Biochemical and Molecular Characterization of PvPAP3, a Novel Purple Acid Phosphatase Isolated from Common Bean Enhancing Extracellular ATP Utilization

Cuiyue Liang, Jiang Tian, Hon-Ming Lam, Boon Leong Lim, Xiaolong Yan, and Hong Liao*

Ministry of Agriculture Key Laboratory of Soil and Plant Nutrition in South China, Root Biology Center, South China Agricultural University, Guangzhou 510642, People’s Republic of China (C.L., J.T., X.Y., H.L.); Department of Biology and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, People’s Republic of China (H.-M.L.); and School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, People’s Republic of China (B.L.L.)

Purple acid phosphatases (PAPs) play diverse physiological roles in plants. In this study, we purified a novel PAP, PvPAP3, from the roots of common bean (Phaseolus vulgaris) grown under phosphate (Pi) starvation. PvPAP3 was identified as a 34-kD monomer acting on the specific substrate, ATP, with a broad pH range and a high heat stability. The activity of PvPAP3 was insensitive to tartrate, indicating that PvPAP3 is a PAP-like protein. Amino acid sequence alignment and phylogenetic analysis suggest that PvPAP3 belongs to the group of plant PAPs with low molecular mass. Transient expression of 35S:PvPAP3-green fluorescent protein in onion (Allium cepa) epidermal cells verified that it might anchor on plasma membrane and be secreted into apoplast. Pi starvation led to induction of PvPAP3 expression in both leaves and roots of common bean, and expression of PvPAP3 was strictly dependent on phosphorus (P) availability and duration of Pi starvation. Furthermore, induction of PvPAP3 expression was more rapid and higher in a P-efficient genotype, G19833, than in a P-inefficient genotype, DOR364, suggesting possible roles of PvPAP3 in P efficiency in bean. In vivo analysis using a transgenic hairy root system of common bean showed that both growth and P uptake of bean hairy roots from the PvPAP3 overexpression transgenic lines were significantly enhanced when ATP was supplied as the sole external P source. Taken together, our results suggest that PvPAP3 is a novel PAP that might function in the adaptation of common bean to P deficiency, possibly through enhancing utilization of extracellular ATP as a P source.

As one of the essential macronutrients, phosphorus (P) is directly or indirectly involved in many important physiological and biochemical processes in plants (Marschner, 1995). In soils, P is easily fixed by organic compounds, iron (Fe) or aluminum oxides, into the forms that are unavailable to plants. Therefore, low P availability is one of the major factors limiting crop production (Raghothama, 1999; Vance et al., 2003). Plants have developed a group of adaptive strategies to enhance P acquisition and utilization, such as modifying root morphology and architecture (Liao et al., 2004; Deviah et al., 2007a, 2007b; Zhou et al., 2008), increasing acid phosphatase (APase) activity (del Pozo et al., 1999; Bozzo et al., 2002; Wang et al., 2009) and organic acid exudation (Ligaba et al., 2004), as well as enhancing the expression of a diverse array of genes (Raghothama, 1999; Vance et al., 2003). Among them, APases are generally believed to be important for P acquisition and utilization (Bieleski, 1973; Duff et al., 1994).

Plant APases function to hydrolyze Pi from orthophosphoric monoesters and have a pH optimum below 7.0. They are traditionally divided into two groups according to their substrate specificity, including non-specific versus specific APases (Duff et al., 1994). Purple acid phosphatases (PAPs) belong to a special group of APases that are characterized by the purple color of purified proteins in water solution and tartrate-insensitive metallophosphatase activity (Schenk et al., 1999, 2000; Li et al., 2002). Based on their molecular mass and protein structure, PAPs can be further divided into two groups: small PAPs with a molecular mass of about 35 kD and large PAPs that are mostly homodimeric proteins with a subunit molecular mass of about 55 kD (Schenk et al., 1999, 2000; Li et al., 2002;...
Increased PAP activity by Pi starvation has been demonstrated in various plants, including Arabidopsis (Arabidopsis thaliana), tobacco (Nicotiana tabacum), potato (Solanum tuberosum), and tomato (Solanum lycopersicum; del Pozo et al., 1999; Bozzo et al., 2002; Kaida et al., 2003; Zimmermann et al., 2004), indicating that these Pi starvation-responsive PAPs, like some other APases, might be involved in P acquisition and mobilization. Transgenic expression of MtPAP1 resulted in improved P acquisition and growth in Arabidopsis when phytate P was supplied as the sole external P source under sterile conditions (Xiao et al., 2006). Recent results showed that overexpressing AtPAP15 could enhance P efficiency in soybean (Glycine max; Wang et al., 2009). However, it has been difficult to describe the general physiological functions of all plant PAPs due to their diversity and ubiquity. In the Arabidopsis genome, a total of 29 PAP-like genes have been identified. Among them, the transcription of only three PAP-like genes was induced by Pi starvation: PAP11, PAP12, and PAP17 (Li et al., 2002). Furthermore, PAP17 showed both APase and peroxidase activities, indicating a multifunctional nature for the enzyme (del Pozo et al., 1999). In addition to P acquisition and utilization, other functions of plant PAPs, such as protection against oxidative stress and involvement in cell wall synthesis, have been suggested in soybean and tobacco (Klabunde et al., 1995; Kaida et al., 2003; Liao et al., 2003; Li et al., 2008).

Common bean (Phaseolus vulgaris) is a major food leguminous crop, mostly cultivated on P-deficient soils in the tropics (Beebe et al., 2006). The origin of this crop from two major gene pools representing middle America and Andean mountain areas has provided excellent genetic resources for characterization and improvement of bean P efficiency (the ability to maintain yield under low-P conditions). Two common bean genotypes, G19833 (P efficient) and DOR364 (P inefficient), as well as their recombinant inbred lines have been used by several groups to elucidate the morphological, physiological, and genetic mechanisms underlying P efficiency, including development of a shallower root system, greater exudation of organic acids and protons, and formation of more cortical aerenchyma in roots (Shen et al., 2002; Fan et al., 2003; Liao et al., 2004). Genes involved in the response network of common bean to P deficiency have been identified through the sequencing of 3,165 ESTs from a Pi-starved root cDNA library and via in silico approaches (Ramírez et al., 2005; Graham et al., 2006). More recently, work in our laboratory has suggested that enhanced expression of the P-responsive genes, PePT1 and PePS2, might contribute to efficient P acquisition and translocation in the P-efficient genotype, G19833, under P-limiting conditions (Tian et al., 2007).

In an earlier study, one principal APase isoform, in the leaves of the P-inefficient genotype, DOR364, was found to be entirely defective in the leaves of the P-efficient genotype, G19833, and its activity was not associated with P acquisition and utilization in common bean (Yan et al., 2001). The study of other APases, especially the APase isoforms induced by Pi starvation, could be more productive for understanding P efficiency in crops such as common bean. In this study, one Pi starvation-induced APase isoform, PvPAP3, was purified from the roots of common bean. Subsequently, its biochemical and molecular characteristics, as well as its roles in P utilization, were demonstrated.

RESULTS

Effects of Pi Starvation on APase Activity

The total APase activity in common bean was significantly increased by Pi starvation (Fig. 1A). In leaves, the APase activity generally increased by more than 4-fold in the P-inefficient genotype, DOR364, but much less in the P-efficient genotype, G19833. However, no significant difference was observed in root

![Figure 1. Activity and isoform analysis of APases in common bean grown in nutrient solution with or without P supply for 10 d. A, APase activity in leaves and roots. Data are means of four replicates with se. B, APase isoforms were separated using native PAGE with protein extracts from leaves and roots. The gel was stained for APase activity as described by Lefebvre et al. (1990). The arrow indicates the APase isoform corresponding to PvPAP3. The F values of ANOVA were 193.44 ($P < 0.001$) for genotype and 75.84 ($P < 0.001$) for P treatment in young leaves; 43.8 ($P < 0.001$) for genotype and 25.53 ($P < 0.001$) for P treatment in old leaves; and 0.99 (not significant) for genotype and 138.83 ($P < 0.001$) for P treatment in roots.](image)
APase activity between G19833 and DOR364. On the actively stained nondenaturing polyacrylamide gel (PAGE), one APase isoform (named PvPAP3) with the highest mobility was obviously induced by Pi starvation in both leaves and roots of G19833 and DOR364 (Fig. 1B). Furthermore, activity staining patterns of APase isoforms in leaves were clearly different from those in roots. In leaves, a total of three APase isoforms were detected in DOR364 grown at low P, including one major APase isoform that was fully defective in G19833. This might be the reason why the total APase activity in the leaves of G19833 was much lower than that of DOR364.

Purification and Biochemical Characterization of the PvPAP3 Protein

PvPAP3 was purified from the roots of Pi-starved G19833 using three consecutive purification steps: selective precipitation with ammonium sulfate (60% ± 80%), nondenaturing PAGE, and Q-Sepharose ion-exchange chromatography. The purified protein at different steps was analyzed using denaturing SDS-PAGE gels. A major protein band with a molecular mass of approximately 34 kD was clearly and consistently detected on the gel (Fig. 2A). The molecular mass of the native PvPAP3 was estimated to be about 34 kD by gel filtration using a Sephadex G-100 column and four protein size standards (Fig. 2C). Immunoblot analysis showed that the purified PvPAP3 was recognized by a PvPAP3 antibody (Fig. 2B).

A range of pH optima for PvPAP3 activity using p-nitrophenylphosphate (p-NPP) as substrate was found, from pH 6.0 to 8.0 (Fig. 2D). To study thermal stability, PvPAP3 was incubated at various temperatures for 15 or 30 min, and its activity against p-NPP was subsequently measured. PvPAP3 activity decreased significantly as the reaction temperature was increased from 30°C to 70°C. PvPAP3 activity decreased by 80% at 70°C compared with 30°C after 30 min of incubation (Fig. 2E).

The substrate specificity of purified PvPAP3 was examined (Table I). Phosphatase activity using p-NPP as substrate was set as 100% for comparison with the activity using other substrates. Interestingly, PvPAP3 exhibited the highest activity with ATP (307%) and a distant second highest activity with α-naphthyl phosph-

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Relative Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-NPP</td>
<td>100</td>
</tr>
<tr>
<td>ATP</td>
<td>307</td>
</tr>
<tr>
<td>AMP</td>
<td>4</td>
</tr>
<tr>
<td>GMP</td>
<td>5</td>
</tr>
<tr>
<td>α-Naphthyl acid phosphate</td>
<td>55</td>
</tr>
<tr>
<td>Fru-1,6-diphosphate</td>
<td>30</td>
</tr>
<tr>
<td>α-Glc-6-P</td>
<td>26</td>
</tr>
<tr>
<td>Phytate</td>
<td>4</td>
</tr>
</tbody>
</table>

Table I. Substrate specificity of PvPAP3

PvPAP3 activity was determined with 4.0 mM of each substrate and expressed as the percentage of the rate of Pi hydrolysis from p-NPP.
phate as substrate (55%). Very limited activity was found when phytate, AMP, and GMP were used as the substrates (Table I).

Effects of various reagents on PvPAP3 activity were also studied. PvPAP3 activity was significantly inhibited by the application of CuSO₄, NaCl, KH₂PO₄, CaCl₂, and ZnSO₄ and stimulated by MgCl₂ (Table II). Furthermore, PvPAP3 activity was not affected by the addition of tartrate, verifying that PvPAP3 belongs to the PAP subgroup of APase.

Cloning and Expression Analysis of the PvPAP3

Using matrix-assisted laser-desorption ionization-time of flight mass spectrometry (MALDI-TOF/TOF MS) analysis, the following sequences of trypsin-digested peptides of PvPAP3 were obtained: EGYTSVLGNHDYR, KPKSKLHLLVVDGWGR, and VLLVGDWGR. Comparison with sequences in databases revealed that one fragment was highly similar to a putative PAP in Arabidopsis (AAL49808), while the other two sequences had highest similarity to a PAP (AAP51881) in rice (Oryza sativa). The full-length cDNA coding PvPAP3 was isolated from a cDNA library constructed from G19833 plants under P deficiency by PCR amplification using degenerate and gene-specific primers (detailed in “Materials and Methods”).

The PvPAP3 cDNA clone (FJ464333) contains a 993-bp open reading frame encoding a polypeptide of 331 amino acid residues. A putative signal peptide containing 29 amino acid residues was found in the N terminus, suggesting that the molecular mass of the mature PvPAP3 protein is approximately 34 kD. Using PvPAP3 as a query sequence with the BLASTx algorithm (http://blast.ncbi.nlm.nih.gov/Blast.cgi) revealed that the conserved domain and metal-binding residues of the deduced amino acid sequence of PvPAP3 were similar to the other PAPs from common bean, soybean, potato, and Arabidopsis. The alignment of amino acid sequences of these proteins is illustrated in Figure 3, with five distinct conserved motifs highlighted.

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Concentration</th>
<th>Relative Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>MgCl₂</td>
<td>5</td>
<td>141.43</td>
</tr>
<tr>
<td>ZnSO₄</td>
<td>5</td>
<td>37.14</td>
</tr>
<tr>
<td>NaCl</td>
<td>5</td>
<td>62.52</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>5</td>
<td>12.76</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>5</td>
<td>2.12</td>
</tr>
<tr>
<td>CuSO₄</td>
<td>5</td>
<td>104.76</td>
</tr>
<tr>
<td>EDTA</td>
<td>5</td>
<td>106.67</td>
</tr>
<tr>
<td>Tartrate</td>
<td>5</td>
<td>106.67</td>
</tr>
</tbody>
</table>

Table II. Effects of various reagents on the activity of PvPAP3

PvPAP3 activity against p-NPP was determined with 5 ms of each reagent applied in the reaction buffer and expressed as the percentage of PvPAP3 activity without application of these reagents.

A phylogenetic tree was generated through analysis of the PvPAP3 and the protein sequences of other PAPs, including four PAPs (CAA04644, BAD05166, AAF60317, and TC14892) in common bean (Schenk et al., 2000; Vogel et al., 2002; Yoneyama et al., 2004). The phylogenetic analysis showed that there were two distinct PAP groups in plants, denoted as PAPs with high molecular mass (group I) and PAPs with low molecular mass (group II; Fig. 4). Based on this analysis, PvPAP3 protein was grouped in group II and had high similarity to one PAP (NP_178297) from Arabidopsis (Fig. 4).

To test whether the expression of PvPAP3 is responsive to changes in plant nutrient status, G19833 (P-efficient genotype) plants were subjected to starvation of nitrogen (N), potassium (K), Fe, or phosphate (Pi). Transcript accumulation of PvPAP3 revealed by

Figure 3. Amino acid alignment of PvPAP3 with orthologous PAPs from several plant species. AAF60316, Putative PAP precursor in soybean; NP_178298, PAP8 in Arabidopsis; AAT7529, PAP in potato; AAF60317, putative PAP precursor in common bean. The conserved sequence motifs are boxed, and the metal-binding residues are highlighted. The putative signal peptide cleavage site of PvPAP3 is indicated by the arrow.
quantitative real-time (qRT)-PCR data was only induced in both leaves and roots under P↓ starvation but not under the other nutrient starvation conditions (Fig. 5). A dose-response experiment was then carried out to investigate the expression patterns of PvPAP3 in common bean in response to different P status conditions by qRT-PCR. Transcript accumulation of PvPAP3 in both leaves and roots was strictly dependent on P availability in the medium (Fig. 6, A and B). In leaves and roots of G19833 and DOR364, a noticeable accumulation of PvPAP3 transcripts was observed for plants grown on nutrient solution containing 5, 50, and 100 μM P↓, and the transcript abundance decreased with increasing P↓ concentration. Interestingly, the induction of PvPAP3 transcripts was stronger in both leaves and roots of G19833 than of DOR364 at the same P↓ level. Furthermore, when P↓ concentration in the nutrient solution was raised from 5 to 50 μM, greatly reduced expression of PvPAP3 was only observed in the roots of DOR364 but not of G19833. The time course for PvPAP3 expression in response to the onset of P↓ deficiency was also investigated. The induced PvPAP3 expression in the leaves and roots of both genotypes increased with increasing duration of P↓ starvation and reached its highest level at 12 d after P↓ deficiency treatment (Fig. 6, C and D). However, the induction of PvPAP3 was more rapid and intensive in G19833 compared with DOR364 in response to P↓ starvation, as indicated by the fact that the induction of PvPAP3 in the leaves of G19833 was observed at 4 d after P↓ starvation but at 8 d in DOR364. And the relative expression of PvPAP3 in the leaves of G19833 was significantly greater than that of DOR364 at the same day after P↓ deficiency treatment. In roots, the expression level of PvPAP3 was about 2-fold higher in G19833 than in DOR364 at 8 d after growing in P↓ deficiency, but this difference was diminished at 12 d of P↓ starvation.

Subcellular Localization of PvPAP3

Bioinformatics analysis showed that 29 amino acid residues in the N terminus of PvPAP3 were predicted as signal sequences (http://www.expasy.ch/). Seventeen amino acids of the signal peptides were identified to be hydrophobic (http://www.enzim.hu/hmmtop/html/submit.html). These indicated that the PvPAP3 might anchor on the plasma membrane or be secreted outside of the cells.

Figure 4. Phylogenetic tree of PvPAP3 with some selected PAP proteins in plants. The phylogenetic tree was constructed using MEGA 4.1 programs. Roman numerals I and II designate the two groups of PAP proteins. Bootstrap values are indicated for major branches as percentages. One thousand replicates were used for all possible tree topology calculations. Except for PvPAP3 (this work), the first two letters of each protein label represent the abbreviated species name, followed by GenBank accession number or accession number from the common bean gene index. At, Arabidopsis thaliana; Gm, Glycine max; Ll, Lupinus luteus; Mt, Medicago truncatula; Nt, Nicotiana tabacum; Pv, Phaseolus vulgaris; St, Solanum tuberosum.
To determine the subcellular localization, PvPA3 was combined with GFP reporter gene and transiently expressed in onion (Allium cepa) epidermal cells. The GFP empty vector was used as a control. After the cells were plasmolyzed by adding 30% Suc solution, laser confocal scanning microscopy was used to check whether PvPAP3 was located on plasma membrane or cell wall. The results clearly suggested that most of the signals of PvPAP3-GFP were detected on the plasma membrane and a few signals were located in the apoplast region (Fig. 7). However, the signal of GFP of the empty vector control was detected throughout the intracellular areas.

PvPAP3 Enhances Extracellular ATP Utilization in Transgenic Bean Hairy Roots

Functional analysis of PvPAP3 was performed using transgenic hairy roots of common bean. The transgenic common bean hairy roots overexpressing PvPAP3 were generated, and the overexpression of PvPAP3 was confirmed by qRT-PCR analysis using PvPAP3-specific primers and western-blot analysis using a PvPAP3 antibody (Fig. 8, A and B). The average APase activities against ATP and ρ-NPP in 35S:PvPAP3 transgenic hairy roots were 84% and 39% higher than those in the empty vector control, respectively (Fig. 8, C and D). Furthermore, the fresh weight and P content of 35S:PvPAP3 hairy roots were significantly higher than those of the control when 500 μM ATP was used as the sole external P source in the growth medium, as indicated by 61% and 35% increase of the average fresh weight and P content in 35S:PvPAP3 transgenic hairy roots, respectively (Fig. 9).

DISCUSSION

In this study, we purified and sequenced a novel specific Pi starvation-induced APase isoform (PvPAP3) from common bean roots. Subsequently, the full-length PvPAP3 cDNA was isolated. BLAST analysis
showed that six reported ESTs in common bean had high homology with PvPAP3 in the common bean gene index from the Dana-Farber Cancer Institute Computational Biology and Functional Genomics Laboratory (http://compbio.dfci.harvard.edu/tgi/). Among them, one 397-bp EST (FD795350) has 99% identity with PvPAP3, indicating that the EST is a partial fragment of PvPAP3. Expression of all the ESTs as related to P availability has not been characterized, except that the expression of one EST (TC7351) has been reported to be up-regulated by Pi starvation in roots of common bean (Hernández et al., 2007). However, no further information has been documented about their biochemical and molecular properties. The biochemical properties of PvPAP3, together with its predicted peptide sequence, strongly suggest that PvPAP3 is a bona fide PAP in common bean. First, PvPAP3 activity was resistant to tartrate (Table II), a common property of PAPs (Vincent and Averill, 1990; Olczak et al., 1997; Nakazato et al., 1998; Bozzo et al., 2002), indicating that PvPAP3 belongs to the PAP subfamily of APase. Second, the predicted protein of PvPAP3 contained five motifs that are highly conserved in other plant PAPs, including seven invariant residues required for metal coordination (Fig. 3; Li et al., 2002). Furthermore, PvPAP3 is a monomeric protein with a molecular mass around 34 kD determined by Sephadex G-100 chromatography (Fig. 2C), which agrees with the molecular mass of the mature protein predicted from the sequence of PvPAP3. This indicates that PvPAP3 belongs to the group of low molecular mass PAPs, which are generally monomeric proteins with a molecular mass of about 35 kD (Li et al., 2002). On the contrary, except for the PAP recently purified from tobacco (Lung et al., 2008), most high molecular mass PAPs are homodimeric proteins with a single subunit of about 55 kD (Schenk et al., 1999, 2000; Li et al., 2002; Olczak et al., 2003). Our further results from alignment and phylogenetic analysis of PvPAP3 with other PAPs also revealed that PvPAP3 has a high degree of similarity with other low molecular mass PAPs (Fig. 4). Taken together, these findings strongly suggest that PvPAP3 is a novel PAP with low molecular mass in common bean.

Another unique feature of PvPAP3 is that it was found to be most active with ATP as substrate, suggesting that the in vivo substrate for PvPAP3 might be ATP. It was previously speculated that ATP is the substrate for KBPAP purified from common bean seeds (Cashikar et al., 1997). However, despite extensive investigations made on the understanding of biochemical properties, primary structure, x-ray structure, and subcellular localization of KBPAP, its physiological functions remain controversial (Cashikar et al., 1997; Grote et al., 1998). In this study, part of the PvPAP3-GFP signals was detected in the apoplast of onion cells, while a significant fraction of the signals was found on the plasma membrane (Fig. 7). Consistent with this result, bioinformatics analysis shows that 17 amino acids of the signal peptides on the N terminus of PvPAP3 were predicted as hydrophobic. These results together indicate that the hydrophobic signal peptides at the N terminus of PvPAP3 might be a transmembrane domain and anchor the protein on the plasma membrane. However, due to the proteolytic removal, the association of PvPAP3 with membrane might be unsteady, which could be one of the reasons for the detection of certain PvPAP3-GFP signals in the apoplast. Another possibility is that the protein could be directly released into the extracellular regions.

Given the high activity of PvPAP3 against ATP and the subcellular localization, we speculate that PvPAP3 could function in P nutrition by enhancing the extracellular ATP utilization. Our data showed that overexpressing PvPAP3 could significantly increase the ATP-hydrolyzing activity of the transgenic hairy roots (Fig. 8). Subsequently, improved growth and P accumulation of these transgenic hairy roots were observed when ATP was supplied as the sole P source (Fig. 9). These findings indicate that enhanced expression of PvPAP3, as well as increased accumulation of PvPAP3, may help bean hairy roots to utilize ATP in the root
Consistent with our findings, Thomas et al. (1999) showed that overexpression of Apyrase resulted in augmentation of the accumulation of Pi derived from extracellular ATP in pea (Pisum sativum). Even ATP content is generally low in soils, and it has been suggested that ATP content could reach millimolar levels in certain special microenvironments, such as in the regions adjacent to cell injury or places where there is a high exocytotic activity in roots (Thomas et al., 1999; Jeter and Roux, 2006). Thus, it is possible that utilization of ATP could be important for plant adaptation to environments that are low in P availability but rich in organic matter. In addition to mobilizing Pi from ATP, PvPAP3 might also be involved in quenching extracellular ATP signals that can affect cytosolic Ca^{2+} concentration, mitogen-activated protein kinase activity, and production of nitric oxide and reactive oxygen species (Demidchik et al., 2003; Jeter et al., 2004; Song et al., 2006; Wu et al., 2008; Wu and Wu, 2008). Since expression of PvPAP3 is also strongly induced in leaves by Pi starvation, we cannot exclude the possibility that PvPAP3 might be involved in the utilization or signaling of extracellular ATP released by plants.

Unlike most studies regarding the expression patterns of plant PAPs in response to environmental stresses, in this research we started by purifying the target protein and then obtained the full-length PvPAP3 cDNA from a cDNA library of the P-efficient bean genotype G19833. Subsequently, the expression pattern of PvPAP3 was investigated under different nutrient conditions. The expression of PvPAP3 was strongly induced by Pi starvation in both leaves and roots but not by other nutrient deficiencies, including N, K, and Fe (Fig. 5), indicating that PvPAP3 was specifically regulated by P availability at the transcriptional level. Induction of PAP expression by Pi starvation has been well documented in other plant species, such as Arabidopsis and potato (del Pozo et al., 1999; Li et al., 2002; Zimmermann et al., 2004). It has been suggested that APase activity in plants may contribute to improve P uptake from organic P in soils (Schachtman et al., 1998; Raghothama, 1999; Richardson et al., 2001). Enhanced expression of PAP genes in response to Pi starvation suggests that PAPs, like the other APases, might play an important role in P remobilization and acquisition in plants.

It has been well documented that low P availability increases APase exudation or enhanced internal APase activity in plants. It has also been found that there is a positive relation between root APase activity and P uptake from inositol hexaphosphate in bean (Helal, 1990) and barley (Hordeum vulgare; Asmar et al., 1995), showing that APase activity might be closely related to plant P efficiency. However, Yan et al. (2001) demonstrated that a major APase isoform in leaves was missing in the P-efficient genotype and thus could not confer P efficiency in common bean. In our study, there was no difference in total APase activity in roots between the P-efficient genotype, G19833, and the
P-efficient genotype, DOR364, confirming that at least in common bean overall APase activity cannot be considered a critical index for P efficiency. This could be due to the heterogeneity of APases in plants. In the case of common bean, there are two major APase isoforms that contribute to APase activity in roots under low-P conditions. The APase studied here, PvPAP3, is Pi starvation induced, but the other isoform is not (Fig. 1), suggesting that it is important to separate different APase isoforms in order to study their functions as related to P efficiency. Interestingly, the speed and intensity of transcription induction of PvPAP3 were much faster and greater in the P-efficient genotype, G19833, compared with the P-inefficient genotype, DOR364 (Fig. 6), strongly suggesting the contribution of PvPAP3 to effective P efficiency in common bean. It has been verified that the effective P efficiency of G19833 is possibly contributed by a shallower root system, exudation of more organic acids and protons, formation of more aerenchyma in roots, and the higher expression of a Pi transporter gene (PoPTI; Shen et al., 2002; Fan et al., 2003; Liao et al., 2004; Tian et al., 2007). This suggests that highly induced expression of PvPAP3, along with changes of root morphological and physiological traits, might cause the superior P efficiency in G19833.

In conclusion, our results demonstrate that PvPAP3 is a novel plant PAP that might function in the adaptation of common bean to Pi starvation, possibly through its involvement in ATP hydrolysis and the use of extracellular ATP as a P source from the environment.

MATERIALS AND METHODS

Plant Materials and Growth Conditions

Two common bean (Phaseolus vulgaris) genotypes, G19833 and DOR364, were employed. Among them, G19833 was characterized as a P-efficient genotype with a better adaptation to low-P conditions (Yan et al., 1995a, 1995b).

For protein purification, seeds of G19833 were surface sterilized for 1 min in 10% (v/v) hydrogen peroxide and then germinated in the dark on germination papers soaked with half-strength modified nutrient solution as described by Yan et al. (2001). The full-strength modified nutrient solution without P was composed of (in μM) 3,000 KNO₃, 2,000 Ca(NO₃)₂, 250 MgSO₄, 25 MgCl₂, 12.5 H₂BO₃, 1 MnSO₄, 1 ZnSO₄, 0.25 CuSO₄, 0.25 (NH₄)₆Mo₇O₂₄, and 25 Fe-Na-EDTA. Seven days after germination, uniform seedlings were transplanted into nutrient solution without P addition. Nutrient solution was continuously aerated and replaced once a week. Roots were harvested for protein purification at 10 d after Pi starvation. For analysis of APase activity and isoforms in leaves and roots, uniform seedlings were transplanted into the nutrient solution with or without P addition (500 μM KH₂PO₄). Leaves and roots were separately harvested at 10 d after treatment.

For the P dose-response experiment, G19833 and DOR364 seedlings were grown for 10 d in the nutrient solution supplied with 5, 50, 100, or 250 μM KH₂PO₄. For the time-course expression experiment, seedlings were grown in the full-strength nutrient solution supplied with 250 μM KH₂PO₄ for 7 d and then transplanted to the Pi starvation solution. At 4, 8, and 12 d after treatment, leaves and roots were separately harvested. In order to study the response specificity to nutrients, G19833 seedlings were grown in the nutrient solution lacking K, N, Fe, or P and leaves and roots were harvested 10 d after treatment. All experiments, unless otherwise mentioned, had four biological replicates.

Purification of PvPAP3

Common bean roots were harvested and frozen at −80°C. About 80 g of frozen tissue was homogenized with a Polytron at 4°C in 240 mL of extraction buffer containing 100 mM Tris-HCl (pH 8.0), 0.02 mM EDTA, 25 mM ascorbic acid, 10% (v/v) glycerol, and 0.0001% (w/v) phenylmethylsulfonyl fluoride. After filtration through four layers of cheesecloth and centrifugation, the supernatant was fractionated on ice with ammonium sulfate. The fraction precipitates at 60% and 80% were collected after 2 h of incubation on ice by centrifugation. The pellets were resuspended in 20 mL of 20 mM Tris-HCl at pH 8.0 and then centrifuged to remove the insoluble materials. The supernatant was desalted by ultrafiltration in the same extraction buffer.

The retrieving of target protein from nondenaturing PAGE gels followed the procedures developed by Miller et al. (2001). Briefly, proteins in the supernatant were separated on nondenaturing 8% PAGE gels followed by the procedures developed by Miller et al. (2001). Briefly, proteins in the supernatant were separated on nondenaturing 8% PAGE gels followed by the procedure developed by Yan et al. (2001). The activity-stained section was realigned with the unstained portion of each gel, and the gel area corresponding to the activity was excised. The gel slices were homogenized in 20 mM Tris-HCl at pH 8.0. After centrifugation at 12,000g for 10 min, the supernatant was collected and concentrated by ultrafiltration.

About 0.5 mL of supernatant was loaded onto a Q-Sepharose FF column, which had been connected to an AKTA PURIFIER system and preequilibrated with Tris-HCl buffer (20 mM, pH 7.5). The column was washed with Tris-HCl (20 mM, pH 7.5) buffer until the A₂₈₀ decreased to baseline. Then, the column was eluted with a linear gradient buffer (0–0.75 M NaCl in 20 mM Tris-HCl...
buffer, pH 7.5). The single activity peak was collected and concentrated to about 250 μL using an Amicon Ultra-15.

Enzyme Activity Assays, Protein Determination, and Gel Electrophoresis

APase activity was determined by measuring the release of nitrophenol from p-NPP in 45 mM Na-acetate buffer (pH 5.0) as described by Yan et al. (2001). Extracts of plant tissues were incubated at 35°C for 15 min in 2 mL of 45 mM Na-acetate buffer containing 1 μM p-NPP (pH 5.0). The reaction was stopped by adding 1 mL of 1 N NaOH, and the A_{405} was measured. Protein concentration was determined by the Coomassie Brilliant Blue method using bovine serum albumin as a standard (Bradford, 1976). The activities toward ATP and other substrates were measured according to the methods described by Ching et al. (1997). Briefly, enzyme extracts or purified PvPAP3 were incubated with 2 mL of 20 mM Tris-HCl buffer containing 4 mM ATP or alternative substrates at 35°C for 15 min. The released P content was determined by the photocolormetric method (Murphy and Riley, 1963).

To study the thermal stability of PvPAP3, the purified PvPAP3 was separately incubated at 25°C, 30°C, 40°C, 50°C, 60°C, and 70°C for 15 and 30 min, and then its activity was measured as before. Enzyme activity at each temperature was expressed as the percentage of enzyme activity incubated at 25°C. SDS-PAGE was carried out as described by Cellaleti et al. (1994), and gels were stained with Coomassie Brilliant Blue. APase isozymes were identified as described by Lefebvre et al. (1990). In total, 50 μg of protein extract from roots and leaves was separated on native gels for APase isoform detection. Since described by Lefebvre et al. (1990). In total, 50 μg of protein extract from roots and leaves was separated on native gels for APase isoform detection. Since described by Lefebvre et al. (1990).

The column was eluted with 2 column volumes of Tris-HCl (10 mM, pH 8.0) buffer at the rate of 0.5 mL min⁻¹. Solution in the tubes was measured at 280 nm, and native molecular mass was calculated from a plot of elution volume/void volume against log molecular mass using the following proteins as standards: albumin (67.8 kD), ovalbumin (44.6 kD), chymotrypsinogen A (19.2 kD), and ribonuclease A (14.3 kD).

Estimation of Native Molecular Mass with a Sephadex G-100 Column

About 1.0 mL of solution from the Q-Sepharose column, concentrated with an Amicon Ultra-15, was applied to the Sephadex G-100 (2 × 60 cm) column. The column was eluted with 2 column volumes of Tris-HCl (10 mM, pH 8.0) buffer at the rate of 0.5 mL min⁻¹. Solution in the tubes was measured at 280 nm, and native molecular mass was calculated from a plot of elution volume/void volume against log molecular mass using the following proteins as standards: albumin (67.8 kD), ovalbumin (44.6 kD), chymotrypsinogen A (19.2 kD), and ribonuclease A (14.3 kD).

Tryptic in-Gel Digestion

Target protein bands of interest were manually excised from the SDS-PAGE gels. Gel chips were destained with 50% (v/v) methanol containing 25 mM ammonium bicarbonate (pH 8.0) and digested for 16 to 18 h at 30°C. After digestion, the liquid containing the tryptic peptides was extracted from gel chips and loaded into the Sephadex G-100 (2 × 60 cm) column. The column was eluted with 2 column volumes of Tris-HCl (10 mM, pH 8.0) buffer at the rate of 0.5 mL min⁻¹. Solution in the tubes was measured at 280 nm, and native molecular mass was calculated from a plot of elution volume/void volume against log molecular mass using the following proteins as standards: albumin (67.8 kD), ovalbumin (44.6 kD), chymotrypsinogen A (19.2 kD), and ribonuclease A (14.3 kD).

MALDI-TOF/TOF MS

MS analysis was carried out using a MALDI-TOF/TOF tandem mass spectrometer (ABI 4700) proteomics analyzer (Applied Biosystems). For acquisition of mass spectra, 0.5 μL of trypsin-digested samples was spotted onto a MALDI plate, followed by 0.5 μL of matrix solution (4 mg mL⁻¹ α-cyano-4-hydroxycinnamic acid in 35% [v/v] acetonitrile and 1% [w/v] trifluoroacetic acid). The MS peaks (MH⁺) were detected on minimum signal to noise (S/N) ratio ≥ 20 and cluster area S/N threshold ≥ 25 without smoothing and raw spectrum filtering. Fragmentation of precursor ions was performed using MS-MS 1-kV positive mode with collision-induced dissociation and argon as the collision gas. MS/MS spectra were accumulated from 3,000 laser shots using default calibration with Fluor-Glubinopeptide B from the 4700 Calibration Mixture (Applied Biosystems). The MS/MS peaks were detected on minimum S/N ratio ≥ 3 and cluster area S/N threshold ≥ 15 with smoothing.

Expression of PvPAP3 in Escherichia coli and Antiserum Production

The coding region of PvPAP3 was cloned into the pET28a expression vector and transferred to E. coli (BL21) cells. To express PvPAP3, cells were grown at 37°C until their density reached 6.0, and then 1 μL isopropylthio-β-galactoside was added. Extraction and purification of PvPAP3 were conducted after 2 h of incubation at 28°C following the instructions of the His-Tag purification kit (Novagen). The purified PvPAP3 from E. coli was used to produce PvPAP3 antibody, which was provided by GL Biochem.

Protein Immunoblot Analysis

Western blotting was carried out as described by Miller et al. (2001) with some modifications. Briefly, the purified PvPAP3 from plant roots and the extracted proteins from hairy roots were resolved by SDS-PAGE and then electrophoretically transferred to a polyvinylidene difluoride membrane (Bio-Rad). Prior to exposure to PvPAP3 antiserum, the membrane was incubated overnight in 0.01 μL Tris buffer (pH 8.0) containing 5% (w/v) nonfat dry milk (Bio-Rad) and 0.15 μL NaCl, followed by three washes with washing buffer containing 0.01 μL Tris (pH 8.0) and 0.1% (v/v) Tween 20. The blot was then incubated for 1 h with the PvPAP3 antibody (1:1,000 dilution). After three washes with the same washing buffer, alkaline phosphatase-tagged secondary antibody was added, and the blot was developed.

Subcellular Localization of PvPAP3-GFP Fusion Protein

The plasmids of the PvPAP3-GFP fusion protein constructs and 35S:GFP empty vector were transformed into the onion (Allium cepa) epidermal cell by particle bombardment using a helium-driven accelerator (PDS/1000; Bio-Rad). Bombardment parameters were as follows: 1,100 p.s.i. bombardment pressure, 1.0-mm gold particles, a distance of 9 cm from macrocarrier to the samples, and
devolved vacuum of 88,000 Pa. The transformed epidermal cells were cultured on Murashige and Skoog medium for 16 h before observation by a confocal scanning microscopy system (TCS SP2; Leica). For plasmolysis, the transformed cells were treated with 30% Suc solution. To distinguish the cell wall, the transformed cells were stained by propidium iodide.

Overexpression Constructs of PvPAP3
For overexpression of PvPAP3 driven by the 35S promoter, the coding region of PvPAP3 was amplified with primers PvPAP3F (5’-TCAGAGGCTTGGCATGGCGTTATC-3”) and PvPAP3R (5’-CTGACCCGTGATCTT-3”). The amplified fragment was digested with HindIII and Milu and cloned into the binary vector obtained from South China Agricultural University (Supplemental Fig. S1).

Development of Transgenic Common Bean Hairy Roots
Common bean hairy roots were produced as described by Cho et al. (2000) with minor modifications. Briefly, the seeds of DOR364 were surface sterilized by incubating overnight in Cl₂ gas produced by a mixture of 100 mL of NaClO with minor modifications. Briefly, the seeds of DOR364 were surface sterilized by incubating overnight in Cl₂ gas produced by a mixture of 100 mL of NaClO with minor modifications. Briefly, the seeds of DOR364 were surface sterilized by incubating overnight in Cl₂ gas produced by a mixture of 100 mL of NaClO with minor modifications. Briefly, the seeds of DOR364 were surface sterilized by incubating overnight in Cl₂ gas produced by a mixture of 100 mL of NaClO with minor modifications. Briefly, the seeds of DOR364 were surface sterilized by incubating overnight in Cl₂ gas produced by a mixture of 100 mL of NaClO with minor modifications. Briefly, the seeds of DOR364 were surface sterilized by incubating overnight in Cl₂ gas produced by a mixture of 100 mL of NaClO with minor modifications. Briefly, the seeds of DOR364 were surface sterilized by incubating overnight in Cl₂ gas produced by a mixture of 100 mL of NaClO with minor modifications. Briefly, the seeds of DOR364 were surface sterilized by incubating overnight in Cl₂ gas produced by a mixture of 100 mL of NaClO with minor modifications. Briefly, the seeds of DOR364 were surface sterilized by incubating overnight in Cl₂ gas produced by a mixture of 100 mL of NaClO with minor modifications. Briefly, the seeds of DOR364 were surface sterilized by incubating overnight in Cl₂ gas produced by a mixture of 100 mL of NaClO with minor modifications. Briefly, the seeds of DOR364 were surface sterilized by incubating overnight in Cl₂ gas produced by a mixture of 100 mL of NaClO with minor modifications. Briefly, the seeds of DOR364 were surface sterilized by incubating overnight in Cl₂ gas produced by a mixture of 100 mL of NaClO with minor modifications. Briefly, the seeds of DOR364 were surface sterilized by incubating overnight in Cl₂ gas produced by a mixture of 100 mL of NaClO with minor modifications.

Sequence data from this article can be found in the GenBank/EMBL data libraries under accession number FJ464333.

Supplemental Data
The following materials are available in the online version of this article.
Supplemental Figure S1. Diagram of the binary construct.

ACKNOWLEDGMENTS
We are grateful to Drs. Leon Kochian, Yongchao Liang, Lixing Yuan, and Hong Mei for critical comments; to Dr. Yaoyuan Liu for providing the overexpression vector and Dr. Peter M. Gresshoff for A. rhizogenes strain K599; to Ruibin Kuang and Sau-Na Tsai for technical help; and to Drs. Xiurong Wang, Yingxiang Wang, Jing Zhao, and Wenbing Guo for valuable discussions.

Received September 22, 2009; accepted November 23, 2009; published December 2, 2009.

LITERATURE CITED
Lefebvre DD, Duff SM, Fife CA, Julien-Inalsingh C, Plaxton WC (1990) Response to phosphate deprivation in Brassica nigra wall, the transformed cells were stained by propidium iodide.

New Phytol 178: 80–91

