On the Cover: Grasses, with approximately 10,000 species that have evolved over the last 60 million years, show great morphological diversity. The cover illustration features a few examples of this diversity, along with some of the many cereal grains that were the focus of multiple domestication events in the family. The lower panel shows a biomass yield trial of switchgrass (Panicum virgatum), a promising crop for cellulosic ethanol production, while at the top is a field of sorghum (Sorghum bicolor) [both in field trials at Oklahoma State University, Oklahoma]. The center panel shows multiple grass species and grass grains, including grains of rice (Oryza sativa), spelt (Triticum spelta), barley (Hordeum vulgare), pearl millet (Pennisetum glaucum), rye (Secale cereale), corn (Zea mays), and oat (Avena sativa), and, from the left, inflorescences and plants of bamboo (Phyllostachys aureosulcata), Paspalum ramosum, foxtail millet (Setaria italica), rice, emmer wheat (Triticum dicoccoides), corn, and Coix lachryma-jobi.

FOCUS ISSUE ON THE GRASSES

EDITORIAL

Splendor in the Grasses. Elizabeth A. Kellogg and C. Robin Buell

LETTER TO THE EDITOR

UPDATES

The Development of Endosperm in Grasses. Paolo A. Sabelli and Brian A. Larkins

Revolutionary Times in Our Understanding of Cell Wall Biosynthesis and Remodeling in the Grasses. Geoffrey B. Fincher

Translational Biology: From Arabidopsis Flowers to Grass Inflorescence Architecture. Beth E. Thompson and Sarah Hake

[1]Hormonal Regulation of Branching in Grasses. Paula McSteen

Mechanisms of Floral Induction in Grasses: Something Borrowed, Something New. Joseph Colasanti and Viktoria (C)oneva

Genes and Mutations Underlying Domestication Transitions in Grasses. Tao Sang

Integrating Phylogeny into Studies of C4 Variation in the Grasses. Pascal-Antoine Christin, Nicolas Salamin, Elizabeth A. Kellogg, Alberto Vicentini, and Guillaume Besnard

Transcriptional Regulatory Networks in Response to Abiotic Stresses in Arabidopsis and Grasses. Kazuo Nakashima, Yusuke Ito, and Kazuko Yamaguchi-Shinozaki

Continued on next page
Indirect Defense Responses to Herbivory in Grasses.
Jörg Degenhardt
96

For Blighted Waves of Grain:
Fusarium graminearum in the Postgenomics Era.
Frances Trail
103

Poaceae Genomes: Going from Unattainable to Becoming a Model Clade for Comparative Plant Genomics.
C. Robin Buell
111

Synergy of Two Reference Genomes for the Grass Family.
Joachim Messing
117

Comparative Genomics of Grasses Promises a Bountiful Harvest.
Andrew H. Paterson, John E. Bowers, Frank A. Feltus, Haibao Tang, Lifeng Lin, and Xiying Wang
125

Genomic and Genetic Database Resources for the Grasses.
Kevin L. Childs
132

Foxtail Millet: A Sequence-Driven Grass Model System.
Andrew N. Doust, Elizabeth A. Kellogg, Katrien M. Devos, and Jeffrey L. Bennetzen
137

The International Barley Sequencing Consortium—At the Threshold of Efficient Access to the Barley Genome.
Daniela Schulte, Timothy J. Close, Andreas Graner, Peter Langridge, Takashi Matsumoto, Gary Muchlbaier, Kazuhiro Sato, Alan H. Schulman, Robbie Waugh, Roger P. Wise, and Nils Stein
142

Cereal Germplasm Resources.
Martin M. Sachs
148

Resources for Virus-Induced Gene Silencing in the Grasses.
Steven R. Scofield and Richard S. Nelson
152

TILLING in Grass Species.
Clifford F. Weil
158

Mutant Resources in Rice for Functional Genomics of the Grasses.
Arjun Krishnan, Emmanuel Guiderdoni, Gynheung An, Yue-ie C. Hsing, Chang-deok Han, Myung Chul Lee, Su-May Yu, Narayana Upadhyaya, Srinivasan Ramachandran, Qifa Zhang, Venkatesan Sundaresan, Hirohiko Hirochika, Hei Leung, and Andy Pereira
165

BIÓINFORMATICS

GRASSIUS: A Platform for Comparative Regulatory Genomics across the Grasses.
Alper Yilmaz, Milton Y. Nishiyama Jr., Bernardo Garcia Fuentes, Glacia Mendes Souza, Daniel Janies, John Gray, and Erich Grotewold
171

RESEARCH ARTICLES

Tie-dyed1 Encodes a Novel, Phloem-Expressed Transmembrane Protein That Functions in Carbohydrate Partitioning.
Yi Ma, Thomas L. Slewinski, R. Frank Baker, and David M. Braun
181

High Glycolate Oxidase Activity Is Required for Survival of Maize in Normal Air.
Israel Zelitch, Neil P. Schultes, Richard B. Peterson, Patrick Brown, and Thomas P. Brutnell
195

suppressor of sessile spikelets1 Functions in the ramosa Pathway Controlling Meristem Determinacy in Maize.
Xianting Wu, Andrea Skipran, and Paula McSteen
205

The ATG Autophagic Conjugation System in Maize: ATG Transcripts and Abundance of the ATG8-Lipid Adduct Are Regulated by Development and Nutrient Availability.
Taijoon Chung, Anongpat Suttangkakul, and Richard D. Vierstra
220

RETARDED PALEA1 Controls Palea Development and Floral Zygomorphy in Rice.
Zheng Yuan, Shan Gao, Da-Wei Xue, Da Luo, Lan-Tian Li, Shu-Yan Ding, Xuan Yao, Zoe A. Wilson, Qian Qian, and Da-Bing Zhang
235

Genetic and Molecular Characterization of the VRN2 Loci in Tetraploid Wheat.
Assaf Distelfeld, Gabriela Tranquilli, Chengxia Li, Liuling Yan, and Jorge Dubcovsky
245

Analysis of Intraspecies Diversity in Wheat and Barley Genomes Identifies Breakpoints of Ancient Haplotypes and Provides Insight into the Structure of Diploid and Hexaploid Triticeae Gene Pools.
Thomas Wicker, Simon G. Krattinger, Evans S. Lagudah, Takao Komatsuda, Mohammad Pourkheirandish, Takashi Matsumoto, Sylvie Cloutier, Laurenz Reiser, Hiroyuki Kanamori, Kazuhiro Sato, Dragan Perovic, Nils Stein, and Beat Keller
258

Blufensin1 Negatively Impacts Basal Defense in Response to Barley Powdery Mildew.
Yan Meng, Matthew J. Moscou, and Roger P. Wise
271

Continued on next page
A Germin-Like Protein Gene Family Functions as a Complex Quantitative Trait Locus Conferring Broad-Spectrum Disease Resistance in Rice. Patricia M. Manosalva, Rebecca M. Davidson, Bin Liu, Xiaoyuan Zhu, Scot H. Hulbert, Hei Leung, and Jin E. Leach

OsFRDL1 Is a Citrate Transporter Required for Efficient Translocation of Iron in Rice. Kengo Yokosho, Naoki Yamaji, Daisei Ueno, Namiki Mitani, and Jian Feng Ma

Antiquity and Function of CASTOR and POLLUX, the Twin Ion Channel-Encoding Genes Key to the Evolution of Root Symbioses in Plants. Caiyan Chen, Cui Fan, Muqiang Gao, and Hongyan Zhu

A Second Mechanism for Aluminum Resistance in Wheat Relies on the Constitutive Efflux of Citrate from Roots. Peter R. Ryan, Harsh Raman, Sanjay Gupta, Walter J. Horst, and Emmanuel Delhaize

REGULAR ISSUE

ON THE INSIDE

Peter V. Minorsky

GENOME ANALYSIS

Genome-Wide Analysis of MIKC-Type MADS Box Genes in Grapevine. José Díaz-Riquelme, Diego Lijavetzky, José M. Martínez-Zapater, and María José Carmona

BIOCHEMICAL PROCESSES AND MACROMOLECULAR STRUCTURES

Suppression of 4-Coumarate-CoA Ligase in the Coniferous Gymnosperm Pinus radiata. Armin Wagner, Lloyd Donaldson, Hoon Kim, Lorelle Phillips, Heather Flint, Diane Steward, Kirk Torr, Gerald Koch, Uwe Schmitt, and John Ralph

Biosynthesis of t-Anethole in Anise: Characterization of t-Anol/Isoeugenol Synthase and an O-Methyltransferase Specific for a C7-C8 Propenyl Side Chain. Takao Koeduka, Thomas J. Baiga, Joseph P. Noel, and Eran Pichersky

A Relaxed Specificity in Interchain Disulfide Bond Formation Characterizes the Assembly of a Low-Molecular-Weight Glutelin Subunit in the Endoplasmic Reticulum. Alessio Lombardi, Alessandra Barbunte, Pietro Della Cristina, Daniele Rosiello, Chiara Lara Castellazzi, Luca Shano, Stefania Masci, and Aldo Ceriotti

Functional Characterization of a Higher Plant Sphingolipid Δ4-Desaturase: Defining the Role of Sphingosine and Sphingosine-1-Phosphate in Arabidopsis. Louise V. Michaelson, Simone Zäuner, Jonathan E. Markham, Richard P. Haslam, Radhika Desikan, Sarah Mugford, Sandra Albrecht, Dirk Warnecke, Petra Spelner, E. Heinz, and Johnathan A. Napier

Continued on next page
BIOENERGETICS AND PHOTOSYNTHESIS

CELL BIOLOGY AND SIGNAL TRANSDUCTION

Detection of Spatial-Specific Phytochrome Responses Using Targeted Expression of Biliverdin Reductase in Arabidopsis. Sankalpi N. Warnasooriya and Beronda L. Montgomery 424

DEVELOPMENT AND HORMONE ACTION

Aucisia Gene Silencing Causes Parthenocarpic Fruit Development in Tomato. Barbara Molesini, Tiziana Pandolfini, Giuseppe Leonardo Rotino, Valeria Dani, and Angelo Spena 534

ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS

PLANTS INTERACTING WITH OTHER ORGANISMS

Rice Blast Fungus (Magnaporthe oryzae) Infects Arabidopsis via a Mechanism Distinct from That Required for the Infection of Rice. Ju-Young Park, Jianming Jin, Yin-Won Lee, Seogchan Kang, and Yong-Hwan Lee 474

Sulfur Transfer through an Arbuscular Mycorrhiza. James W. Allen and Yair Shachar-Hill 549

The Genetic Basis of Constitutive and Herbivore-Induced ESP-Independent Nitrile Formation in Arabidopsis. Meike Burow, Anja Losansky, René Müller, Antje Plock, Daniel J. Kleibeinstein, and Ute Wittstock 561

WHOLE PLANT AND ECOPHYSIOLOGY

Hydraulic Failure Defines the Recovery and Point of Death in Water-Stressed Conifers. Tim J. Brodribb and Hervé Cochard 575

SYSTEMS BIOLOGY, MOLECULAR BIOLOGY, AND GENE REGULATION

Some figures in this article are displayed in color online but in black and white in the print edition. [W] Indicates Web-only data.
[OA] Open Access articles can be viewed online without a subscription.