidative stress response; OXI1 activity increases under oxidative stress conditions, and promotes pathogen resistance and root hair development. Developmentally regulated localization of kinase/phosphatase pairs would provide an additional level of fine-tuning in phosphorylation-based control circuits.

We also observed peripheral localization of YFP-RCN1 and YFP-PP2A-A3 in all cell types in the root tip. Membrane association appeared fairly uniform around the cell periphery, and did not exhibit obvious polarity or asymmetry in these experiments. Our cell fractionation data are consistent with the existence of a significant pool of membrane-associated PP2A in seedlings. Membrane association of PP2A complexes has been reported in several contexts previously, including early mouse development, during tight junction formation, and during associations with endothelial nitric oxide synthase at the plasma membrane (Gotz et al., 2000; Nunbhakdi-Craig et al., 2002; Wei and Xia, 2006). Arabidopsis PP2A interacts with the C terminus of the plasma membrane ATPase AHA2 in vitro and exhibits partial colocalization with the PIN1 and PIN2 proteins in roots (Fuglsang et al., 2006; Michniewicz et al., 2007). Additionally, RCN1 protein binds phosphatidic acid,
a lipid signaling molecule that recruits target proteins to the plasma membrane and plays a significant role in abiotic stress response (Meijer and Munnik, 2003; Testerink et al., 2004). Recruitment of PP2A to a membrane compartment via phosphatidic acid binding could alter phosphatase activity toward membrane-associated substrates. Membrane-associated PP2A activity may be critical for regulation of auxin transport, stress response, and regulation of stem cell function in roots.

Stress Sensitivity in rcn1 Seedlings

The data presented here indicate that RCN1 function plays a unique role in mediating root stress response. Our working model states that positive regulation of PP2A activity by the RCN1 protein contributes to a response that maintains normal growth under a wide range of stress conditions. As a modulator of auxin, ethylene, and ABA levels and/or responses, RCN1 is well positioned to act as an integrator of stress signaling. Abiotic stress may alter the cellular localization and amount of PP2A activity, resulting in PP2A-induced alterations in hormone responses. Loss of RCN1 function compromises these adaptive alterations in PP2A localization and/or activity, leading to increased growth inhibition under stress conditions.

Previous studies focusing on two PP2A interactors, TAP46 and the ACHIP E3 ubiquitin ligase, suggested that PP2A may play a role in the chilling response in Arabidopsis (Harris et al., 1999; Luo et al., 2006). Additionally, gene expression studies show that mRNAs for PP2A catalytic subunits in rice are differentially expressed in response to drought, salinity, and heat stress (Yu et al., 2003). An Arabidopsis PP2A catalytic subunit mutant was recently found to affect ABA-related stress responses through negative regulation of ABA signaling. Although loss of PP2AC-2 function confers ABA hypersensitivity (Pernas et al., 2007), loss of RCN1 function results in reduced ABA sensitivity (Kwak et al., 2002). Paradoxically, both mutants show increased sensitivity to NaCl treatment. However, the pp2ac-2 mutant exhibits a sensitivity phenotype specific for ABA-related stress (Pernas et al., 2007) unlike the general stress sensitivity phenotype reported here for rcn1. These disparities indicate that the effect of rcn1 loss of function is unlikely to be mediated by a specific effect on regulation of PP2AC-2 activity.

The parallel stress sensitivity of rcn1 plants and tpd3 yeast is striking, but it is not clear that the mechanism involved in the plant and yeast stress responses is similar. Interestingly, the transition between perinuclear enrichment and intranuclear YFP-RCN1 localization occurs in cells of the elongation zone, the same cell population that would be responsible for altered elongation under stress conditions. In yeast, PP2A is required for nuclear accumulation of the stress-responsive transcription factor Msn2p after nutrient deprivation, rapamycin treatment, and temperature and ionic stress (Santhanam et al., 2004). Regulation by PP2A has been proposed to involve dephosphorylation of a nuclear export signal in Msn2p. Although we cannot rule out a similar explanation for the stress sensitivity of rcn1 seedlings, there are no obvious orthologs of the Msn2 and Msn4 transcription factors in the Arabidopsis genome (A. DeLong, unpublished data). The Arabidopsis C2H2 zinc finger proteins that produce the best BLAST scores against Msn2 and Msn4 are more closely related to the TFIIIA family of transcription factors than to Msn2p or Msn4p. Additionally, we assayed for but did not observe an enhancement of nuclear RCN1 localization under stress conditions (see Supplemental Fig. S7). Over a range of salt treatment times from 15 minutes to 18 h we did not detect any alteration in the nuclear versus perinuclear YFP-RCN1 localization pattern, though some experiments suggested enrichment of the membrane-associated population after short-term salt treatment (J.J. Blakeslee and A. DeLong, unpublished data). Additional biochemical experiments will be required to explore this possible membrane recruitment more rigorously.

MATERIALS AND METHODS

Plant Material and Growth Conditions

The rcn1-1 allele (Garbers et al., 1996) and derived transgenic lines (see below) were compared with the parentalWs line. An rcn1-1 line homozygous for the DR5-GUS reporter (Rashotte et al., 2001) was backcrossed twice to the parental DR5-GUS line (Col background) or to rcn1-1 andWs to introgress the rcn1-1 mutation or the reporter, respectively, into a more uniform genetic background. Plants homozygous for the rcn1-1 mutation were identified among the self-progeny of the DR5-GUS backcross products; homozygosity of the DR5-GUS marker was confirmed in self-progeny of these rcn1 individuals. A similar procedure was used to isolate families homozygous for the DR5 reporter from the rcn1-1 backcross. The rcn1-6 allele is the T-DNA insertion allele SALK_059093 (kind gift of X. Wang and J. Chory, Salk Institute) and is compared with the parental Col-0 line. AGL42-GFP (Nawy et al., 2005) was the kind gift of B. Kelley and P. Bentley (Duke University).

Plants were grown as described previously (Zhou et al., 2004). For stress sensitivity measurements, seedlings were grown on vertical plates for 4 d in constant light at 24°C on standard medium (0.5× Murashige and Skoog salts containing 1% Suc and 1% agar), then transferred to the same medium supplemented with the indicated salt, mannitol, and hydrogen peroxide concentrations. Root tips of five mutant and five wild-type seedlings were aligned at a marked position on each plate and plates were returned to constant light. New growth was measured 7 d later using National Institutes of Health ImageJ software, and relative new root growth was calculated as a percentage of that obtained on fresh standard medium. Each data point represents the average for 15 seedlings. Hypocotyl elongation assays were performed as described previously (Deruère et al., 1999; Zhou et al., 2004). After scanning each plate to allow measurement of hypocotyl lengths, each seedling was scored for YFP fluorescence using a Leica MZFLIII dissecting microscope equipped with a mercury arc lamp and a GFP filter set.

Construction of YFP Fusions

The ADC1pro:RCN1-YFP fusions for yeast were constructed using the TT-PCR strategy (Tian et al., 2004), with the RCN1 cDNA (Garbers et al., 1996), the ADC1 alcohol dehydrogenase promoter of pAAH5 (Ammerer, 1983), and pYFP3 (kind gift of D. Jackson, Cold Spring Harbor Laboratory) as templates for the partial PCR products. PCR primer sequences are given in Supplemental Table S1. The ADC1pro::RCN1-YFP fusions were obtained and cloned into YEpLac195 (Pitluk et al., 1995) using the Gateway and TOPO-XL systems (Invitrogen). The genomic RCN1-YFP and YFP-RCN1 fusions for plant transformation also were constructed via TT-PCR using pYFP3 and wild-type clones.
Col-0 genomic DNA. To simplify cloning, the original TT-PCR products contained a short promoter region (861 bp total upstream from the RCN1 ATG). The resulting fusion was cloned into pHZP221 (Hadjukiewicz et al., 1994) using the Gateway system (Invitrogen). The insert was sequenced and coding errors were corrected by QuickChange XL site-directed mutagenesis (Strategene). A longer promoter fragment containing 2.1 kb of genomic sequence upstream from the start of the RCN1 transcript was amplified from Col-0 genomic DNA and substituted for the short promoter in the binary vector, yielding RCNgm-YFP-RCN(YR). To generate the RCNgm-YFP-PP2AA3 (YF), fusion, the PP2AA3 coding sequence was amplified from RFL90-82-A21 (RIKEN BRC) and substituted for the RCN1 coding region in YFP. For PP2AA3gm-YFP-PP2AA3 (AYA), a 1.2-kb PP2AA3 promoter fragment was amplified from Col-0 genomic DNA and substituted for the RCN1 promoter region in RCNgm-YFP-PP2AA3. For PP2AA3gm-PP2AA3 the YFP coding sequence was deleted by oligonucleotide-mediated mutagenesis. All constructs were sequence verified and coding sequence errors were corrected by oligonucleotide-mediated mutagenesis. All clones were electroporated into Agrobacterium tumefaciens strain GV3101 for transformation into rots1-1 plants via floral dip (Bechtold et al., 1993; Garbers et al., 1996). All transformants were selected for gentamycin resistance.

Microscopy and Detection of Reporter Gene Expression

For confocal imaging, seedlings were grown in constant light at 20°C on standard medium, stained lightly with propidium iodide (10 μg mL⁻¹) or FM4-64 (5 μg mL⁻¹), and mounted immediately for confocal analysis. For seedlings grown on NaCl, osmotic and ionic concentrations were maintained throughout the staining and mounting process. YFP fusion protein localization and seedling root tip morphology were examined by confocal microscopy using a Leica TCS SP2 AOBS spectral confocal microscope. To image YFP fusion proteins and root tip architecture, YFP fluorescence was excited at 514 nm and collected at 525 to 560 nm and propidium iodide fluorescence was excited at 593 nm and collected at 610 to 680 nm using a pinhole of 1.0 μ. To image AGL42-GFP, GFP fluorescence was excited at 488 nm and collected at 495 to 530 nm and FM4-64 fluorescence was excited at 593 nm and collected at 650 to 800 nm with a pinhole setting of 2.0 μ and using sequential scanning. Images were processed using Leica confocal software (LCS Lite). To maintain comparable fluorescence signals, images were collected using constant beam intensities and settings within each experiment, unless otherwise noted. For starch staining, 4-dpg seedlings were gently vacuum infiltrated and then stained overnight in 100 mM sodium phosphatase, pH 7.0, 10 mM EDTA, 5 μg/mL pepstatin, and 100 μg/mL aprotinin and leupeptin, and lysed by vortexing with glass beads. The resulting extracts were cleared by low-speed centrifugation and immediately boiled with Laemmli buffer. Plant extract preparation, SDS-PAGE, and immunoblotting techniques were as described previously (Derue et al., 1999), except that immunoblots were treated with 0.2% NaOH at 37°C for 20 min immediately after transfer, followed by five PBST washes before blocking. Antiserum used were anti-GFP (JL-6; CLONTECH), anti-PEP carboxylase (Rockland), anti-RCN1 (Derue et al., 1999), and anti-C antibodies raised against the C-terminal peptide (CEPDTRTKTPDYFL) of Arabidopsis (Arabidopsis thaliana) PP2A-C1.

The Arabidopsis Genome Initiative locus identifiers for genes described in this article are as follows: RCN1 (also known as RegA, EER1, and PP2A1; At1g25460), PP2A3 (also known as PDF2; At1g13320), PP2A22 (also known as PDF1; At5g28500), and AGL42 (At5g21650).

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Structural model of sequence differences between Arabidopsis A subunit isoforms.

Supplemental Figure S2. RCN1 is haploinsufficient in the pp2aa2 pp2aa3 background.

Supplemental Figure S3. Regulatory A subunit transgene products accumulate to native levels.

Supplemental Figure S4. Accumulation and localization of YFP-PP2A3 fusion proteins.

Supplemental Figure S5. Expansion of cortical cells in salt-stressed rcn1 seedlings.

Supplemental Figure S6. Normal stress sensitivity in pp2aa2 and pp2aa3 mutants.

Supplemental Figure S7. Localization of a YFP-RCN1 fusion protein after NaCl treatment.

Supplemental Table S1. PCR primers.

ACKNOWLEDGMENTS

We gratefully acknowledge D. Jackson for TT-PCR reagents and advice, T. Serio for advice on yeast culture and imaging, A. Dunaevsky for FM4-64, and P. Bentley and T. Niday for seed stocks and advice on QCM markers. We thank J. Bender, M. Johnson, G. Muday, and F. Tax for critical reading of the manuscript and for helpful discussions. We thank G. Williams, R. Creton, and J. Nathanson for expert advice on imaging. We thank M. Clarke-Pearson, T. Simolari, R. Luo, and S. Cho for assistance with transgenic plant lines, and F. Jackson and B. Leib for greenhouse care.

Received November 9, 2007; accepted December 17, 2007; published December 27, 2007.

LITERATURE CITED

Preparation of Microsomal Membranes

Microsomal membrane fractions were prepared as described (Blakeslee et al., 2007), with the following modifications. Dark-grown whole seedlings or roots were harvested at 5 dpg, ground, and microsomal membranes were isolated by spinning at 100,000g for 3 h. Membrane fractions were washed twice, flash-frozen, and stored at −80°C. For immunoblot analysis, membrane fractions were solubilized with 1% Triton X-100.

Immunoblot Analysis

For immunoblot analysis, yeast cells were grown to log phase in YPD at 30°C, harvested by centrifugation, resuspended on ice in 100 mM Tris, pH 7.5, 100 mM EDTA, 5 mM dithiothreitol, 2 mM phenylmethylsulfonyl fluoride, 5 μg/mL pepstatin, and 100 μg/mL aprotinin and leupeptin, and lysed by vortexing with glass beads. The resulting extracts were cleared by low-speed centrifugation and immediately boiled with Laemmli buffer. Plant extract preparation, SDS-PAGE, and immunoblotting techniques were as described previously (Derue et al., 1999), except that immunoblots were treated with 0.2% NaOH at 37°C for 20 min immediately after transfer, followed by five PBST washes before blocking. Antiserum used were anti-GFP (JL-6; CLONTECH), anti-PEP carboxylase (Rockland), anti-RCN1 (Derue et al., 1999), and anti-C antibodies raised against the C-terminal peptide (CEPDTRTKTPDYFL) of Arabidopsis (Arabidopsis thaliana) PP2A-C1.

The Arabidopsis Genome Initiative locus identifiers for genes described in this article are as follows: RCN1 (also known as RegA, EER1, and PP2A1; At1g25460), PP2A3 (also known as PDF2; At1g13320), PP2A22 (also known as PDF1; At5g28500), and AGL42 (At5g21650).
PKD1 signalling pathway is involved in root hair growth in Arabidop-

Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith
Interscience, New York.

Bechtold N, Ellis H, Pelletier G (1993) In planta Agrobacterium-mediated
gene transfer by infiltration of adult Arabidopsis thaliana plants. C R

Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D,

Blakeslee JJ, Bandyopadhyay A, Lee OR, Mravec J, Titapiwatanakun B,
Kwak JM, Moon JH, Murata Y, Kuchitsu K, Leonhardt N, DeLong A,
Kinoshita K, Nemoto T, Nabeshima K, Kondoh H, Niwa H, Yanagida M

Blakeslee et al.
Benfey PN, Scheres B

Bilou I, Xu J, Wildwater M, Willemssen V, Paponov I, Friml J, Heidstra R,
network controls growth and patterning in Arabidopsis roots. Nature
433: 39–44

Camilleri C, Aizmedz N, Pastuglia M, Bellini C, Grandjean O, Bouchez
protein phosphatase 2A regulatory subunit essential for the control of
the cortical cytoskeleton. Plant Cell 14: 833–845

Chilley PM, Casson SA, Tarkowski P, Hawkins N, Wang KL, Hussey PJ,
peptide of Arabidopsis regulates auxin transport and root growth via
effects on ethylene signaling. Plant Cell 18: 3058–3072

Delong A (2006) Switching the flip: protein phosphatase roles in signaling

encoded A subunit of protein phosphatase 2A increases phosphatase

Fuglsang AT, Tulinius G, Cui N, Palme GN (2006) Protein phosphatase 2A
subcellular compartmentalization. Plant J 45: 389–399

protein phosphatase 2A regulatory subunit A affects auxin transport in
Arabidopsis. EMBO J 15: 2115–2124

phosphatase 2A subunit Calpha in the regulation of E-cadherin and

structure of the protein phosphatase 2A 14-3-3 complex: implications for

ubiquitin-conjugating enzyme mutants obtained by charge-to-
alanine scanning mutagenesis. Mol Cell Biol 14: 833–845

TAP42 and mammalian alpha subunit is involved in the catalytic subunit
of protein phosphatase 2A and is induced by chilling. Plant Physiol 121:
609–617

Hombauer H, Weismann D, Mudraz I, Stanzel C, Feller N, Lackner DH,
Ogris E (2007) Enhanced ethylene responsiveness in the
Arabidopsis ear1 mutant results from a loss-of-function mutation in the
protein phosphatase 2A A regulatory subunit, RON1. Plant J 43: 709–718

Larsen PB, Chang C (2001) The Arabidopsis ear1 mutant has enhanced
ethylene responses in the hypocotyl and stem. Plant Physiol 125:
1061–1073

Lee JS, Ellis BE (2007) Arabidopsis MAPK phosphatase 2 (MPK2) posi-
tively regulates oxidative stress tolerance and inactivates the MPK3 and

ubiquitin ligase of protein phosphatase 2A subunits and alters plant

Meijer HJ, Munnik T (2003) Phospholipid-basal signaling in plants. Annu

Michniewicz M, Zago MK, Abs L, Weijers D, Schwechofser A, Miskieni
regulation of PIN phosphorylation by PP2A and PINOID directs auxin
flux. Cell 130: 1044–1056

RCN1-regulated phosphatase activity and EIN2 module hypocotyl
growth by a mechanism that does not require ethylene signaling. Plant
Physiol 141: 1617–1629

Nawy T, Lee JY, Colinas J, Wang YJ, Thongrod SC, Malamy JE, Birnbaum
K, Benfey PN (2005) Transcriptional profile of the Arabidopsis root
quiescent center. Plant Cell 17: 1908–1925

Nijhala T, Com, Mott-Moore J, Lee WI, Messerli G, Trevisan M, Seymour
protein phosphatases control starch metabolism in plants and glycogen

Nunbhakdi-Craig V, Machleidt T, Ogris E, Bellotto D, White CL, III,
Sonntag E (2002) Protein phosphatase 2A associates with and regulates
atypical PKC and the epithelial tight junction complex. J Cell Biol 158:
957–971

modulates stem cell division in the Arabidopsis thaliana root. Science
317: 507–510

A protein phosphatase 2A catalytic subunit is a negative regulator of
abscisic acid signaling. Plant J 51: 763–778

(UBC3) ubiquitin-conjugating enzyme mutants obtained by charge-to-
alanine scanning mutagenesis. Mol Cell Biol 15: 1210–1219

of protein phosphatase 2A. Biochemistry 39: 11312–11318

Rashotte AM, DeLong A, Muday GK (2001) Genetic and chemical reduc-
tions in protein phosphatase activity alter auxin transport, gravity

Rentel MC, Lecourieux D, Ouaked E, Usher SL, Petersen L, Okamoto H,
necessary for oxidative burst-mediated signalling in Arabidopsis. Na-
ture 427: 858–861

of the A subunit of protein phosphatase 2A; interaction with other

Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J,
dependent distal organizer of pattern and polarity in the Arabidopsis

Sabina AA, Chen W, Arroyo JD, Corral L, Hector M, Bulmer SE,
DeCaprio JA, Hahn WC (2001) Genetic and chemical reduc-
tions in protein phosphatase activity alter auxin transport, gravity

phosphatase activity is required for stress and Tor kinase regulation of

Schwechofer A, Kazanaviciute V, Scheiki E, Teige M, Doeci R, Hirt H,
PP2C-type phosphatase AP2C1, which negatively regulates MPK4 and
MPK6, modulates innate immunity, jasmonic acid, and ethylene levels in Arabidopsis. Plant Cell 19: 2213–2224

