






points within the root system that have more than one
equidistant point on the root system’s boundary. In
practice, the medial axis is a series of curves comprised
of the union of all center lines of the branching root
system. The radius of a root at a medial pixel is
estimated as a distance from this pixel to the closest
boundary pixel. We used bwmorph and bwdist Matlab
functions to compute the medial axis and to estimate
the distance from the medial axis to the closest bound-
ary points. Note that occlusions or crossings between
roots can distort the medial axis when analyzing
individual two-dimensional (2D) images, an issue
that will be resolved, in part, by transitioning to 3D
analysis in future work.

High-Throughput Analysis of Root Systems from 12 Rice

Varieties Using an Automatic Image Analysis Pipeline

Next, we created an automatic phenotyping system
to accompany the gel-based imaging platform. This
analysis system is comprised of a pipeline that
preprocesses each image, calculates root features for
each image, and then combines all of the phenotyp-
ing information into a comprehensive trait-ranking
step (Supplemental Fig. S1). In the first step, the
original images were cropped and converted to bi-
nary images using an adaptive thresholding method
that accounts for variations in background image

intensity. Next, an automatic phenotyping system
calculated the 16 different RSA traits discussed above
for each 2D image.

We tested our pipeline and trait analysis using 12
genotypes of rice (93-11, Caipo, Basmati 217, Teqing,
Moroberekan, Jefferson, Nipponbare, Lemont, IR64,
Bala, Azucena, and Carolina Gold). Genotypes were
chosen for their parentage in available QTL mapping
populations and their diversity within rice. RSA traits
for most of these varieties are not well known. Using
the above features, we automatically calculated RSA
features of these genotypes at the 14th dap. We found a
wide diversity of root system structures within the 12
genotypes (Fig. 2; Supplemental Table S1). Some root
systems have characteristic shapes, for example Caipo
and Azucena individuals displayed a long root system
with a small width-to-depth ratio, whereas Basmati
217 individuals had a dense system of shorter roots.
We observed a trend such that indica varieties tended
to have more shallow root systems with wider RSA
(higher width-to-depth ratio) compared to the longer
root systems with lower width-to-depth ratios of many
japonica varieties. Additionally, RSA was consistent
with conditions in which a genotype is typically
grown. For example, the longer roots of Caipo and
Moroberekan are well suited for the upland soils of
Brazil and West Africa, respectively, while the shal-
lower RSA of IR64 and Teqing are sufficient for irri-

Figure 2. Root architecture variation is higher among genotypes than within a genotype. Each set of three images represents a
different rice genotype used in the analysis. Within each set are three individual plants of that genotype.

Noninvasive Imaging and Trait Ranking of Plant Root Systems

Plant Physiol. Vol. 152, 2010 1151
 www.plantphysiol.orgon September 20, 2017 - Published by Downloaded from 

Copyright © 2010 American Society of Plant Biologists. All rights reserved.



gated conditions. Most genotypes exhibited some de-
gree of branching, but not in a way that could be easily
categorized in a qualitative fashion.

Our automatic phenotyping also illustrated the
remarkable similarity of RSA within a genotype (Fig.
2), despite the highly plastic nature of RSA traits
(Malamy, 2005). We examined the mean RSA traits of
all 12 genotypes 14 dap (Supplemental Table S1).
Approximately 20 images, taken every 18 degrees,
were used from each individual plant. For each image,
we calculated the 16 RSA features described above.
Statistical analyses of the difference between mean
traits of distinct genotypes demonstrated that RSA
varied significantly less within a genotype than be-
tween genotypes (Figs. 2 and 3; see “Materials and
Methods”). We chose to examine pair-wise compari-
sons of all 12 genotypes, as representations of the types

of root systems within rice. Of the 66 possible pair-
wise comparisons between 12 genotypes, 64 had at
least one trait that varied significantly between a pair
of genotypes even when accounting for the effect of
performing multiple comparisons (see Supplemental
Table S2 and “Materials and Methods”). Notably, this
was true even when analyzing plants that had germi-
nated at slightly different times. These results suggest
a strong genetic component underlying rice varietal
mean RSA traits.

Trait Parameter Validation

To validate our trait measurements, we created a
wire model of a root system and used our pipeline for
imaging and analysis. We then compared these data to
manual measurements of the wire model not in the

Figure 3. SVM analysis identifies distinguishing traits in root systems. A to C, SVM comparison of Basmati 217 and Jefferson. D to
F, SVM comparison of Lemont and Nipponbare. A and D, Images from eight individuals each of Basmati 217 and Jefferson (A)
and Lemont and Nipponbare (D). B and E, Feature maps of root architecture. Each row represents a unique image of a root,
approximately 20 images per individual. Columns represent features whose values are normalized to have zero mean and unit
SD. Images are ordered according to their distance from the separating hyperplane. The black dotted line indicates the
classification boundary between the two genotypes. The bar on the left indicates the genotype. Misclassified images are seen on
the left bar as blue lines above the dotted line or red lines below. C and F, Normalized mean feature values show the intra-and
intervarietal variation for the 12 varieties examined. The points represent average normalized values, and the small lines
represent SEs. The two vertical lines represent a visual aid to follow the difference between two specific varieties.
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gel. Because of strong reflection from the model on the
glass when lit from the sides, we used a UV lightbox
positioned behind the cylinder to light the model in
the gel (Supplemental Fig. S2). We chose four traits
that could reliably be measured by hand to compare to
the imaging and computational analysis: Depth,
Max_Width, Av. Radius, and Total Length. Hand mea-
surements differed from 0.67% to 6.5% compared to
the average measurements computed for 20 images,
indicating the expected level of accuracy of our imag-
ing and computational pipeline in quantifying RSA
(Supplemental Table S3). Previous reports examining
the accuracy of a nondestructive technique have
shown differences within 10% for root length (Gregory
et al., 2003), 13% to 22% for average root segment
length and number of segments (Perret et al., 2007),
and 21% to 41% for root length per volume (Heeraman
et al., 1997). Since many of the other traits we describe,
such as surface area, volume, and SRL, involve the
computation of the four traits validated here, the other
traits in our pipeline are also likely to be reliable.

RSA Trait Ranking

Our ultimate goal is to identify genes that underlie
RSA. To this end, we wanted a simple method to
identify which set of traits best distinguishes RSA
between two genotypes, for example, between the
parents of a mapping population. We can then use
these ranked traits as a prioritized list of QTLmapping
candidates. We chose to rank traits according to the
degree to which they can be used to separate a pair of
genotypes. We ranked traits using a support vector
machine (SVM) analysis based on the set of 16 calcu-
lated features for each genotype. We tried several
different statistical methods, including principal com-
ponent analysis, but none of these provided the ac-
curacy of SVM. SVM is a supervised learning method
for pattern recognition given labeled data (Vapnik,
1998). Several different types of SVMs are available.
We chose the standard approach of utilizing linear
SVM with binary classification as this method consis-
tently performed well. SVMs have been used in bio-
logical systems to classify microarray expression data
and predict phenotypes (Furey et al., 2000; Ramaswamy
et al., 2001). Most recently, SVMs have been used to
analyze maize roots (Zhong et al., 2009). Here, the class
of each individual is the rice genotype, e.g. Basmati
217 or Jefferson. Our goal in using SVM analysis was
to determine which traits contributed the most to
distinguishing between examples from two distinct
genotypic classes.
The first step in the SVM analysis was to determine

whether root systems of different genotypes could be
separated. We used an SVM classifier to separate
images of each possible pair of genotypes (see “Mate-
rials and Methods” for details). We visualized the
results of SVM using a heatmap (Fig. 3; Supplemental
Fig. S3). As an example, we present the SVM-derived
heatmaps for comparing Basmati 217 and Jefferson

along with Lemont andNipponbare in Figure 3. For all
66 of the total pairwise classifications (Supplemental
Fig. S3), the SVM classifier successfully determined the
genotype based on single RSA images, the vast ma-
jority with greater than 95% accuracy (Supplemental
Tables S3 and S4). High classification accuracy ensures
that feature rankings obtained from the SVM analysis
are meaningful.

Feature ranking via SVM allowed us to determine
the relative importance of each feature in each pair-
wise classification. Figure 4 depicts the normalized
feature scores of RSA images from all 66 pairwise
classifications (see “Materials and Methods” for ex-
planation of how rankings are calculated). The nu-
merical values of feature ranks for each pairwise
comparison between individuals are presented in
Supplemental Table S4. Importantly no single feature
was the top-ranked feature for all comparisons; depth
was the most frequently top-ranked feature (11/66
comparisons) followed by average root radius (top
ranked in 9/66 comparisons). The diversity of top-
ranked features demonstrates the breadth of variation
within the rice germplasm chosen and suggests that
features useful for QTL analysis are dependent on the
mapping population assayed.

To ensure that the simultaneous analysis of 16
features did not lead to successful classification of
genotypes by chance (and therefore spurious trait
ranking), we assessed the statistical significance of the
accuracy of each pairwise classification via a reshuf-
fling test (see “Materials and Methods” and two illus-
trative examples in Supplemental Figs. S4 and S5). The
statistical test demonstrated that the classifications are
unlikely to be the result of chance correlations. For
image-based classification, all 66/66 pairwise compar-
isons were significant (P, 0.001). However, because of
correlations in the RSA of images from the same
individual, we also developed an individual-based
classification and permutation scheme (see “Materials
and Methods”). Using the individual-based analysis,
we find that all 66 pairwise comparisons are signifi-
cant (P , 0.05), which confirms that the classification
accuracies are unlikely to be the result of chance
correlations.

DISCUSSION

We have described a noninvasive imaging and
accompanying analysis platform to automatically phe-
notype and rank traits in complex root systems. Our
imaging platform overcomes several limitations of
previous noninvasive platforms. It allows observation
of unconstrained root growth in three dimensions for
at least 2 weeks, while maintaining short imaging
times. This is invaluable for QTL experiments, in
which hundreds of plants must be imaged. This sys-
tem is also highly flexible. If a longer growth time is
required, the size of the container used for growth can
be increased. Further, strength or nutrient composition
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of the gellan gum can be altered without compromis-
ing image quality.

Traditional measurements of root architecture,
while useful for describing aspects of the rice root
system, do not account for the spatial distribution and
the complexity of rice RSA. We therefore chose to
phenotype both traditional and novel traits for our
analysis. Several of the traditional features we esti-
mate, such as SRL and average root radius, are known
to be important for plant fitness (Eissenstat, 1991;
Casper and Jackson, 1997; Hodge et al., 1999; Robinson
et al., 1999; Hodge, 2009). It is probable that our novel
traits, which capture the spatial distribution of the root
system, are also contributors to plant fitness. For
example, solidity and bushiness are likely to be func-
tionally important indicators of root foraging, but have
been inaccessible due to prior imaging and analysis
limitations (Hodge, 2004; Kembel et al., 2008). Our
method thus allows a more comprehensive picture of
RSA and expands the number of RSA QTL that can be
identified. However, as both traditional and novel
traits are proxies for root system functions, further
work is needed to determine their functional impor-
tance to RSA.

Our phenotyping demonstrated that RSAvaries less
within varieties than between varieties, suggesting a
strong genetic component to RSA. In rice, key contrib-
utors to this variation are the depth and average root
radius, as these traits were the top-ranked traits in 20
of 66 pairwise comparisons. Trait ranking showed that
the features that best differentiate two genotypes de-
pend on the genotypes compared. For example, be-
tween Nipponbare and Jefferson, perimeter and
width-to-depth ratio are the top-ranked features (Fig.
4; Supplemental Table S4), while between Nipponbare
and Azucena, the volume and SRL are top ranked (Fig.
4; Supplemental Table S4). Some features, such as
depth and average root radius, were consistently
among the top ranked, while other features, such as
the bushiness index, convex area, surface area, maxi-
mum width, and width-to-depth ratio, were never
among the top-ranked features. However, calculation
of the rank of each feature in the classification showed
that all these features contributed considerably to
specific comparisons (Supplemental Table S4). Nota-
bly, even with two highly similar root systems (Fig. 3,
D–F) we were able to identify traits that discriminate
between the genotypes. This was important, as it
suggests that our analysis can identify traits useful in
mapping populations, which typically have subtle
gradations of phenotypes and that cannot be distin-
guished by eye.

Currently, we use multiple images in 2D as a proxy
for 3D representation, as 3D reconstruction is not
possible with the present version of our setup. Some
of our features are 2D traits, such as perimeter, convex
area, network area, and bushiness index. However, for
other traits like average root radius, SRL, depth, and
solidity, we estimate a 3D feature using multiple 2D
images. Although our wire model validation demon-

strates that multiple 2D images and their analyses
provide good estimates of some RSA parameters,
ideally, 3D images are needed to provide trait
measurements of highest accuracy. We are currently
developing the next generation of technology for ac-
quisition, reconstruction, and processing of 3D images
of plant roots.

One limitation of our platform is the artificial
growth media, since artificial systems like gellan
gum differ from soil. While in most cases the link
between field traits and RSA has still to be demon-
strated, a recent report showed high correlation be-
tween root architecture parameters for phytagel-grown
soybean (Glycine max) and biomass and nutrient con-
tent for field-grown soybean (Fang et al., 2009). Fur-
ther, QTL for monocot root traits in hydroponics and
grain yield in the field have been shown to overlap
(Tuberosa et al., 2002). Additional work has identified
QTL for root traits in hydroponics in the same chro-
mosomal region with those previously identified in

Figure 4. Graphical depiction of the relative importance of each
feature to each of the 66 pairwise comparisons for the 12 rice varieties.
Pairs of varieties in each comparison are listed at left. Each row
represents the relative importance of every feature (contained in
columns), where the contribution of each feature is coded according
to the legend color bar at right. Feature rankings are the average of
multiple SVM comparisons, each of which has been normalized such
that the sum of squared rankings is equal to 1. Actual numerical values
for each feature for eachcomparison are listed in Supplemental Table S4.
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soil-grown rice (Cui et al., 2008), while others have
demonstrated strong correlations between hydroponic
root growth and field drought resistance (Price et al.,
1997), though many of these traits were QTLs of large
effect.
Our platform overcomes limitations of previous

imaging methods by rapid acquisition of high-quality
images. These images, combined with our automated
feature calculation, make it possible to phenotype both
conventional traits and those that were formerly more
difficult to estimate but thought to be crucial to re-
source uptake by roots (Hodge, 2004; Kembel et al.,
2008). Our method thus expands the number of func-
tionally important RSAQTL that can be identified, and
in turn, will lead to broader knowledge regarding the
genetic mechanisms underlying RSA. In addition, our
approach is flexible in terms of the species, traits, and
conditions assayed. It is also relatively low cost, and
the technology is readily accessible. The feature rank-
ing is automated and rapid, permitting comprehensive
phenotyping, and reducing researcher bias. The meth-
odology presented here will contribute to the goal of
identifying genes underlying RSA, enabling advances
in crop productivity.

MATERIALS AND METHODS

Plant Growth

Seeds were dehulled and sterilized with 10% peroxide for 10 min, followed

by 70% ethanol for 1 min, and rinsing three times with sterile water. Sterilized

seeds were planted at approximately 1 cm below the surface of the gel. Plants

were grown in 2 L ungraduated borosilicate cylinders (Fisher) filled with

750 mL Yoshida’s nutrient solution (Yoshida et al., 1976) and 0.3% Gelzan

(the highest grade of gellan gum available; Sigma). Cylinders are approxi-

mately 520 mm high, with an o.d. of 82.5 mm. To prevent the agar from

moving during imaging, six to eight glass pipette tips were bonded to the

bottom of each cylinder with Sylgard 184 (Robert McKeown Co.). Plants were

grown for 14 d at 12-h day/night, 28�C day, 25�C night. Images were taken

14 dap. Supplemental Fig. S6 details the growth protocol. Twelve rice

(Oryza sativa) genotypes were used: 93-11 (9311; indica), Caipo (Cai; tropical

japonica), Basmati 217 (Ba217; Basmati), Jefferson (Jef; tropical japonica), Teqing

(Teqing; indica), Lemont (Lemont; tropical japonica), Moroberekan (Moro;

tropical japonica), Nipponbare (Nipp; temperate japonica), IR64 (IR64; indica),

Carolina Gold (Gold; japonica), Bala (indica), and Azucena (tropical japonica).

Genotypes were chosen based on parentage of available QTL mapping

populations and to represent both of the two major subpopulations of rice

(indica and japonica). Analyses were performed on six to 18 individuals of each

genotype.

Imaging Platform

Plants were imaged using a PhotoCapture360 turntable and software from

Ortery Technologies connected to a Canon PowerShot G7 digital camera and

Dell Latitude 620 laptop computer. Cylinders were lit from the sides with

fluorescent light bulbs, and from below with a UV light box (VWR); lighting

conditions were similar for all experiments. Images from 20 angles per plant

per day were acquired. Each plant required approximately 10 min to image.

Blurred images were discarded, and the rest were cropped to remove the seed,

aerial structures of the plant, and the sides of the cylinder using a batch

cropping function in Adobe Photoshop. Images were converted to binary

format using an adaptive thresholding method coded in MATLAB. In less

than 5% of the images, small blemishes on the cylinders or in the gels that

could impact the thresholding process were removed in Adobe Photoshop (no

alterations were made to the root system).

Image Preprocessing

A gray-scale image X is given as input in jpeg format to a Matlab routine

that performs an adaptive thresholding filter. The filter step is as follows. First,

the entire image is broken up into smaller square arrays of length w, defaulted

to be 1003 100 pixels. Next, within each subimage, the mean pixel intensity, I0,

is calculated. The values of all other pixels that are a certain fraction C,

defaulted to 5%, above I0, are considered to be part of the root network, all

others are considered to be part of the background (and are set to 1 and 0,

respectively). Finally, all connected clusters of 1-s (i.e. part of the network) are

found, and those clusters that are smaller than some critical size, b defaulted to

be 5% of the window size, are removed. Because thresholding is local, this

method is better suited for nonstationary background intensity as is com-

monly found in images of root systems. The transformed black and white

image will be noted as Y.

Quantification of RSA Traits

The black and white image Y from the image preprocessing step is then

provided, as input, to the routine that quantifies network features. The

following traits are calculated: perimeter, solidity, convex area, network area,

median number of roots, maximum number of roots, bushiness, average root

radius, SRL, total length, surface area, maximumwidth, depth, volume, length

distribution, and width-to-depth ratio. The result of this step is a transforma-

tion:

Yi/vi

where vi denotes a vector of quantitative RSA features for each image Yi.

SVM Analysis

The previous steps described the transformation of grayscale images Xi

into black and white images Yi and then feature vectors vi. Each image has a

set of labels, Li, which contains information on the individual, including its

rice genotype. For pairwise classification, each feature vector can be labeled as

1 (for individuals of genotype 1) or 2 (for individuals of genotype 2).

The SVM method involves a training and a testing step. In training, some

fraction (generally half) of the vectors vi are selected and presented to the

classifier. We trained a classifier on a randomly chosen subset of half of the

images from a pair of genotypes from the 14th dap (the training set) and then

used the classifier to classify the other half of the images (the test set). The

objective of the classifier is to find a hyperplane (in this case a 15-dimensional

hyperplane in a 16-dimensional space) that separates the vectors into two

groups—those of type 1 and those of type 2—such that they are maximally

separated on opposite sides of the hyperplane (known as the maximum-

margin hyperplane). We use a linear SVM classifier that returns a normal

vector to the hyperplane. The absolute values of the normalized coordinates of

this vector indicate the importance of directions for separation and can be

considered as weights of contribution of each feature to the classification. The

maximum-margin hyperplane is then used to classify images based on their

position with respect to the hyperplane. Figure 4 and Supplemental Table S4

show feature ranks (averaged over multiple SVM comparisons) that are

normalized components of the normal vector to the separating hyperplane

used for pairwise comparisons.

The accuracy of SVM classification depends on the training set. Since the

training set is picked randomly, each SVM analysis results in a slightly

different accuracy. Percentage accuracies in the text and figures are the median

of all the SVM analyses for a pairwise comparison. A 100% accuracy corre-

sponds to achieving 100% accuracy in half or more of the many SVM trials run

for a pairwise comparison.

Statistical Analysis

Intra- versus Intervarietal Feature Variance

The dataset of RSA images has both intra- and intervarietal variance for the

16 features described above. Each genotype is represented by six to 18

individuals with approximately 20 images for each individual. Hence the

intravariation of the 16 features can be explained by the variation of RSA

among individuals of the same variety as well as among images of the same
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individual taken from different angles. Intervariance is caused by genetic

differences between 12 rice genotypes. We observe that intergenotype vari-

ance of RSA features is greater than the variance within a genotype (Figs. 2

and 3). To verify this, we performed a permutation test. We decided to use the

permutation test since it does not make any assumptions as to the distribution

of the observed values. This test estimates the significance of the difference

between the mean values (DI) of a root feature of two genotypes without any

assumptions on data distribution. For each pair of genotypes and for each root

feature we shuffled the labels of individuals (and hence shuffled the labels of

all images of those individuals) 1,000 times and for each shuffle we computed

the difference, DIi, i = 1 to 1,000, of the means of feature values given

reshuffled labels. The P value of the measured difference DI was estimated as

a fraction of the differences that were greater than the measured difference,

#(DIi $ DI)/1,000. The difference between mean values was considered

significant if the corresponding P value was less than 0.0031, which corre-

sponds to 0.05 level of significance with a Bonferroni correction for perform-

ing multiple comparisons of 16 features.

The test demonstrated that for each trait there is a pairwise classification

for which the mean value of the trait varies significantly (see Supplemental

Table S2). In addition, for 64 pairs of genotypes there is at least one, and on

average eight, features that vary significantly. Notice that high P values

correspond to close mean values plotted on Figure 3.

The P values can be used to obtain alternative feature rankings. However,

these rankings take into account only one feature, disregarding its relation to

the other 16 features. Nevertheless, features that are near the top of SVM-

based rankings have significant P values for most pairwise comparisons (see

Supplemental Tables S2 and S4). For example, for a given pairwise compar-

ison, the top-ranked feature using SVM image-based analysis exhibits a

statistically significant difference in mean RSAvalue using a permutation test

42/66 times. By contrast, the bottom-ranked feature using SVM image-based

analysis exhibits a statistically significant difference in mean RSAvalue using

a permutation test 18/66 times.

Classification Accuracy

The pairwise classification of images based on traits was tested to see if

classification accuracies could have been the result of chance correlations. We

randomly shuffled the image labels of all images within a pairwise compar-

ison and redid the SVM analysis 1,000 times (once for each reshuffling). The

mean accuracy of image classification for pairwise comparisons given random

shuffling of image genotype labels was generally between 40% to 70%

(Supplemental Figs. S4 and S5). In all cases the actual accuracy of SVM

pairwise classification (Supplemental Table S5) far exceeded the randomiza-

tion result, demonstrating that the classifications are not the result of chance

correlations (P , 0.001).

The above results may be affected by correlations among images of the

same individual. Therefore, we have performed the same procedure for blocks

of images, where each block represented a different individual. This means

that SVM training, classification, and permutations were done using individ-

ual-based schemes (classification of a block split by the hyperplane was

resolved using the majority rule). A permutation test using 1,000 reshufflings

at the individual level showed that the accuracy of all 66 pairwise individual-

based comparisons (Supplemental Table S6) were statistically significant with

P value less than 0.05. This further strengthens our finding that classifications

are unlikely to be the result of chance correlations.

The difference in significance levels between the image-based and the

individual-based schemes is caused by the lack of data for the latter scheme

(on average 20 individuals versus an average of 390 images in each pairwise

comparison), which also resulted in a drop in accuracy from an average of 99%

to an average of 92% (Supplemental Table S6). We expect that the accuracy of

individual-based classification can be improved by modifications to image

preprocessing steps that will remove large-scale noise present in some images.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Image analysis pipeline.

Supplemental Figure S2. Wire model.

Supplemental Figure S3. SVM heatmaps of the 66 possible pairwise

comparisons.

Supplemental Figure S4. Randomization of the root system images of the

pairwise comparison for Basmati217 and Jefferson.

Supplemental Figure S5. Randomization of the root system images of the

pairwise comparison for Lemont and Nipponbare.

Supplemental Figure S6. Growth and imaging protocol.

Supplemental Table S1. Trait mean values and SDs for all 16 traits and 12

genotypes.

Supplemental Table S2. P values of the differences between the mean

values of root features for all 66 pairwise classifications.

Supplemental Table S3. Comparison of four traits computed in image

analysis pipeline with hand measurements for the wire model.

Supplemental Table S4. Normalized feature weights in the normal of the

separating hyperplane for each pairwise comparison for the 12 rice

varieties.

Supplemental Table S5. Median accuracy of each image-based pairwise

comparison for the 12 rice varieties.

Supplemental Table S6. Median accuracy of each individual-based pair-

wise comparison for the 12 rice varieties.
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