Channel-Like Characteristics of the Low-Affinity Barley Phosphate Transporter PHT1;6 When Expressed in Xenopus Oocytes

Christian P. Preuss, Chun Y. Huang, Matthew Gilliham, and Stephen D. Tyerman*

Australian Centre for Plant Functional Genomics, Glen Osmond, South Australia 5064, Australia (C.P.P., C.Y.H.); and School of Agriculture, Food, and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia (C.P.P., C.Y.H., M.G., S.D.T.)

Remobilization of inorganic phosphate (P_i) within a plant is critical for sustaining growth and seed production under external P_i fluctuation. The barley (Hordeum vulgare) transporter HvPHT1;6 has been implicated in P_i remobilization. In this report, we expressed HvPHT1;6 in Xenopus laevis oocytes, allowing detailed characterization of voltage-dependent fluxes and currents induced by HvPHT1;6. HvPHT1;6 increased efflux of P_i near oocyte resting membrane potentials, dependent on external P_i concentration. Time-dependent inward currents were observed when membrane potentials were more negative than −160 mV, which was consistent with nH^+•HPO_4^{2−} (n > 2) cotransport, based on simultaneous radiotracer and oocyte voltage clamping, dependent upon P_i concentration gradient and pH. Time- and voltage-dependent inward currents through HvPHT1;6 were also observed for SO_4^{2−}, and to a lesser degree for NO_3^{−} and Cl^{−}, but not for malate. Inward and outward currents showed linear dependence on the concentration of external HPO_4^{2−}, similar to low-affinity P_i transport in plant studies. The electrophysiological properties of HvPHT1;6, which locates to the plasma membrane when expressed in onion (Allium cepa) epidermal cells, are consistent with its suggested role in the remobilization of P_i in barley plants.

Phosphorus (P) is an essential macronutrient for plant growth and development, being required in the synthesis of nucleic acids, phospholipids, and ATP (Schachtman et al., 1998; Mudge et al., 2002; Lambers et al., 2006). The concentration of inorganic phosphate (P_i) in the cytoplasm of plant cells is maintained at 5 to 17 mM (Schachtman et al., 1998; Mimura, 1999) while it rarely exceeds 10 μM in the soil solution (Goldstein et al., 1988; Mimura, 1999). Agricultural crops heavily rely upon the application of P fertilizers for high yields (Morgan, 1997; Shenoy and Kalagudi, 2005; Lambers et al., 2006). P fertilizers are produced from nonrenewable deposits, and they are predicted to be half-depleted within 50 to 70 years (Oelkers and Valsami-Jones, 2008). Repeated application of P fertilizers can also result in significant environmental pollution (Sharp et al., 1994; Molen et al., 1997).

The most promising way to reduce the dependence upon P fertilizers is to improve crop P use efficiency.
The P_i transporter $HvPHT1;6$ is highly expressed in old leaves compared to young leaves, and its transcript is abundant in phloem tissue, with a lower level also observed in mesophyll cells (Rae et al., 2003). The expression of $HvPHT1;6$ in both shoots and roots is up-regulated by P deficiency, and $HvPHT1;6$ is the only $HvPHT1$ family member found so far that is expressed in the shoots with high abundance (Rae et al., 2003; Huang et al., 2008). In addition, overexpression of $HvPHT1;6$ in rice ($Oryza sativa$) suspension cells suggests it may have a high K_m or linear uptake kinetics (above wild-type P_i transport) to 1 mM external P_i (Supplemental Material S1). These data suggest that $HvPHT1;6$ plays a major role in P_i remobilization.

Until recently, heterologous expression of plant P_i transporters in yeast ($Saccharomyces cerevisiae$) mutants lacking high-affinity P_i transporters (Pho84 and Pho89) have been the main means for functional characterization of both high- and low-affinity plant P_i transporters (Muchhal et al., 1996; Leggewie et al., 1997; Daram et al., 1998; Guo et al., 2008; Liu et al., 2008). In two cases, plant suspension cells have been used for functional characterization of plant P_i transporters (Mitsukawa et al., 1997; Rae et al., 2003); however, detailed electrophysiology has not been performed. It is difficult to perform electrophysiological measurements in yeast, as well as to isolate specific plant cell types for electrophysiological measurements. *Xenopus laevis* oocytes have been used for characterization of various P_i transporters including mammalian sodium (Na)-Pi cotransporters and a plant P_i transporter (Bacconi et al., 2005; Ai et al., 2009). The rice phosphate transporter OsPT2 failed to complement yeast with a defect in high-affinity P_i transporters, but when expressed in *X. laevis* oocytes membrane depolarization could be observed in the presence of PO_4^{3-} (Ai et al., 2009). However, voltage dependence of proposed P_i transport, or potential interactions with other ions, was not investigated.

In this study, we confirm a plasma membrane localization of $HvPHT1;6$, and present a comprehensive analysis of $HvPHT1;6$ transport activities using the *X. laevis* oocyte expression system. Our results demonstrate that $HvPHT1;6$ is most likely to be a proton-coupled P_i transporter, though it has time-dependent activation at negative membrane potentials with linear concentration dependence similar to voltage-dependent ion channels; it also appears to transport SO_4^{2-} coupled to protons. As such, we discuss our results in the context of the proposed role of $HvPHT1;6$ in P_i and sulfur (S) remobilization within the plant.

RESULTS

Plasma Membrane Localization of $HvPHT1;6$

$HvPHT1;6$ mediates P_i transport into rice suspension cells (Rae et al., 2003), but its plasma membrane localization has not been established. Therefore, we created a $HvPHT1;6::GFP$ construct and transiently coexpressed with either the plasma membrane targeted marker, $AtPIP2A::mCherry$, or the vacuolar membrane marker, $yTIP::mCherry$ (Nelson et al., 2007), in onion (*Allium cepa*) epidermal cells. The green fluorescence of $HvPHT1;6::GFP$ (Fig. 1B) colocalized with the red fluorescence of the plasma membrane marker pmrk (Fig. 1, C and D). In addition, the cellular location of the green fluorescence of $HvPHT1;6::GFP$ (Fig. 1F) was separated from that of the red fluorescence of the vacuolar marker (Fig. 1, G and H), under hypertonic treatment. The red fluorescence of the vacuolar membrane marker was slightly intracellular compared to the green fluorescence of $HvPHT1;6::GFP$ (Fig. 1H). These results indicate that $HvPHT1;6$ is located on the plasma membrane.

![Figure 1](image1.png)

Figure 1. Intracellular localization of $HvPHT1;6$. A, Bright-field image of onion epidermal cells. B, The intracellular localization of $HvPHT1;6::GFP$ in onion epidermal cells. C, The intracellular localization of the plasma membrane marker, $AtPIP2A::mCherry$. D, Overlay of $HvPHT1;6::GFP$ and $AtPIP2A::mCherry$; colocalization shown in yellow. E, Bright-field image of a second onion epidermal cell. F, The intracellular localization of $HvPHT1;6::GFP$ in this cell. G, The intracellular localization of the vacuolar membrane marker, $yTIP::mCherry$ fusion. H, Overlay of the $HvPHT1;6::GFP$ and $yTIP::mCherry$ fusion, showing differing localization of green and red fluorescence. Bar = 100 μm.
Effects of HvPHT1;6 on Mortality of X. laevis Oocytes

Injection of HvPHT1;6 cRNA into X. laevis oocytes resulted in a 2-fold increase in oocyte deaths relative to water-injected control oocytes over the same time when incubated in modified Barth’s solution (MBS; Fig. 2A). Addition of 1 mM or 10 mM Pi to the MBS solution significantly decreased mortality of HvPHT1;6 cRNA-injected oocytes (Fig. 2A). No such relationship was observed in water-injected oocytes, nor for the positive control, oocytes expressing a human Na-Pi transporter. This human Na-Pi transporter has previously been shown to transport P_i into oocytes coupled with the downhill influx of Na⁺ (Bacconi et al., 2005; Virkki et al., 2005), and we are also able to show its electrogeneric P_i transport activity (data not shown). HvPHT1;6-injected oocytes also had a higher efflux rate of P_i compared to controls when no P_i was added to the bath solution (Fig. 2B). This difference in efflux was abolished when 10 mM external P_i was applied (Fig. 2B), which was correlated with the reduced mortality of HvPHT1;6-injected oocytes incubated in MBS + 10 mM P_i (Fig. 2A). The application of P_i to the bath solution reduces free Ca²⁺ concentrations, which could have an impact on oocyte mortality. To discount this possibility we examined the effect of addition of 0.5 mM and 2 mM external calcium. There was no significant difference in oocyte survival or transport current (P > 0.7 for each test, n = 10). These results suggest that the increased death rate in HvPHT1;6-injected oocytes is due to the enhanced P_i efflux.

Figure 2. External phosphate reduces death of HvPHT1;6 cRNA-injected oocytes. A, Percentage of oocyte deaths incubated in pH 7.5 MBS, containing three P_i (P) concentrations (KH₂PO₄), over 3 to 5 d at 18°C. Columns are means of three to eight replicates. B, H₃P₃₂O₄ efflux rate. Oocytes were incubated for 24 h in MBS buffer with 10 mM 850 cpm nmol^{−1} P_i before measuring the efflux rate in MBS over time. Data were corrected for radioactivity in wash solution. Standard errors (n = 4) are shown as vertical bars. Different letters indicate a significance difference at P_{0.05} for confidence interval.

Time- and Voltage-Dependent Inward Currents Induced by HvPHT1;6

A bath solution containing 100 mM Cl[−] (ND-100) was used for characterization of mammalian P_i transporters in X. laevis oocytes (Bacconi et al., 2005). Large inward currents were detected in HvPHT1;6-injected oocytes when ND-100 was used as a bath solution (data not shown). Water-injected control or cRNA-injected oocytes in solutions containing low amounts of Cl[−] had a much lower inward current. Therefore, we used a 10 mM NaCl base solution (ND-10) generally (see “Materials and Methods”) to which anions were balanced with N-methyl-D-glucamine (NMDG).

Under two-electrode voltage clamp (TEVC), negative-going voltage pulses caused the activation of a time- and voltage-dependent inward current that was increased by adding external P_i and was not observed in water-injected control oocytes (Fig. 3A). The example shown in Figure 3A is for 1,2-bis(2-aminophenoxy)ethane-N,N, N',N'-tetraacetic acid (BAPTA)-injected HvPHT1;6-expressing oocytes bathed in a modified ND-10 with Ba²⁺ replacing Ca²⁺ (Fig. 3A). Ba²⁺ and BAPTA were used to circumvent possible disturbance to the cytosolic Ca²⁺ concentration potentially caused by HvPHT1;6 expression as such changes in cytosolic Ca²⁺ concentration could elicit native oocyte inward currents (Weber et al., 1995). HvPHT1;6-induced currents in these conditions were statistically the same as in non-BAPTA-injected oocytes (P > 0.7), and those in calcium-bath solutions (P = 0.5). Therefore, these treatments were not used for the majority of the following experiments. The activation of known endogenous oocyte channels was compared with that induced by HvPHT1;6 cRNA injection (Supplemental Material S2). HvPHT1;6 expression elicits currents different from native channels identified in the literature. Closer inspection of currents at less-hyperpolarized voltages (10 mM P_i, SO₄^{2−}, or NO₃−) in the bath solution revealed that steady-state inward currents began to be significantly activated at voltages more negative than about −90 mV (when voltage was held constant for 4.5 s; Fig. 3).

When the voltage was taken to less-negative values after fully activating the inward current at −150 mV, the current deactivated to a steady level with a half-time of 0.33 ± 0.05 s (Fig. 3B). The difference in current between the initial and steady-state value during deactivation provides the time-dependent component of the HvPHT1;6 cRNA-induced current at various voltages. We refer to this as the tail current. The majority of the following figures show results obtained from such tail analysis.

Gradient-Dependent Currents and Fluxes

To further examine the effect of altering the gradient of P_i across the plasma membrane on the HvPHT1;6-induced tail currents, we injected water or P_i into HvPHT1;6-injected oocytes to a final calculated concentration of 10 mM and compared this with water-
injected oocytes, bathed in either 0 or 10 mM Pi added to ND-10. The largest inward tail currents at negative voltages were obtained when there was the largest gradient for inward movement of Pi (0 Pi injected, 10 mM Pi in bath; Fig. 4A). Inward tail currents were smallest when this gradient was reversed (10 mM Pi injected, 0 Pi added to bath; Fig. 4). With 10 mM Pi injected and 10 mM in the bath, the tail current/voltage curve reversed at 0 mV (Fig. 4A) under these conditions where the bath pH was 7.5. We measured 32P uptake into HvPHT1;6-injected and control oocytes with voltage clamped at -130 mV for 7.5 min (Fig. 4B). The influx was increased 22-fold above that measured in control oocytes, and corresponded to a similar increase in the amount of charge that moved into the oocyte (Fig. 4B). Therefore, the currents associated with Pi influx were accompanied by a flow of net-positive charge inwards to the oocyte. The same phenomenon was observed when 35S was applied (Fig. 7B).

Concentration Dependence and Selectivity

HvPHT1;6-injected oocytes showed a significant Pi-induced increase in both inward and outward tail currents (Fig. 5). Corresponding with this was a small but significant shift in reversal potential toward positive voltages. The mean tail current as a function of added Pi in the bath was linear in the range of external Pi concentrations tested (Fig. 4B). Note that for a simple anion channel response it would be expected that the reversal potential would shift negative with increasing Pi inward directed gradient (see also Fig. 4).

Selectivity of HvPHT1;6-induced currents to different anions was investigated by measuring steady-state currents at -150 mV (Fig. 6A), a physiologically relevant resting membrane potential for plant cells. The selectivity at -150 mV was $\text{HPO}_4^{2-} > \text{SO}_4^{2-} > \text{NO}_3^{-} > \text{Cl}^{-}$, where the external free anion concentration applied was kept constant at 9.9 mM (calculated using Visual MINTEQ, Royal Institute of Technology, Sweden). The organic anions, malate and citrate were also tested, but HvPHT1;6-injected oocytes showed no significant transport of these two organic anions over water-injected controls ($P > 0.8$; data not shown). Bis-Tris propane (BTP) control solution induced less inward current than ND-10, which could be due to residual chloride transport through HvPHT1;6 in ND-10. Also slight but significantly higher currents were seen in water-injected oocytes in the BTP solution (as opposed to the ND-10-based solutions), presumably due to a large difference in chloride concentration between the internal oocyte (24–62 mM; Weber, 1999) and the external bath (0.6 mM). When tail currents were measured at less-negative membrane potentials (Fig. 6B) SO_4^{2-} and Pi gave equal inward currents, and NO_3^{-} and Cl^{-} gave smaller and similar currents. However, NO_3^{-} gave larger outward tail currents than any other anion (Fig. 6B). No significant anion-induced tail currents were observed in water-injected controls (inset in Fig. 6B).

A Pi and SO_4^{2-} competition experiment was performed to examine if competition occurred for transport sites of HvPHT1;6 between these two anions (Fig. 7A); the inward and outward tail currents were com-

Figure 3. HvPHT1;6-cRNA injection-induced inward current at hyperpolarized membrane potentials. A, Current/voltage curves of HvPHT1;6-cRNA, and water-injected oocytes. Oocytes were also BAPTA injected and bathed in ND-10 with Ba$^{2+}$ replacing Ca$^{2+}$ (pH 7.5). Values are the most negative current from a 4.2 s voltage hold (-90 to -210 mV in 10 mV increments). Data points are means of eight oocytes. Asterisks indicate a significant difference using Tukey’s test ($P_{0.05}$ or $P_{0.001}$) between currents induced in 0 and 10 mM external NMDG-phosphate concentration. The inset shows overlayed current versus time traces at each voltage of HvPHT1;6 cRNA-injected oocytes bathed in 10 mM Pi. B, Steady-state current/voltage curves extracted from tail current end point (arrows in the inset) comparing different external anions on HvPHT1;6-injected oocytes in ND-10, pH 7.5. Data points are means of at least five oocytes, no significant difference (n.s.) was observed ($P_{0.05}$). Inset shows voltage protocol and example tail current trace overlay. Arrows indicate the tail end point, while currents marked at the asterisk time point are subtracted from the end point for tail current/voltage curves. P, Phosphate; Cl, chloride; N, nitrate; S, sulfate.
pletely additive between the two anions. Plotting the currents against the sum of the anions \(\text{HPO}_4^{2-} + \text{SO}_4^{2-} \) displayed a linear relationship (inset in Fig. 7A) with mean \(R^2 \) values ranging from 0.97 to 1.00 across all voltages.

External pH Sensitivity

We examined the external pH (pHo) sensitivity of tail currents in \(\text{Pi} \) and \(\text{SO}_4^{2-} \) containing solutions, and no significant pHo effect was detected in water-injected controls. Figure 8A shows that an increase in bath protons (pH decrease from pH 8 to 6) significantly increases the currents predicted to be \(\text{SO}_4^{2-} \) influx. The change in current was linear over this pH range, increasing by a factor of 2.02 \(\pm 0.18 \) per pH unit. In contrast, \(\text{HvPHT1;6} \)-injected oocytes showed the largest \(\text{Pi} \)-induced inward currents at pH 7.5 (Fig. 8B). The general trend for \(\text{Pi} \) transport therefore opposes what was seen for \(\text{SO}_4^{2-} \). However, the \(\text{HPO}_4^{2-} \) ion is predicted to decrease in free concentration as pH decreases (calculated using Visual MINTEQ). If we take account of the stimulating effect of lower pH on \(\text{SO}_4^{2-} \) currents, and make the assumption that the selectivity between \(\text{HPO}_4^{2-} \) and \(\text{SO}_4^{2-} \) does not change with pH, we can calculate predicted inward currents for \(\text{HPO}_4^{2-} \) as a function of pH (Fig. 8B). Within the confidence limits of the measured currents, the predicted currents fit reasonably well with \(\text{HPO}_4^{2-} \) being the transported form of \(\text{Pi} \).

DISCUSSION

Despite the importance of low-affinity \(\text{Pi} \) transporters in \(\text{Pi} \) remobilization in higher plants, the functional characterization of low-affinity \(\text{Pi} \) transporters from plants has been limited to either the complementation of yeast mutants defective in high-affinity \(\text{Pi} \) permeases (Daram et al., 1998; Miller and Zhou, 2000; Guo et al., 2008; Liu et al., 2008) or ectopic expression of low-affinity \(\text{Pi} \) transporters in rice (Rae et al., 2003) or tobacco (Nicotiana tabacum; Mitsukawa et al., 1997) suspension cells. One study in \(\text{X. laevis} \)
oocytes of a plant Pi transporter (OsPHT1;2) shows only limited information on membrane depolarizations when 1 or 10 mM NaH₂PO₄ was applied, suggesting that OsPHT1;2 is a low-affinity Pi transporter (Ai et al., 2009).

We first show that HvPHT1;6 is expressed in the plasma membrane of plant cells (Fig. 1), secondly that HvPHT1;6 expression is not just activating a known native transporter in the plasma membrane of X. laevis oocytes (Supplemental Material S2). This information gives relevance to HvPHT1;6 being involved in Pi movement between plant cells/tissues and that characterization in X. laevis oocytes is appropriate.

Expression of the low-affinity HvPHT1;6 transporter in X. laevis oocytes with no supplementation of Pi in the external medium caused increased deaths of the oocytes (Fig. 2A). Based on ³²P₁ efflux measurements (Fig. 2B) we interpret the increased deaths of the oocytes as a result of increased Pi efflux caused by expression of HvPHT1;6. The resting membrane potential for HvPHT1;6-injected oocytes in ND-100 solution was 226.8 ± 2.6 mV that is not different from the...
Letters indicate significant difference (this could be a reason why Pi efflux occurs in the SO4
because accurate estimation of internal oocyte activity of HPO4
injected, then (2) subtracting ND-10 control solution currents from ND-
process: (1) subtracting water-injected oocyte currents from HvPHT1;6
for phosphate transport via HvPHT1;6 only, using a dual subtraction
(A) or phosphate (B). Columns indicate mean currents of eight oocytes
represent SEM. Predicted HPO4
for changes in HPO4
resting membrane potential in MBS of \(-29.2 \pm 9.5\) mV, this could be a reason why Pi efflux occurs in the absence of external Pi, Data in Figure 4A show that under conditions of high internal Pi, and with zero in the bath, the reversal potential of HvPHT1;6-injected oocytes, as indicated by tail currents, is close to these values. When Pi is added to the bath, the reversal potential shifts positive, which we predict would reduce Pi efflux from the oocyte (see below for more discussion in “Stoichiometry of H+-P, Cotransport and Speciation”). In plant cells, efflux of Pi through HvPHT1;6 under membrane depolarization could be related to efflux of Pi from leaf mesophyll cells when they start senescing, and is possibly why enhanced expression is seen in older leaf mesophyll cells (Rae et al., 2003). However, this would require neutral to alkaline pHs in the external medium as used in our oocyte experiments.

Voltage Dependence

Activation of inward current in HvPHT1;6-injected oocytes occurred when voltages were more negative than \(-60\) mV, and became highly significant between \(-130\) and \(-160\) mV (Fig. 3). This is a rather novel finding, but is not totally unexpected, because while the resting potential of an oocyte is usually around \(-30\) to \(-40\) mV, the equivalent value for a plant cell can be less than \(-200\) mV (Dreyer et al., 1999), and phloem cells are more hyperpolarized than their surrounding cells (Hafke et al., 2005). The hyperpolarization in phloem cells should be able to activate HvPHT1;6 to facilitate Pi loading in phloem-associated cells for future remobilization. In many respects the slow kinetics of voltage activation of HvPHT1;6 observed in oocytes is similar to some plant ion channels (Marten et al., 1999). The linear concentration transport kinetics would further support that HvPHT1;6 possesses characteristics of an ion channel. However, the evidence that inward current corresponds to anion influx instead of efflux suggests Pi, through HvPHT1;6 is cotransported with a net positive charge, therefore HvPHT1;6 is a class of transporter with features in common between a channel and a transporter.

Stoichiometry of H+-P, Cotransport and Speciation

It is widely accepted that Pi uptake in higher plants is coupled to net cation cotransport as Pi, absorption depolarizes the plasma membrane of root cortex cells (Mimura, 1999). However, the accurate stoichiometry of X+-Pi cotransport has not been obtained as yet. By changing the Pi gradients we have demonstrated that when the Pi concentration gradient across the plasma membrane favors higher Pi influx, it produces a larger inward current (Fig. 4). The reversal potentials also shift positive with increasing gradient for inward flux of Pi. We also showed that Pi influx at negative voltages corresponded to the total charge taken up (Fig. 5). Therefore, Pi influx must be coupled with cation influx with a net positive charge entering the cell.

Mammalian Pi transporters are coupled with Na+ (Bacconi et al., 2005). However, HvPHT1;6 did not use Na+ or K+ as a driver cation because the currents induced by Pi and SO4
were observed, to the same degree (P > 0.43, n = 7), in the absence of Na+ and K+ in the bath solution (Fig. 7A). On the other hand, pH was found to have a significant effect on the transport activity of HvPHT1;6-expressing oocytes, with the inward tail currents induced by SO4
increasing with a decrease in pH. Therefore, H+ are likely to be the coupling cation to anion movement through

Figure 8. Proton-coupled Pi transport activity of HvPHT1;6. HvPHT1;6-induced outward and inward currents in response to sulfate (A) or phosphate (B). Columns indicate mean currents of eight oocytes for phosphate transport via HvPHT1;6 only, using a dual subtraction process: (1) subtracting water-injected oocyte currents from HvPHT1;6 injected, then (2) subtracting ND-10 control solution currents from ND-10 plus 10 mM NMDG-phosphate or sulfate currents at each pH, Letters indicate significant difference (P<0.05, Tukey’s test), and error bars represent SEM. Predicted HPO4
for changes in HPO4

Low-Affinity Transport

HvPHT1;6 showed a linear transport activity for Pi stimulated inward current over a concentration range of 5 to 30 mM. This concentration range encompasses what the transporter may be exposed to in planta (Schachtman et al., 1998). An apparent linear Pi uptake in a concentration range of 0 to 1 mM can also be interpreted from the data of Rae et al. (2003; Supplemental Material S1) who observed higher Pi influxes in rice suspension cells overexpressing HvPHT1;6 but with similar Km to control cells. The linear Pi uptake kinetics in the oocytes matches with the function of the low-affinity Pi transport in barley (Hordeum vulgare) leaves (Mimura, 1999) that is required for Pi remobilization.
HvPHT1;6. Over the range of pH 6.0 to 8.0, the free concentration of SO\textsubscript{4}^{2-} changed less than 0.1 mm (<1% of the total SO\textsubscript{4}^{2-} concentration). In contrast, Pi transport increases from pH 6.0 to 7.5 and is reduced at pH 8.0 (Fig. 8B). Because the concentrations of different ionic forms of Pi in solution change with pH, the pH experiment provides evidence that the likely Pi form transported is HPO\textsubscript{4}^{2-}. Using the change in inward current with SO\textsubscript{4}^{2-} as a function of pH to represent the effect of pH on HPO\textsubscript{4}^{2-} transport, we can predict how pH should affect inward current, taking into account the change in HPO\textsubscript{4}^{2-} with a constant total Pi concentration of 10 mm. This assumes that HPO\textsubscript{4}^{2-} and SO\textsubscript{4}^{2-} transport behaves the same with pH and that both ions give a linear inward current response with concentration (Fig. 7A). The predicted values show a decrease in inward current with lowered pH as is observed in the experiment. The discrepancy at pH 7 and 6.5 are close to the 95% confidence limits of the measured values and the predicted values from the regression of SO\textsubscript{4}^{2-} current as a function of pH. If H\textsubscript{2}PO\textsubscript{4}− was the transported ion, the opposite effect would be observed, i.e. aconcave-down increase in inward current with decreased pH. Previous work suggested H\textsubscript{2}PO\textsubscript{4}− to be the ion transported by HvPHT1;6 (Rae et al., 2003), this however seems very unlikely as discussed above. The HPO\textsubscript{4}^{2-} ion, on the other hand, shows a concentration change that aligns with the ionic current responses. Interestingly, MgHPO\textsubscript{4} shows a similar concentration change as HPO\textsubscript{4}^{2-} with pH. However, MgHPO\textsubscript{4} + H+ is unlikely to be transported through HvPHT1;6 as BAPTA injection reduces active Mg in the oocyte but efflux currents were the same as with no BAPTA injection, and significant influx of Pi (to the same degree, P > 0.43, n = 7) was observed in the complete absence of Mg2+ (Fig. 7A).

Inferences can be made on the transport stoichiometry for H+-coupled HPO\textsubscript{4}^{2-}. A comparison of chemical flux with total ion current from experiments used for Figure 4B gives a ratio of charge to Pi uptake of 1:1, i.e. 3H+:1HPO\textsubscript{4}^{2-} (calculated on an individual oocyte basis). Radioactive Pi uptake in water-injected oocytes was not significantly different from zero, suggesting an absence of native Pi transporter activities in oocytes under our experimental conditions.

Broad Selectivity of HvPHT1;6

HvPHT1;6 showed little selectivity between HPO\textsubscript{4}^{2-} and SO\textsubscript{4}^{2-} (Fig. 7A, and radioactive uptake calculations, Figs. 4B and 7B), with a lower transport activity for NO\textsubscript{3}− and Cl− (Fig. 6A). There was no malate or citrate transport (data not shown). Limited information is available for comparison of anion selectivity in oocytes expressing plant transporters. It has been shown that GmN70, an anion transporter on the symbiosome membrane, favors NO\textsubscript{3}− transport (Vincill et al., 2005), and TaALMT1 favors malate transport but can be selective for Cl− under certain conditions (Pineros et al., 2008). The HPO\textsubscript{4}^{2-} anion has a dehydrated minimum ionic width of 2.518 Å, compared with SO\textsubscript{4}^{2-} at 2.535 Å (100.6% of HPO\textsubscript{4}^{2-}), NO\textsubscript{3}− at a width of 2.148 Å (84.7% of HPO\textsubscript{4}^{2-}), and Cl− with a width of 1.04 Å (41% of HPO\textsubscript{4}^{2-}; ACD/ChemSketch version 11.0, Advanced Chemistry Development, Inc.). SO\textsubscript{4}^{2-} is very similar in size and charge density to HPO\textsubscript{4}^{2-} (complete hydration of these ions makes HPO\textsubscript{4}^{2-} a slightly larger molecule than SO\textsubscript{4}^{2-}) and has the same charge and oxyanion characteristics, which seem to be required for selective transport by HvPHT1;6. NO\textsubscript{3}− is also an oxyanion, but is smaller in size, and has only a single negative charge, whereas Cl− is much smaller and does not have the oxygen. Therefore, the reduced transport of NO\textsubscript{3}− and Cl− may be expected on this basis. Surprisingly, the electrophysiological experiments did not demonstrate any competition between HPO\textsubscript{4}^{2-} and SO\textsubscript{4}^{2-} when they were added together and we have shown 35SO\textsubscript{4} uptake by HvPHT1;6-expressing oocytes without Pi present in the bath. However it does remain a possibility that external SO\textsubscript{4}^{2-} may stimulate HPO\textsubscript{4}^{2-} transport.

Potential Roles of HvPHT1;6 in Pi Remobilization

Pi is tightly regulated at about 10 mm within plant cell cytoplasm (Schachtman et al., 1998). Nitrate concentration is more variable, between 3.4 to 37 mm (Siddiqi and Glass, 2002). Sulfate in the cytoplasm is at a concentration of approximately 2.5 mm (Cameron et al., 1984). The majority of these anions are removed from senescing leaves. In Arabidopsis (Arabidopsis thaliana) 88% of nitrogen, 80% of Pi, and 68% of S are removed from senescing leaves (Himelblau and Asamino, 2001). HvPHT1;6 shows the highest expression in the phloem cells of older leaves (Rae et al., 2003). Because HvPHT1;6 shows transport activity of HPO\textsubscript{4}^{2-}, SO\textsubscript{4}^{2-}, and NO\textsubscript{3}− in oocytes (Fig. 6), it is possibly involved in the remobilization of these ions around the barley plant. Studies have shown rice phloem sap to consist of 8.1 mm PO\textsubscript{4}^{3-}, 1.9 mm NO\textsubscript{3}−, and 1.8 mm SO\textsubscript{4}^{2-} (Hayashi and Chino, 1985); and wheat (Triticum aestivum) phloem sap 8.2 mm PO\textsubscript{4}^{3-}, 8.1 mm NO\textsubscript{3}−, and 1.0 mm SO\textsubscript{4}^{2-} (Hayashi and Chino, 1986). Therefore, cereals have relatively high levels of these anions remobilized via the phloem. The relatively lower concentration of SO\textsubscript{4}^{2-} remobilized could be due to its lower concentration in plant cells (Cameron et al., 1984) and/or its reduced level of removal from senescing leaves (Himelblau and Asamino, 2001), rather than the ability of it to be loaded into the phloem. Remobilization can remove Pi, S, and nitrogen from older leaves into tissues where it is most needed, in wheat an average 52% to 100% of grain P (Papakosta, 1994) and 72% of grain nitrogen (Gooding et al., 2005) are sourced via remobilization from older plant tissues. It is not entirely clear what significance a low-affinity Pi transporter has in the remobilization of sulfate and nitrate in planta. Further experimentation is warranted; an interesting experiment would be analysis of HvPHT1;6 knockout mu-
tants for differences in remobilization of phosphor, sulfate, and nitrate from senescing leaves.

In summary, nutrient reserves deposited in vegetative plant parts before anthesis buffer grain yield against conditions adverse to assimilation during the grain-filling period. In wheat, remobilization accounts for the majority of grain P content and increases P use efficiency. Phloem tissues are responsible for trafficking nutrient remobilization; and because phosphate, nitrate, and sulfate cannot reach the phloem via the symplast, a transporter must exist in the membranes of barley phloem cells to transport these nutrients into the phloem. We show that HvPHT1;6 is targeted to the plasma membrane of plant cells and has the capacity to transport P₄ coupled with protons in a highly voltage-dependent manner. HvPHT1;6 is a low-affinity P₄ transporter with potential to transport other oxyanions. HvPHT1;6 could fulfill a role in P₄ remobilization because it is highly expressed in phloem tissues. Our results demonstrate that *Xenopus* oocytes can be used for detailed characterization of plant P₄ transporters, and this will facilitate structure-function studies of plant P₄ transporters.

MATERIALS AND METHODS

Cloning of HvPHT1;6

Genomic DNA from barley (*Hordeum vulgare* ‘Cliburn’) was used to clone *HvPHT1;6* using PCR with a pair of primers (ATGCCGCCGGAG and TTCAGCAGCCAGG). PCR products were ligated into the pCR8-GW-TOPO vector (Invitrogen). The resulting plasmid was sequenced for confirmation, and then *HvPHT1;6* was transferred into a gateway-enabled pGEM-HE-DEST vector (Shelden et al., 2009) using the LR reaction protocol (Invitrogen) for in vitro RNA synthesis. The human *NaPi-IIa* positive control in the KSM expression vector (from Leila Virkki) was digested with *AclI* and *HindIII*, and then cloned into pGEM-HE.

Subcellular Localization of HvPHT1;6::GFP

The coding sequence of *HvPHT1;6* without the stop codon was amplified from pGEM-HvPHT1;6::HE using the primer pair ATGCCGCCGGAG and CACCGG-CACCCTG. The PCR fragment was ligated into the pCR8-GW-TOPO vector, and transferred into pmDC83 containing the mGFP gene (Curts and Grossniklaus, 2003). The resulting plasmid places *HvPHT1;6* in frame, upstream of mGFP6.

Plasmid DNA: CD3-1007 (*AtPIP2A::mCherry fusion*), CD3-975 (*yTiP::mCherry fusion*), and pMDC83HvPHT1/6 (5 μg each and 10 μL in total volume) was mixed with 50 μL of 0.6 μM gold particles (Bio-Rad), and bombarded into onion (*Allium cepa*) epidermal cells (900 psi pressure rupture discs) using the Biolistic PDS-1000/He particle delivery system (Bio-Rad). Bombarded onion cells were kept in the dark at room temperature for 48 to 72 h and then examined by the confocal laser-scanning microscopy (Leica TCS). Single epidermal cells were grown in Murashige and Skoog medium supplemented with 60 g L⁻¹ Suc before confocal image analysis. GFP fluorescence was excited using the 488-nm argon laser, and mCherry fluorescence was exited using the 561-nm DPH556laser.

RNA Synthesis

In vitro RNA syntheses were performed on two separate occasions using the T7 RNA polymerase kit (Ambion) for *HvPHT1;6* and *NaPi-IIa*. Synthesis was done at 37°C for 2 h, and the products were cleaned using phenol and chloroform according to manufacturer’s instructions. The quality and size of synthesized RNA were checked on RNAase-free agarose gels.

Oocyte Extraction and Preparation

Xenopus laevis frogs (NASCO Biology) were anesthetized in 1 L ice-cold 1.5% (w/v) 3-aminobenzoic acid ethyl ester methanesulfonate salt for 20 min. Oocytes were removed unilaterally from the abdominal cavity, and the lobes were placed in calcium-free Frog Ringer’s buffer (in mM: 96 NaCl, 2 KCl, 5 MgCl₂, 5 HEPES, pH 7.6). The lobes were cut into small pieces and placed in 50 mL of calcium-free Frog Ringer’s buffer containing 100 mg collagenase and 50 mg trypsin inhibitor for 85 to 90 min with rotation on a rotary mixer before being washed three times with hypotonic buffer (in mM: 100 KHP0₄, pH 6.5 and 0.1% [w/v] bovine serum albumin). The oocytes were incubated in hypotonic buffer on a rotary shaker for 10 min at room temperature. Oocytes were then washed three times in calcium-free Frog Ringer’s, followed by two washes in calcium Ringer’s, a 10 min incubation on a rotary shaker, then two washes in calcium Ringer’s. The oocytes were maintained at 18°C in MBS solution (in mM): 96 NaCl, 2 KCl, 5 MgCl₂, 0.5 CaCl₂, 5 HEPES, 10 KH₂PO₄ adjusted to pH 7.6 with KOH; 2.5 mL horse serum was added in 50 mL solution (catalog no. H1270), 50 mg mL⁻¹ tetracyclin (5 mg mL⁻¹ stock, used 0.5/50 mL), and 0.5 mL per 50 mL of penicillin streptomycyn (catalog no. F4333). Healthy stage IV and V oocytes from 10 different oocyte batches were selected for injection with 25 ng RNA (i.e. 50 mL of 500 μg mL⁻¹ RNA). The injection into oocyte animal hemisphere was performed at room temperature using a Nanoject II injector (Drummon Scientific Company) and injected oocytes were incubated at 18°C in MBS (replacing daily) for 20 to 96 h prior to ion flux and electrophysiological measurements.

Injection of Phosphate and Nitrate

All chemicals were sourced from Sigma-Aldrich unless stated otherwise. Healthy *HvPHT1;6*-expressing and water control oocytes (1 d after injection) were selected for injection with 50 mL water (control) or 114 mM NMDG-phosphate (or -nitrate) or 11.3 mM BAPTA, to a final concentration of phosphate (±0.19 mM) or BAPTA (± 0.02 mM) in the oocyte. These measurements were based on an average (n = 100), and H₂O available internal volume of 570 ± 11 nL. After phosphate and nitrate injection, oocytes were incubated at 18°C in MBS for 2 h before electrophysiological measurements.

Solutions

Individual oocytes were selected for voltage clamp experiments. ND-10 bath solution (in mM: 10 NaCl, 80 mannitol, 2 KCl, 1.8 CaCl₂, 1 MgCl₂, 10 HEPES, and pH 7.5 adjusted with Tris-base) was continuously running at 1.94 mL min⁻¹. This bath solution allowed the addition of up to 30 mM NMDG-phosphate. Solutions adjusted to pH 6 and 6.5 had 10 mM MES instead of HEPES. ND-100 solution was same as ND-10 except that it contained 100 mM NaCl and no mannitol. The BTP solution consisted of 0.3 mM CaCl₂ (control), and when varying levels of phosphoric or sulfuric acid were added to the solution, pH was adjusted to 7.5 with BTP. All solutions were adjusted with mannitol to a final osmolarity of 205 mOsmol kg⁻¹.

Electrophysiology

TEVC experiments were performed with a GeneClamp500 amplifier under control of the Clampex8 program (Axon Instruments). Individual experiments were performed on one to six different batches of oocytes and showed exactly the same trend in each occasion. All figures presented in this article were data from oocytes 2 d after injection. Impaling electrodes were filled with 0.22 μm filtered 3 mM KCl (0.5–1.0 m current-injecting electrode, and 1.0–2.0 m for voltage-sensing electrode). Oocytes were deemed acceptable if the stable resting membrane potentials were negative of −25 mV in ND-10. The voltage clamp protocol for current tail analysis was 0 mV for 0.5 s, −190 mV for 1 s, −150 mV for 5 s, and then differential voltage ranging 60 mV to −100 mV for 3 s in a −20 mV increment. This protocol was designed so that current activation in *HvPHT1;6*-RNA-injected oocytes came to a similar saturated level before depolarizing steps.

Phosphate Fluxes

Phosphate influx while simultaneously performing TEVC was measured in ND-10 containing 10 mM NMDG-phosphate. The load solution had H₂¹⁸O₄⁻.
was also measured in the presence of 10 mM and 0 mM external NMDG-
Radioactive efflux from water-injected or
80, and 180 min. The remaining radioactivity in oocytes was also measured.
final wash solution with the disintegrated oocyte, and 30
solution (specific activity of 850 dpm nmol
solution with 4 mL IRGA-Safe Plus scintillation fluid (Perkin Elmer).
oocytes was measured in 100
Sulfate Influxes
Sulfate influx was performed exactly the same as phosphate influx, with the
exceptions of using 5 mM NMDG-sulfate and a load solution containing
Na2SO4 (catalog no. NEX041H001MC, Perkin Elmer) added to an average
experimental specific activity of 3,178 cpm nmol

The HvPHT1;6 nucleotide sequence was deposited in the EMBL database (accession no. FM866444).

Supplemental Data
The following materials are available in the online version of this article.
Supplemental Material S1. Alternative interpretation of P uptake when
HvPHT1;6 is expressed in rice suspension cells.
Supplemental Material S2. Comparison of HvPHT1;6-induced currents with
native oocyte channels.

ACKNOWLEDGMENTS
We thank Dr. Glenn McDonald for useful discussions, and Dr. Sunita
Ramesh and Wendy Sullivan for technical assistance and help with
35S experiments. We also thank Leila Virkki for donating the human NaPi-IIa
positive control in the KSM expression vector.

Drew MC, Saker LR (1984) Uptake and long-distance transport of phos-
phate, potassium and chloride in relation to internal ion concentrations
Dreyer I, Horeau C, Lemaitre G, Zimmermann S, Bush DR, Rodriguez-
Identification and characterization of plant transporters using heterol-
Goldstein AH, Baertlein DA, McDaniel RG (1988) Phosphate starvation
inducible metabolism in Lycopersicon esculentum. 1. Excretion of acid-
phosphate by tomato plants and suspension-cultured cells. Plant
Physiol 87: 711–715
Micronutrient Density. Agricultural Strategies for Micronutrients:
Working Paper 3. International Food Policy Research Institute, Wash-
ington, DC
Functional analysis of the Arabidopsis PHT4 family of intracellular
phosphate transporters. New Phytol 177: 297–308
Hafke JB, van Ammerongen JK, Kelling F, Fuch ACJ, Gaupels F, van Bel
AJE (2005) Thermodynamic battle for photosynthetic acquisition be-
tween sieve tubes and adjoining parenchyma in transport phloem. Plant
Physiol 138: 1527–1537
Hayashi H, Chino M (1985) Nitrate and other anions in the rice phloem
Hayashi H, Chino M (1986) Collection of pure phloem sap from wheat and
Himelblau E, Amasino RM (2001) Nutrients mobilized from leaves of Arabi-
Hors WJ, Abdou M, Wiesler F (1996) Differences between wheat cultivars in
acquisition and utilization of phosphorus. Z Pflanz Bodenk 159: 155–161
deficiency on assimilation and transport of nitrate and phosphate in
structure and functioning for efficient acquisition of phosphorus:
matching morphological and physiological traits. Ann Bot (Lond) 98:
693–713
Leggewie G, Willmitzer L, Riemsieier JW (1997) Two cDNAs from potato are able to complement a phosphate uptake-deficient yeast mutant:
identification of phosphate transporters from higher plants. Plant Cell 9:
383–392
Closely related members of the Medicago truncatula PHT1 phos-
status on shoot-root partitioning of photosynthates and cycling of
Marten I, Hoth S, Deeken R, Ache P, Ketchum KA, Hoshi T, Hedrich R
(1999) AKT1, a phloem-localized K+ channel, is blocked by protons. Proc
Natl Acad Sci USA 96: 7581–7586
Masoni A, Ercoli L, Mariotti M, Arduini I (2007) Post-anthesis accumu-
lation and remobilization of dry matter, nitrogen and phosphorus in
durum wheat as affected by soil type. Eur J Agron 26: 179–186
Miller AJ, Zhou JJ (2000) Xenopus oocytes as an expression system for
plant transporters. Biochim Biophys Acta 1465: 343–358
Mimura T (1999) Regulation of phosphate transport and homeostasis in
Mitsuoka N, Okumura S, Shirano Y, Sato S, Kato T, Harashima S, Shi-
hata D (1997) Overexpression of an Arabidopsis thaliana high-affinity
phosphate transporter gene in tobacco cultured cells enhances cell
growth under phosphate-limited conditions. Proc Natl Acad Sci USA 94:
7098–7102
Molen DT, Breuewsm A, Boers PCM, Roest CWJ (1997) Dutch Policy
Towards Phosphorus Losses in Agriculture. CAB International, Oxon, UK

LITERATURE CITED
have different functions and kinetic properties in uptake and translo-
cation. Plant 27: 798–809
electroneutrality is not free of charge: switching on electrogensicity in a
Na+-coupled phosphate cotransporter. Proc Natl Acad Sci USA 102:
12606–12611
of ions and elements in thin cropysections of onion root-meristem cells—
Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-
throughput functional analysis of genes in planta. Plant Physiol 133:
462–469
analysis and cell-specific expression of a phosphate transporter from
tomato. Planta 206: 225–233

1440 Plant Physiol. Vol. 152, 2010

Downloaded from on July 27, 2017 - Published by www.plantphysiol.org
Copyright © 2010 American Society of Plant Biologists. All rights reserved.