A Visual Reporter System for Virus-Induced Gene Silencing in Tomato Fruit Based on Anthocyanin Accumulation$^{1[C][W]}$

Diego Orzaez, Aurora Medina, Sara Torre2, Josefina Patricia Fernández-Moreno, José Luis Rambla, Asun Fernández-del-Carmen, Eugenio Butelli, Cathie Martin, and Antonio Granell**

Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022 Valencia, Spain (D.O., A.M., S.T., J.P.F.-M., J.L.R., A.F.-d.-C., A.G.); and John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (E.B., C.M.)

Virus-induced gene silencing (VIGS) is a powerful tool for reverse genetics in tomato (Solanum lycopersicum). However, the irregular distribution of the effects of VIGS hampers the identification and quantification of nonvisual phenotypes. To overcome this limitation, a visually traceable VIGS system was developed for fruit, comprising two elements: (1) a transgenic tomato line (Del/Rosi) expressing Antirrhinium majus Delila and Rosea1 transcription factors under the control of the fruit-specific E8 promoter, showing a purple-fruited, anthocyanin-rich phenotype; and (2) a modified tobacco rattle virus VIGS vector incorporating partial Rosea1 and Delila sequences, which was shown to restore the red-fruited phenotype upon agroinjection in Del/Rosi1 plants. Dissection of silenced areas for subsequent chemometric analysis successfully identified the relevant metabolites underlying gene function for three tomato genes, phytoene desaturase, Tomlxc, and Siodo1, used for proof of concept. The C-6 aldehydes derived from lipid 13-hydroperoxidation were found to be the volatile compounds most severely reduced by phytoene desaturase silencing, whereas geranial and 6-methyl-5-hepten-2-one were identified as the volatiles most severely reduced by Tomlxc silencing, whereas geranial and 6-methyl-5-hepten-2-one were identified as the volatile compounds most severely affected by Tomlxc silencing, whereas geranial and 6-methyl-5-hepten-2-one were identified as the volatiles most severely reduced by phytoene desaturase silencing in ripening fruit. In a third example, silencing of Siodo1, a tomato homolog of the Odorant1 gene encoding a myb transcription factor, which regulates benzene metabolism in petunia (Petunia hybrida) flowers, resulted in a sharp accumulation of benzaldehyde in tomato fruit. Together, these results indicate that fruit VIGS, enhanced by anthocyanin monitoring, can be a powerful tool for reverse genetics in the study of the metabolic networks operating during fruit ripening.

*Corresponding author; e-mail agranell@ibmcp.upv.es.

*Present address: Department of Soil, Plant, Environmental, and Animal Production Sciences, University of Naples “Federico II,” Via Università, 8055 Portici, NA, Italy.

1 This work was supported by the Spanish MCIN (grant nos. BIO2005–01015 and BIO2008–03434), the Trilateral GenMetFruitQual ERA-PG, and by the European Union FP6 FLORA project (grant no. FOOD–CT–01730). D.O. was supported by the MEC Ramón y Cajal Program.

2 Present address: Department of Soil, Plant, Environmental, and Animal Production Sciences, University of Naples “Federico II,” Via Università, 8055 Portici, NA, Italy.

The authors responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantphysiol.org) are: Antonio Granell (agranell@ibmcp.upv.es) and Cathie Martin (cathie.martin@bbsc.ac.uk).

$^{[C]}$Some figures in this article are displayed in color online but in black and white in the print edition.

$^{[W]}$The online version of this article contains Web-only data.

Copyright © 2009 American Society of Plant Biologists. All rights reserved.
Plant Physiol. Vol. 150, 2009 1123

Purple-Fruited Phenotype of Anthocyanin Monitoring of VIGS in Fruit

ceptible *Nicotiana benthamiana*, the penetration of VIGS phenotypes in most plant species is only partial and shows a patchy tissue distribution. *Tobacco rattle virus* (TRV), for example, which drives a highly efficient VIGS in all newly developed organs of *N. benthamiana* (Ruiz et al., 1998; Ratcliff et al., 2001; Dong et al., 2007), works less efficiently in potato (*Solanum tuberosum*) and tomato (*Lycopersicon esculentum*; Brigneti et al., 2004; Ryu et al., 2004), probably because parts of the plant remain poorly silenced or not silenced at all (Rotenberg et al., 2006; Senthil-Kumar et al., 2007). Tomato plants inoculated at the cotyledon stages show silenced symptoms in about half of their fruit. In most cases, these fruit show partial silencing, with silenced sectors representing only 10% to 30% of the fruit surface. The percentage of silenced fruit reaches 90% when tomatoes are agroinjected directly in the fruit, although the extent of silencing is still partial and highly variable from fruit to fruit (average silenced surface = 35%; Orzaez et al., 2006). Partial VIGS penetration does not impede the screening of visually identifiable phenotypes but becomes a serious limitation for the study of nonvisual, quantitative traits (e.g. effects on metabolite levels).

A strategy to compensate for the lack of uniformity of VIGS would incorporate an internal reference that monitors the levels of silencing. The presence of such a reporter would allow the dissection of silenced from nonsilenced tissues, thus increasing the sensitivity of downstream analysis. Ideally, an internal reporter for VIGS should be silenced in the same cell/regions as the gene of interest (GOI), easily scorable (visually), and its depletion should have a limited impact on the process of interest.

To establish a high-throughput platform for quantitative evaluation of gene function using VIGS in tomato fruit, we considered several potential VIGS markers. Endogenous genes involved in pigment accumulation, such as those encoding phytoene desaturase (*pds*), have limited use. *pds* silencing, which renders yellow, lycopene-depleted fruit (Liu et al., 2002; Orzaez et al., 2006), blocks carotenoid biosynthesis and consequently affects the production of compounds involved in color, nutritional, and flavor value in tomato fruit. Transgenes encoding fluorescent proteins such as GFP have been widely used in model species for monitoring gene silencing, but GFP-producing tomato fruit offer few advantages for VIGS, since they require UV light for manipulation and fluorescence is often too weak to identify clear boundaries between silenced and nonsilenced tissues.

Recently, the use of internal markers for VIGS based on pigment accumulation in petunia (*Petunia hybrida*), soybean (*Glycine max*), and tomato has proven very successful for empowering the method as a reverse genetics tool (Chen et al., 2004b; Nagamatsu et al., 2007; Spitzer et al., 2007; Jiang et al., 2008). Tomato introgression lines accumulating anthocyanins in their fruit have been described, but this accumulation is restricted to the epidermis; therefore, the use of these lines is restricted to analysis of gene function in this tissue. An alternative is to use a transgenic approach that has the advantage of being readily applicable to different genetic backgrounds. The anthocyanin branch of flavonoid biosynthesis is activated in *Antirrhinum majus* flowers by two transcription factors, *Rosea1* and *Delila* (Schwinn et al., 2006). Tomato plants ectopically expressing *Rosea1* and *Delila* in their fruit under the control of the ripenings-induced E8 promoter have been shown to accumulate high levels of anthocyanin pigments, not only in the peel but also in the flesh (pericarp; Butelli et al., 2008). Anthocyanin accumulation in *Del/Ros1* transgenic fruit results from the activation of almost all of the genes encoding anthocyanin biosynthetic enzymes, including genes required for side chain modification and two genes involved in vacuolar import.

The easily scorable transgenic phenotype of *Del/Ros1* fruit prompted us to investigate its use as a visual reporter system for VIGS in tomato. We found that silencing of the transgene module restored the original wild-type phenotype. Second, the requirements for the simultaneous silencing of the *Del/Ros1* marker module and a target GOI were investigated; simultaneous silencing takes place consistently only when both sequences are integrated together in the same viral genome. Third, the sensitivity of the *Del/Ros1* VIGS marker system for functional chemometric studies was tested with two model genes whose effects on volatile emissions from tomato fruit have already been described: *TomloxC*, involved in the biosynthesis of fatty acid-derived aromas (Chen et al., 2004a), and *pds*, involved in the production of lycopene-derived volatiles. In both examples, analysis of gas chromatography-mass spectrometry (GC-MS) data sets provided by anthocyanin-monitored fruit VIGS (AMFV) correctly identified the expected changes in volatile profiles. Finally, the function of the novel tomato gene *SlODO1* was also tested using AMFV. *SlODO1* is a tomato homolog of the petunia myb factor ORDANT1, which positively regulates benzenoid volatile levels in flowers. Silencing of *SlODO1* using AMFV detected, as expected, severe changes in the profile of phenolic compounds in the fruit. *SlODO1*-silenced fruit pericarp showed reduced levels of methyl salicylate and guaiacol. Interestingly, *SlODO1*-silenced tissues also showed very high levels of the precursor benzaldehyde, suggesting that *SlODO1* is not only a general activator of the pathway in tomato but also plays a role in modulating the relative abundance of different benzenoid compounds in the fruit.

RESULTS

Viruse-Induced Silencing of Del/Ros1 Prevents the Purple-Fruited Phenotype of Del/Ros1 Plants

The accumulation of purple anthocyanin compounds in the fruit of *Del/Ros1* MicroTom (MT) plants

Copyright © 2009 American Society of Plant Biologists. All rights reserved.
(Butelli et al., 2008) used in this paper is directed by the fruit-specific, ethylene-regulated E8 promoter. Consequently, tomatoes at the mature green stage start to accumulate purple compounds approximately 35 d after pollination, depending on the light and temperature conditions. Initially, purple pigments accumulate on a green background, due to the presence of chlorophyll, giving a brown-purple coloration. Later in the process, carotenoid-derived pigments, initially yellow and later the red lycopene, accumulate and replace the chlorophyll. Carotenoid-dominated pigmentation is rapidly masked by anthocyanin accumulation, and fruit rapidly turn dark purple as ripening proceeds (Supplemental Fig. S1A).

To evaluate the possible use of purple-ripening phenotype as a visual marker, the ability of VIGS to prevent anthocyanin accumulation in Del/Ros1 fruit was tested. A DNA fragment containing Delila (130 bp) and Rose1 (130 bp) gene fragments fused by overlapping PCR was incorporated into pTRV2 vector (pTRV_Del). The construct was either agroinfiltrated in plant cotyledons or agroinjected in fruit at 25 to 30 d after pollination, depending on the light and temperature conditions. Initially, purple pigments accumulate approximately 35 d after pollination, depending on the light and temperature conditions. Initially, purple pigments accumulate on a green background, due to the presence of chlorophyll, giving a brown-purple coloration. Later in the process, carotenoid-derived pigments, initially yellow and later the red lycopene, accumulate and replace the chlorophyll. Carotenoid-dominated pigmentation is rapidly masked by anthocyanin accumulation, and fruit rapidly turn dark purple as ripening proceeds (Supplemental Fig. S1A).

To evaluate the possible use of purple-ripened phenotype as a visual marker, the ability of VIGS to prevent anthocyanin accumulation in Del/Ros1 fruit was tested. A DNA fragment containing Delila (130 bp) and Rose1 (130 bp) gene fragments fused by overlapping PCR was incorporated into pTRV2 vector (pTRV_Del). The construct was either agroinfiltrated in plant cotyledons or agroinjected in fruit at 25 to 30 d after pollination, depending on the light and temperature conditions. Initially, purple pigments accumulate approximately 35 d after pollination, depending on the light and temperature conditions. Initially, purple pigments accumulate on a green background, due to the presence of chlorophyll, giving a brown-purple coloration. Later in the process, carotenoid-derived pigments, initially yellow and later the red lycopene, accumulate and replace the chlorophyll. Carotenoid-dominated pigmentation is rapidly masked by anthocyanin accumulation, and fruit rapidly turn dark purple as ripening proceeds (Supplemental Fig. S1A).

To be useful as a monitoring system, the silencing of the Del/Ros1 module and, consequently, the prevention of purple pigmentation needs to be spatially localized in the same region in which maximum silencing of the GOI is taking place. We used pds as a model GOI to test the requirements for simultaneous cosilencing in Del/ Ros1 tomato fruit. The silencing of pds in a wild-type background was easy to score because the lack of accumulation of the red pigment lycopene results in yellowish fruit. First, the possibility of achieving cosilencing by codeelivery of independent pTRV2 constructs was assayed. In the event of cosilencing, yellow sectors should be observable in the silenced fruit as a result of blocking both lycopene and anthocyanin accumulation. As shown in Figure 1A, the fruit had small red sectors corresponding to areas with strongly silenced anthocyanin accumulation and unaffected lycopene accumulation. Red sectors were surrounded by large areas of unmodified purple tissue. The strong accumulation of anthocyanins in the ripening fruit, which predominates over the development of red color, prevented us from identifying those sectors in the fruit silenced only for pds (depleted of lycopene content) visually. However, the early accumulation of anthocyanins in the green fruit provided a window of opportunity for observing pds silencing alone. In the nonsilenced fruit, purple anthocyanins accumulate in the green tissues, rendering mixed green-purple colors (Supplemental Fig. S1A). As shown in Figure 1B, pds silencing on its own was evidenced by the presence of unripe fruit with a light purple coloration, which resulted from anthocyanin accumulation (Del/Ros1 nonsilenced) over a white, chlorophyll-depleted (pds-silenced) background in systemically silenced plants. Therefore, simultaneous agrodelivery was not sufficient to ensure cosilencing in the tomato Del/Ros1 system.

We then assayed the efficiency of cosilencing when Del/Ros1 and GOI fragments were cloned in tandem within the same viral construct and consequently delivered together. To facilitate high-throughput cloning of subsequent GOIs, the pTRV2_DR vector was engineered to contain a Gateway recombination cassette (pTRV2_DR_GW) and, as a proof of concept, the 409-bp pds fragment was inserted by homologous recombination, producing the pTRV2_DR_PDS construct. This construct was agroinfiltrated into Del/Ros1 tomato plants at the cotyledon stage (systemic VIGS), and the effect on fruit color was monitored. Some of the resulting phenotypes are shown in Figure 1C. As can be observed, only yellow (indicative of effective cosilencing) but no red (indicative of unilateral silencing of Del/Ros1) sectors were observed in the fruit. Moreover, during development, all fruit showed either green or green-purple combinations but no light purple (purple on white) sectors, confirming efficient cosilencing (Fig. 1D).

The correlation between the extent of silencing (measured as mRNA levels) and the anthocyanin content in the silenced fruit was investigated. Del/Ros1 fruit were agroinjected 4 weeks after anthesis with pTRV2_ DR_PDS constructs and collected 2 weeks later. Then, pds, Rose1, and Delila mRNA levels were measured by quantitative reverse transcription (RT)-PCR. In parallel, anthocyanin content was determined as cyanidin-3-glucoside equivalents. Figure 1E confirms that the mRNA levels of marker genes Delila and Rose1 as well as pds negatively correlated with anthocyanin content in the fruit. This result confirmed that purple color (i.e. anthocyanin accumulation) in the fruit could be used as a qualitative indication of the level of gene silencing that is taking place in this fruit/tissue.

Anthocyanin-Monitored Fruit VIGS Transferred to Globe-Type Fruit

Anthocyanin-monitored VIGS confirmed that silenced and nonsilenced tissues occur within the same sample (fruit) as reported previously (Orzaez et al., 2006). This may reduce the sensitivity of VIGS in terms of identifying the effects on gene silencing, unless silenced sectors can be readily identified and analyzed independently. Dissection of silenced (red) from nonsilenced (purple) tissues is straightforward, and we thought such guided dissection should facilitate the identification of the molecular/phenotypic changes introduced by the depletion of a GOI. To facilitate further the tissue dissection and to increase yields of silenced tissue for downstream analysis, the
Del/Ros1 module was transferred from the cherry-type MT tomato to a larger globe-type tomato background by crossing Del/Ros1 MT with a wild-type Money-Maker (MM) plant. Plants yielding purple globe tomatoes showing a good fruit VIGS response were selected after an initial cross and self-pollination through to the F6 generation. The resulting plant line, referred to hereafter as F6DR, showed smooth leaves, indeterminate growth, and plant size intermediate between MM and MT as its main morphological characters (Fig. 2A).

The efficiency of fruit VIGS was improved substantially by the use of plants producing globe-type fruit. pTRV2_DR agroinjection yielded fruit whose silenced surface, albeit still variable, could reach up to 80% of the total fruit. Internally, silencing affected all tissues in the fruit, including pericarp, central lamella, and locular tissues (Fig. 2B). The efficiency of cosilencing using tandem constructs was also assayed in globe-fruited plants. As previously, pds was used as a test GOI to identify visually the extent of cosilencing in the fruit. When the pTRV2_DR_PDS construct was agroinjected into the fruit, silencing of pds and Del/Ros1 was strictly colocalized, rendering fruit decorated with purple and yellow sectors only (Fig. 2C). We were also able to confirm that the fruit VIGS technique confined the silencing effect to the specific agroinjected fruit, as seen in Figure 2C. Confinement of the VIGS signal within agroinjected fruit should facilitate the design of high-throughput experiments using one fruit-one replicate rather than one plant-one replicate strategies.

Del1/Ros1-Silenced Sectors of F6DR Fruit Are Largely Devoid of Transgene Influence

As opposed to endogenous VIGS reporters such as PDS, the silencing of the transgenic reporter Del/Ros1 notionally should yield a wild-type situation where GOI function can be analyzed with minimal interference from silencing of the marker genes. To assess the extent to which the phenotypic effects of Del/Ros1 were reverted by VIGS treatment, Delila and Rosea1 mRNA levels were quantified separately in red, silenced areas (named DR_S) and purple, nonsilenced areas (named DR_NS) from pTRV2_DR-treated F6DR tomatoes. As shown in Figure 3A, Delila and Rosea1 mRNA levels were significantly reduced in DR_S tissues. To characterize further the composition of DR_S tissues, phenylpropanoid profiles of methanol-extracted fruit pericarp were obtained by HPLC-MS analysis. In Figure 3, B and C, methanol extracts of DR_S samples are shown in comparison with nonsilenced pericarp from a F6DR hybrid. Phenylpropanoid profiles of
parental lines MT and MM are also shown for comparison. Silenced sectors were almost completely devoid of the anthocyanins abundant in Del/Ros1 fruit (listed in Fig. 3D), showing HPLC-MS profiles that matched closely those of nontransgenic parental lines. These results indicated that, as far as phenylpropanoid content was concerned, DR_S samples were largely devoid of the influence of the transgenes.

F6DR Fruit Have Slightly Reduced Levels of Lycopene-Derived Volatiles, Which Are Reverted by Del/Ros1 Silencing

Particularly challenging is the use of VIGS for analysis of genes affecting the fruit aroma, due to the labile nature of volatile compounds, their dependence on the genetic background, and physiological and environmental conditions. We were also concerned that the presence of Del/Ros1 might itself influence the volatile profile. Indeed, the GC-MS profiles of DR_S sectors from F6DR fruit were found to be statistically different from those obtained from DR_NS sectors, as evidenced by class separation in unsupervised principal component analysis (PCA; Supplemental Fig. S2A). Geranial and 6-methyl-5-hepten-2-one were found as major contributors to the observed differences (Supplemental Fig. S2C). This could imply that Del/Ros1 expression induces a small reduction (1.6- to 1.7-fold on average; Supplemental Table S1) in the levels of lycopene-derived volatiles in F6DR fruit, which are then restored upon VIGS in DR_S sectors. An indication in this direction, despite representing a different genetic background, comes from the analysis of Del/Ros1 effect in the volatile profiles of MT plants. When transgenic MT Del/Ros1 plants were compared with their wild-type MT isogenic line, differences were observed between classes (Supplemental Fig. S2B), with volatile changes, particularly geranial and 6-methyl-5-hepten-2-one, following similar trends as in F6DR fruit (Supplemental Fig. S2D). We concluded that in F6DR, the presence of the Del/Ros1 transgenic module had a measurable influence on the volatile profile of the fruit, with this influence being to a large extent eliminated in DR_S sectors. This effect precluded us from using direct within-fruit comparisons (DR/GOI_S versus DR/GOI_NS) in AMFV functional analysis of volatile-related genes. Instead, a general between-fruit analytical strategy (DR_S versus DR/GOI_S) was adopted to extract maximum information about the effects of GOI silencing on volatile profiles.

VIGS Analysis of Tomato Volatile Profiles: Effects of pds Silencing

Ultimately, the capacity of AMFV for extracting functional information on genes involved in metabolic (volatile) profiles needs to be tested experimentally with candidate genes whose silenced phenotype subsequently can be validated by other means. To test the reliability of the Del/Ros1 marker technology, we chose to analyze the effects of silencing the TomloxC and pds tomato genes. TomloxC RNA interference has been shown to reduce the production of volatile aldehydes in tomato fruit (Chen et al., 2004a). On the other hand, pds VIGS renders an easily scorable phenotype, allowing comparisons of VIGS in wild-type and Del/Ros1 backgrounds.

As a first proof of concept, the effects of pds silencing on the fruit volatile profile were analyzed. Fruit were agroinjected with the pTRV1 vector combined with pTRV2_DR or pTRV2_DR_PDS plasmids. Three weeks after infiltration, fruit showing good VIGS responses (50% silenced surface on average) were carefully selected, harvested, and processed. Volatile profiles from silenced tissues were compared using unsupervised

Figure 2. Anthocyanin-mediated visualization of VIGS in a globe-type fruit. A, A MT Del/Ros1 fruit (left) compared with a purple tomato resulting from crossing MT Del/Ros1 and wild-type MM (right). B, Cross section of a control tomato (left) and Del/Ros1-silenced tomato (right), the latter showing nonsilenced purple sectors and veins. C, Results from fruit VIGS on globe purple tomatoes from the same plant using pTRV2_DR/PDS (top right) or pTRV2_DR (bottom left) construct. DR_S, Silenced sectors of pTRV2_DR-treated tomatoes; DR_NS, nonsilenced sectors of pTRV2_DR-treated tomatoes; DR/PDS_S, silenced sectors of pTRV2_DR/PDS-treated tomatoes; DR/PDS_NS, nonsilenced sectors of pTRV2_DR/PDS-treated tomatoes.
PCA. As shown in Figure 4A, PCA separated samples from the pds experiment into two groups, which coincided with the experimental classes DR/PDS_S and DR_S. Separation between classes occurred mainly along the y axis, explaining 26% of the total variance. As a strategy for identification of the metabolites contributing to the differences between classes, orthogonal partial least-squares latent structures discriminate analysis (OPLS-DA) was performed. OPLS-DA was visualized in the weighting plot shown in Figure 4C, representing the contribution (X weight) of each metabolite to class separation, with positive and negative values representing up-regulation and down-regulation behavior, respectively. Jack-knifed confi-
Figure 4. Volatile analysis of *pds*-silenced tomatoes. A, Unsupervised PCA of volatile compounds detected in DR_S (red dots) and DR/PDS_S (yellow dots) tomato samples using AMFV. B, PCA of volatile compounds detected in yellow and red sectors from MM tomatoes silenced in *pds* using unmonitored fruit VIGS. C, Loading plot of OPLS-DA with jack-knifed bars for the same data set as in A. D, OPLS-DA loading plot from the MM *pds* experiment. Columns represent the weight of the contribution of each metabolite to the discrimination between classes. Jack-knifed bars represent 95% confidence intervals. Detailed quantification from 6-methyl-5-hepten-2-one and geranial (labeled with asterisks) is represented in yellow (*pds*-silenced sectors) or red (*pds*-nonsilenced sectors) in each experiment. Biologically independent samples were analyzed in triplicate. Columns represent relative abundance of each metabolite to total ion content ± SE.

The effects of *pds* silencing on the aroma profile were also evaluated in a wild-type background (MM). In this case, the visually scorable PDS phenotype allowed the dissection of the fruit into silenced and nonsilenced sectors. Therefore, comparisons between data obtained with *pds* in wild-type and Del/Ros1 backgrounds can be indicative of the robustness of the Del/Ros1 tracking system. Mature green MM tomatoes where agroinjected with pTRV2_PDS constructs. Three weeks after treatment, yellow, *pds*-silenced sec-

tors were dissected from red, nonsilenced sectors and processed. As shown in Figure 4B, PCA also separated samples between

\[
pds\]

silenced and nonsilenced. As in the AMFV

\[
pds\]

experiment, geranial and 6-methyl-5-hepten-2-one were the only two volatiles showing highly significant changes \((P < 0.0001)\), also appearing in the OPLS-DA loading plot (Fig. 4D), confirming that the AMFV-observed changes were genuine effects of

\[
pds\]

silencing. Interestingly, less significant effects were also observed for other carotenoid-derived compounds in MM

\[
pds\]

-silenced tomatoes, which had no counterpart in AMFV experiment (Supplemental Table S1). These differences probably can be attributed to the varietal differences in aroma composition between F6DR and MM or to differences in sampling with respect to developmental timing and/or environmental differences between experiments.

VIGS Analysis of Tomato Volatile Profiles: Effects of

TomloxC **Silencing**

As a second proof of concept, the effects of TomloxC silencing on the fruit volatile profile were analyzed in a separate experiment. A 242-bp cDNA fragment showing low identity (<50%) to other tomato lipoxyn
genases was introduced into pTRV2_DR_GW, yielding the pTRV2_DR_LXC vector. Subsequently, fruit were agroinjected with the pTRV1 vector combined with pTRV2_DR or pTRV2_DR_LXC plasmid. Volatile profiles from silenced tissues were compared using unsupervised PCA. As shown in Figure 5A, PCA separated samples from the TomloxC experiment into two groups, which coincided with the experimental classes DR/LXC_S and DR_S. Separation between classes occurred mainly along the \(x\) axis, explaining 46% of the total variance. It was found that the major contributors to DR/LXC_S versus DR_S separation were C6 aldehydes derived from fatty acid degradation, mainly hexanal but also \(E-(2)-hexenal\) and \(Z-(3)-hexenal\), which combined highest covariance and narrowest confidence intervals. Also, C-5 aldehydes were identified as relevant down-regulated metabolites. On the up-regulated side of the plot, decanal and octanal, also potentially derived from fatty acid degradation, were also identified in the analysis (Fig. 5B).

Figure 5. Volatile analysis of TomloxC-silenced tomatoes. A, Unsupervised PCA generated from GC-MS data from DR_S (red dots) and DR/LXC_S (yellow dots) tomato samples. B, Loading plot of the OPLS-DA model for the TomloxC experiment. Columns represent the weight of the contribution of each metabolite to the separation in the predictive component. Jack-knifed bars represent 95% confidence intervals. C, Detailed quantification of metabolites combining highest contribution and narrowest confidence intervals (labeled with asterisks). Columns represent relative abundance of each metabolite to total ion content ± se. A minimum of five biologically independent samples were analyzed in triplicate for each category.

Integration data for the most relevant metabolites are also shown in Figure 5C. A severe and highly significant reduction in C6 and C5 aldehyde levels was observed upon TomloxC silencing \((P < 0.0005\) for hexanal), whereas octanal \((P < 0.0002)\) and decanal \((P < 0.0007)\) increased in abundance significantly (Supplemental Table S1).
Silencing of Tomato ODO1 Modifies the Profile of Benzenoid Volatile Compounds in Fruit

BLAST analysis of tomato expression databases using petunia ODO1 cDNA as bait identified a tomato unigene, SGN-U344597, which showed 67% identity with its petunia homolog. A single EST, SGN-U344597, was isolated from a fruit library. Based on this sequence, two oligonucleotides were designed to isolate a fragment of 185 bp of the putative tomato ODO1 homolog (SlODO1), corresponding to nucleotides 474 to 688 of the 783-bp open reading frame. BLAST analysis performed using a 185-bp fragment as bait did not identify additional SlODO1-like genes other than SGN-U344597 in the fruit. The effect of SlODO1 depletion on fruit aroma was tested using AMFV, following the same procedure as described above. SlODO1 silencing had a clear influence on the volatile profile, as evidenced by the grouping of samples shown in the PCA scores plot in Figure 6A. OPLS-DA of the same samples showed significant differences in benzenoid-derived compounds, with a decline of methyl salicylate and guaiacol levels in silenced tissues and, most notably, a steep increase of benzaldehyde, whose levels increased, on average, 8-fold in SlODO1-silenced tissues (Fig. 6, B and C). Also, the group of C5 volatiles [pentanal, (E)-2-pentenal, 1-penten-3-one, and 1-pentanol] showed consistent increases in silenced areas.

DISCUSSION

Fruit VIGS in tomato has been shown to be useful in addressing gene function involving visually scorable phenotypes (Xie et al., 2006). However, its irregular distribution and efficiency, which are known to be strongly influenced by environmental factors such as temperature and humidity (Fu et al., 2006), complicate its use for finding links between metabolic and genetic

Figure 6. Volatile analysis of SlODO1-silenced tomatoes. A, Unsupervised PCA generated from fruit GC-MS data from DR_S (red dots) and DR/ODO_S (yellow dots) tomato samples. B, Weightings plot of the OPLS-DA model for the SlODO1 experiment. Jack-knifed bars represent 95% confidence intervals. Columns represent the weight of the contribution of each metabolite to the discrimination between classes. C, Detailed quantifications of benzaldehyde, guaiacol, and methyl salicylate in DR_S (red) and DR/ODO_S (yellow) sectors. Columns represent relative abundance of each metabolite to total ion content ± se. A minimum of five biologically independent samples were analyzed in triplicate for each category.
data without an associated visual marker (D. Orzaez and A. Granell, unpublished data). The phenotypic reversion obtained by silencing Delila and Rosea1 genes in Del/Ros1 fruit suggested that the depletion of anthocyanin content could serve as an internal marker for VIGS. However, to function as a reporter system, the simultaneous silencing of the marker genes and GOIs needed to be ensured; therefore, the requirements for simultaneous silencing of at least two genes in tomato needed to be established. In N. benthamiana, the silencing signal extends beyond the infective wave of the virus through a silencing amplification mechanism. This mechanism works independently of the presence of the virus, allowing the silencing wave to move ahead of the virus infection wave (Ruiz et al., 1998). In N. benthamiana, silencing extends almost uniformly; consequently, the extent of VIGS symptoms does not correlate with the abundance of the virus (Rotenberg et al., 2006). Since there are no reports showing mutual exclusion of different silencing signals within the same plant tissues, we thought it possible that silencing signals initiated concomitantly at the inoculation site in tomato by simultaneous agrodelivery of pTRV2_DR and pTRV2_GOI could result in cosilencing of all three genes in distal parts of the plant. However, this was not the case for tomato. A possible explanation is that the spread of the silencing signal in tomato needs to be assisted by the virus. Contrary to the situation in N. benthamiana, the severity of TRV-induced silencing symptoms in tomato leaves positively correlates with the amount of virus RNA, indicating that the silencing signal runs parallel with the infective wave and that close proximity of cells to the virus is required for the silencing mechanism to work efficiently (Rotenberg et al., 2006). Since viral movement through the plant is often a stochastic process subjected to complex mechanisms and affected by environmental factors, sink-source relationships, tissue age, clone competition, and others, the patchy penetration of the VIGS phenotype found in tomato and other plant species could be the result of irregular viral distribution throughout the plant. Clonal exclusion between coinfected viruses could also explain why codelivery of VIGS constructs is not sufficient for inducing simultaneous silencing of two or more genes in tomato. Establishing the relationship between viral loading and VIGS response will help to clarify the mechanisms and to optimize VIGS efficiency in different crop plants.

In contrast to codelivery, we showed that the tandem arrangement of up to three different target sequences within the same VIGS vector provides a highly efficient way of achieving simultaneous silencing. The use of pds as a model GOI produced a visual silencing pattern in fruit that demonstrated this point clearly. Furthermore, transferring the Del/Ros1 phenotype to larger globe-type fruit facilitated tissue dissection and yields required for downstream analysis by metabolite profiling. Using these refinements to the AMFV method, we have tested the extent to which functional information can be extracted by comparing the volatile profiles of silenced and nonsilenced samples for two candidate genes involved in aroma formation in tomato fruit.

AMFV was tested using two genes, pds and TomloxC. Switching off metabolic flux by reducing pds or TomloxC levels modified the general volatile profile, as shown by class separation observed in unsupervised PCA visualization. Most convincingly, in both examples, OPLS-DA visualization tools correctly pinpointed, from among the whole set of metabolites profiled by GC-MS, those most closely related to the metabolic step affected. OPLS has been shown previously to be a convenient tool for identification of biochemically interesting compounds in GC-MS-based metabolomics data (Wiklund et al., 2008), and our results confirm this point.

Chemometric analysis of tomato volatiles from pds-silenced fruit sectors clearly identified highly significant differences in 6-methyl-5-hepten-2-one and geranal. These two compounds are breakdown products of lycopene and were earlier shown to be depleted in carotenoid biosynthetic mutants with reduced lycopene content (Lewinsohn et al., 2005a, 2005b). These results were corroborated with a more traditional VIGS analysis carried out in wild-type MM, taking advantage of the visual phenotype provided by pds silencing. Volatiles 6-methyl-5-hepten-2-one and geranial were again the most severely depleted volatile compounds in yellow sectors of MM tomatoes, confirming the results obtained by AMFV. This result is particularly remarkable and provides an example of how metabolic interference is easily overcome in AMFV analysis. As deduced from the volatile profile of Del/Ros1 MT fruit and from direct DR_S versus DR_NS comparisons in F6DR fruit, the levels of lineal carotenoid-derived volatiles are reduced 1.6- to 1.7-fold in anthocyanin-rich tissues. Consequently, the silencing of the GOI and the silencing of the marker Del/Ros1 module push the levels of carotenoid-derived volatiles in opposite directions. This interaction could reasonably be expected to interfere with the analysis of any candidate gene involved in the production of a particular metabolite, therefore masking its effects. However, using DR/GOI_S versus DR_S comparisons instead of DR/GOI_S versus DR/GOI_NS ones provides a means of circumventing any interference in metabolite levels resulting from Del/Ros1 activity. This was demonstrated clearly in the case of lycopene-derived volatiles in the pds-silencing experiment.

Other volatiles that were reduced by pds AMFV, albeit less significantly, were also reduced in regular VIGS experiments (Fig. 4, compare C and D). These second-level changes are probably the result of the cross talk between metabolic pathways in the complex metabolic networks of ripening fruit and may provide additional clues to how such pathways interact. Conversely, β-carotene-derived volatiles, β-ionone and β-damascenone, exceptionally showed different behavior in the two VIGS experiments, with no changes...
in AMFV and significantly lower levels in \textit{pds}-silenced MM samples. We think that the observed differences may be due to the different genetic backgrounds of the tomato lines and their respective developmental rates. There is evidence that \(\beta\)-carotene pools are synthesized in the fruit before ripening, at least in certain genetic backgrounds (Tieman et al., 2006). Fruit VIGS experiments, which are initiated at the mature-green stage, may or may not block preripening synthesis of \(\beta\)-carotene depending on the speed at which silencing signals spread through the fruit with respect to the precise developmental stage in which biosynthesis takes place, which may be heavily influenced by the genetic background. The fact that a strong genetic link is often observed between \(\beta\)-ionone and \(\beta\)-damascenone in quantitative trait locus analysis, but not between these two compounds and lycopene-derived volatiles, strongly reenforces this interpretation (Mathieu et al., 2009).

Antisense and cosuppression-mediated depletion of \textit{TomloxC} in stable transgenic plants has been reported previously (Chen et al., 2004a). \textit{TomloxC}-silenced fruit were shown to contain lower levels of C-6 volatile compounds, consistent with \textit{TomloxC} encoding a 13-lipoxygenase that catalyzes hydroxyperoxidation of linoleic and linolenic acids to yield the precursors of C-6 volatiles. The same conclusion was drawn from anthocyanin-guided VIGS analysis in a 5-week-long experiment using no more that 30 fruit. \textit{TomloxC}-silenced fruit sectors were depleted in C-6 but also in C-5 volatiles, the latter probably derived from C-6 breakdown. Interestingly, OPLS-DA also identified decanal and octanal metabolites as showing significant increases in levels. An increased conversion of the \textit{TomloxC} substrate, linoleic acid (C-18), into C-8 and C-10 compounds in silenced tissues could explain these increases. Whether this conversion takes place in tomato as a result of a specific enzymatic activity remains to be established.

Finally, AMFV was used for functional analysis of the tomato homolog of the petunia R2-R3 myb factor \textit{ODO1} in fruit. In petunia, \textit{ODO1} controls the synthesis of benzenoid volatiles via the up-regulation of the expression of several enzymes in the shikimate pathway leading to benzenoid volatiles, with the significant exception of benzoic acid methyl transferase (Verdonk et al., 2005). The effect of \textit{ODO1} in petunia was confirmed using a color-assisted VIGS methodology, using the endogenous chalcone synthase gene as a marker for VIGS (Spitzer et al., 2007). We think that the transgenic strategy proposed here may reduce the interference and therefore widen the range of applications of marker-assisted VIGS, since it operates through a phenotype that reverts to the wild type rather than through a mutant, metabolite-depleted phenotype. For example, VIGS could be monitored in leaves or shoots in plants transformed with \textit{Delila} and \textit{Rosa1} driven by leaf- or shoot-specific promoters without the impact of loss of function of the marker genes.

The target gene regulation of specific myb genes cannot always be directly translated from one plant species to another based on sequence homology, as has been repeatedly observed (Martin and Paz-Ares, 1997; Mehrten et al., 2005; Luo et al., 2008). \textit{ODO1} VIGS in petunia resulted in lower levels of almost all analyzed benzenoid compounds. As expected, in tomato fruit, benzenoid volatiles were also severely affected by the silencing of \textit{SlODO1}, confirming the role of this regulatory gene in modulating benzenoid metabolism in tomato. However, according to our AMFV data, \textit{SlODO1} does not seem to activate the whole pathway in tomato but rather modulates the relative abundance of different intermediates in methyl benzoate synthesis, presumably through regulating expression of only some target genes operational in the pathway. This is, to some extent, also true in petunia, where benzoic acid methyl transferase does not appear to be activated by \textit{ODO1} and, in fact, shows increased expression in response to \textit{ODO1} silencing. In tomato, the accumulation of high levels of benzaldehyde in combination with reduced levels of methyl salicylate and guaiacol in response to \textit{SlODO1} silencing may indicate that \textit{SlODO1} regulates flux between benzoic acid and its methylated/hydroxylated derivatives. Additional experiments are required to establish the precise targets of \textit{SlODO1} in tomato fruit. The functional data provided by AMFV provide a first line of evidence of its regulatory role in tomato and material for analysis of target gene expression.

In conclusion, we present a VIGS tool for tomato that enables studies of gene function for genes active in fruit ripening that, by themselves, would not produce a visual phenotype. We have tested successfully three tomato genes encoding two enzymes and one transcription factor, influencing the three main routes of volatile production in tomato (i.e. carotenoids, fatty acids, and phenylpropanoids) using AMFV analysis. This technology provides a means for rapid, high-throughput analysis of genes involved in all of the metabolic networks underlying tomato fruit ripening and associated nutritional and health-related quality traits.

\section*{MATERIALS AND METHODS}

\section*{Plant Materials}

\textit{Tomato} (\textit{Solanum lycopersicum}) MT plants transformed with \textit{Delila} and \textit{Rosa1} cDNAs under the control of the E8 ripening-specific promoter were used as an initial source of anthocyanin-accumulating fruit (Butelli et al., 2008). Globe-type purple tomatoes were obtained by crossing \textit{Del/Rosa1} MT N line (T2 homozygous generation) with wild-type MM plants. Segregating sibling lines were self-pollinated and selected through to the F6 generation on the basis of their phenotypic characteristics (i.e. globe-type fruit, smooth leaves, indeterminate growth, and best fruit VIGS response). The quality of VIGS response in each line was evaluated from the percentage of fruit agroinjected with the pTRV2_DR construct that developed red sectors and the size of the red sectors with respect to the total fruit surface. Plants were grown in a greenhouse supplemented with artificial light as described earlier (Marti et al., 2007).
Cloning Procedures and Vector Construction

TRV-based silencing vectors pTRV1 and pTRV2 were kindly provided by Prof. Dinesh Kumar (Liu et al., 2002). A pTRV2_DR construct was generated by introducing a 284-bp EcoRI/Xhol DNA fragment (DR fragment) into pTRV2 vector. The DR fragment was obtained from the PCR fusion of D and R fragments. The D fragment comprises 129 bp of the Delila gene and was PCR amplified from Del/ROS1 tomato genomics DNA using oligonucleotides D06SEP02DEL1F (5’-TGCCGCGCGCGCGCTGCAATTCAGTGCAACAC- CAGG-3’) and D06SEP04DEL1R (5’-CCACGATATCTTGGCCATCATCGTCTGGC- TCCCCACCTGATC-3’). The R fragment was obtained from the same source using oligonucleotides D06SEP03RSOR1 (5’-CCGGCGCGCGCGCGTTGCTA- AGCTGCAATTCGCTGGA-3’) and D06SEP01RSOF1 (5’-GGGCCCTGACTC- TAGATGGCGCGAAGATTTACGAGGAGG-3’). The D and R fragments were gel purified and fused in an overlapping PCR (15 cycles) with oligonucleotides D06SEP01RSOF1 and D06SEP04DEL1R. A pTRV2_DR GW destination vector was generated by linearizing pTRV2_DR with Smal followed by blunt-end cloning of a Gateway Destination Cassette (rfu_verB) with a Vector Conversion Kit (Invitrogen) following the manufacturer’s instructions. For the pTRV2_DR_PDS construct, a 409-bp PDS fragment between oligonucleotides TCCCAGCTGATC-3’ and TAATTCAACCACCTCAGCC-3’ was first cloned into the pCR8/ GW-TOPO vector and transferred by LR recombination into the pTRV2_DR GW destination vector. Similarly, pTRV2_DR_ODO and pTRV2_DR_LXC were constructed from DNA fragments cloned in pCR8/ GW-TOPO using oligonucleotides A07NOV01 (5’-GGTTTGACAGAAAACTGAAG-3’) and PDSF1 (5’-TCATCAACCTTCCGTGCTTC-3’) and ROS1R (5’-GAATTCATGGCAGAGCGGG-3’) and ROS1F (5’-ATCAAGTTCCACACAGAGCAGGG-3’). The relative abundance of mRNAs in pericarp samples was determined by quantitative RT-PCR. DNA samples were analyzed using the MSD ChemStation Data Analysis software (Agilent Technologies). For quantification, a representative ion peak of each compound was integrated and the area was normalized relative to the total chromatogram area.

Plant Treatments

Unless otherwise stated, all plant inoculations were performed using 1:1 (v/v) mixtures of two C58 strain Agrobacterium tumefaciens cultures, one containing the pTRV1 vector and the second containing a pTRV2-derived vector. Bacterial clones were grown overnight in liquid medium, then transferred to inhibition medium as described earlier (Orzaez et al., 2006). For coinfiltration studies, 1:1:1 mixes of pTRV1, pTRV2_GOI, and pTRV2_DR were used. Inoculations intended for systemic VIGS were performed by coinfiltration studies, 1:1:1 mixes of pTRV1, pTRV2_GOI, and pTRV2_DR vector. Bacterial clones were grown overnight in liquid medium, then transformed into Agrobacterium and injected into tomato fruit using the C58 strain. Plant inoculations were performed using 1:1 dilutions of bacterial suspension (o.d. 0.1). The inoculum was applied to the peduncle into the fruit. Agroinjected fruit were tagged at breaker stage and collected, unless otherwise stated, between 15 and 20 d thereafter for further analysis.

Estimations of Anthocyanin Content and mRNA Quantification

Anthocyanin content in fruit extracts was estimated as cyanidin-3-glucoside equivalents as described earlier (Lee et al., 2005). The relative abundance of pds, Rosa1, and Delila mRNAs in pericarp samples was determined by quantitative RT-PCR. RNA samples from tomato pericarp were prepared with an RNAeasy Plant Mini Kit using on-column RNAase-free DNase Set treatment (Qagen) and copied to cDNA with SuperScript II reverse transcriptase (Invitrogen). Primers used were PDSF1 (5’-TCATCAACCTTCCGTGCTTC-3’) and PDSR1 (5’-GAATTCATGGCAGAGCGGG-3’) for pds quantification, ROS1F (5’-ATCAAGTTCCACACAGAGCAGGG-3’) and ROS1R (5’-GAATTCATGGCAGAGCGGG-3’) for Rosa1 quantification, and DEL1F (5’-GGAGACATAGTTGGGAATCTTGG-3’) and DEL3R (5’-AGTATGGCTAAACTTCAATCTGC-3’) for Delila quantification. Primers were mixed with SYBR GREEN PCR Master Mix (Applied Biosystems) in the appropriate proportions. A threshold amplification cycle was used as an internal standard for quantifications. Samples were amplified in triplicate with an ABI PRISM 7000 Sequence Detection System and analyzed with ABI PRISM 7000 SDS software.

UPLC-MS Analysis

Frozen powder (500 mg) of tomato pericarp (including the peel) was extracted with 1.5 mL of cold (−20°C) methanol acidified with 0.125% formic acid in an ultrasonic bath for 30 min. After 10 min of centrifugation at 16,000g, the supernatant was filtered through a 0.2-μm Anotop 10 membrane filter (Whatman) and analyzed by UPLC-MS using an ACQUITYUPLC-PDA system coupled to a Q-TOF Micromass spectrometer (Waters). Separation was performed on an ACQUITY BEH C18 column (150 × 2.1 mm i.d., 1.7 μm). The mobile phase consisted of 0.1% formic acid:ultrapure water (1:1000, v/v; phase A) and formic acid:acetonitrile (1:1000, v/v; phase B). Gradient conditions were as follows: 95% to 90% A in 14 min, 90% to 80% A in 15 min, 80% to 65% A in 10 min, 65% to 57% A in 1 min, 57% to 0% A in 1 min, held at 100% B for 3 min, returned to 95% A in 1 min, and equilibrated for 4 min before the next injection. The flow rate was 0.4 mL min⁻¹; the column and sample temperatures were kept at 40°C and 20°C, respectively; the sample injection volume was 4 μL. UV spectra were acquired between 210 and 300 nm with a 1.2-nm resolution and 20 points s⁻¹ sampling rate. MS analysis was performed by electrospray ionization in positive mode. The mass spectrometer was calibrated with sodium formate (10 ng μL⁻¹ in 90:10 propan-2-ol:water). Analysis conditions were as follows: capillary voltage, 3.0 kV; cone voltage, 30 eV; desolvation temperature, 300°C; source temperature, 120°C; gas flow, 50 L h⁻¹; desolvation gas flow, 630 L h⁻¹; collision energy, 10 eV. MS data were acquired in centroid mode in the mass-to-charge ratio scan range 100 to 1,400 with a scan time of 0.3 s and an interscan time of 0.1 s. Leu enkephalin was used as the lock mass using a LockSpray exact mass ionization source.

GC-MS Profiling and Data Analysis of Tomato Volatiles

Volatile profiling of fruit samples was carried out by Headspace SPME-GC-MS. Ground, frozen tomato pericarp (300 mg) was incubated at 37°C for 10 min in a water bath following by 0.5 mL of a EDTA-NaOH solution (100 mEq EDTA, pH 7.5) and 0.67 g of solid CaCl₂·2H₂O to terminate endogenous enzyme activity. Samples were then sonicated for 5 min in an ultrasonic bath, and a 0.7-mL aliquot was transferred to a 10-mL crimp-cap vial. Volatile analysis was performed on a 6890N Agilent gas chromatograph coupled to a 5975B inert XL MSD mass spectrometer (Agilent Technologies). Volatiles were extracted and injected automatically by means of a CombiPAL autosampler (CTC Analytics). After incubating the samples for 10 min at 50°C and continuous agitation (500 rpm), volatile compounds were extracted by exposing a 65-μm polydimethylsiloxane-divinylbenzene fiber (Supelco) to the vial head space for 10 min under the same conditions (50°C, 500 rpm). Volatiles were desorbed in the injection port of the gas chromatograph for 1 min at 250°C in the splitless mode. Separation was performed on a DB-5ms column (30 m × 0.25 mm i.d., 1-μm film thickness; J&W Scientific). Helium was used as the carrier gas at a flow rate of 1.2 mL min⁻¹. The temperature program started at 35°C for 2 min, followed by a 5°C min⁻¹ ramp to 250°C, with a 5 min hold at 250°C. Mass spectra were obtained at an ionization energy of 70 eV and a scan speed of 7 scans s⁻¹ with a mass-to-charge ratio scan range of 35 to 220. Compound identification was made by comparison of GC retention time and mass spectra with those of authentic standards. Chromato- grams were analyzed using the MSD ChemStation Data Analysis software (Agilent Technologies). For quantification, a representative ion peak of each compound was integrated and the area was normalized relative to the total chromatogram area.

Statistical Data Analysis

For PCA and OPLS-DA on the volatile profiles of tomato fruit, variables were centered (subtracting the average) and scaled to unit variance using the software package SIMCA-P 11 (Umetrics). The t tests were performed using the Microsoft Excel software package. Correlations were analyzed using Pearson’s algorithm with the statistical package SPSS 15.0 (SPSS).

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. VIGS-directed reversion to wild-type phenotype in Del/Ros1 MT fruit.

Supplemental Figure S2. DR effect on volatile profile.

Supplemental Table S1. Metabolite list and significance analysis.

Anthocyanin Monitoring of VIGS in Fruit

Copyright © 2009 American Society of Plant Biologists. All rights reserved.

Plant Physiol. Vol. 150, 2009 1133

Downloaded from on October 1, 2017 - Published by www.plantphysiol.org
ACKNOWLEDGMENTS

We thank Dinesh Kumar for kindly providing pTRV1 and pTRV2 silencing vectors and Rafael Martinez for the expert care of tomato plants in the greenhouse facilities.

Received March 26, 2009; accepted May 4, 2009; published May 8, 2009.

LITERATURE CITED

