On the Cover: The cover shows a scanning electron micrograph of the abaxial leaf surface of a peppermint (Mentha × piperita) leaf. The evident spherical structures are peltate glandular trichomes, the sites of monoterpenoid essential oil biosynthesis and storage. In this issue, Rios-Estepa et al. (pp. 2105–2119) report on the utilization of an iterative approach that involves mathematical modeling and experimental testing to identify the determinants of essential oil composition and yield in highly specialized peltate glandular trichomes. Importantly, simulations of monoterpane profiles are based entirely on experimental measurements and are performed without any curve fitting or other computational optimizations. The good fit between simulations and experimentally determined monoterpane profiles indicates that the regulation of essential oil biosynthesis is now well understood at various levels of control, including environmental, developmental, and transgenic effects on transcript abundance, enzyme expression dynamics, glandular trichome size and distribution, and pathway feedback regulation. This opens up new opportunities for guiding metabolic engineering and molecular breeding efforts aimed at modulating monoterpenoid essential oil profiles. The cover image was taken by Dr. Glenn Turner using a FEI Quanta 200 F SEM in environmental mode at the Franceschi Microscopy and Imaging Center of Washington State University.

ON THE INSIDE

Peter V. Minorsky

1761

UPDATES

Simulating Plant Metabolic Pathways with Enzyme-Kinetic Models. Kai Schallau and Björn H. Junker

1763

GENOME ANALYSIS

1772

BREAKTHROUGH TECHNOLOGIES

Characterization of Transcriptional Complexity during Berry Development in Vitis vinifera Using RNA-Seq. Sara Zenoni, Alberto Ferrarini, Enrico Giacomelli, Luciano Xumerle, Marianna Fasoli, Giovanni Malerba, Diana Bellin, Mario Pezzotti, and Massimo Delledonne

1787

Tracing Cadmium from Culture to Spikelet: Noninvasive Imaging and Quantitative Characterization of Absorption, Transport, and Accumulation of Cadmium in an Intact Rice Plant. Shu Fujimaki, Nobuo Suzui, Noriko S. Ishioka, Naoki Kawachi, Sayuri Ito, Mitsuo Chino, and Shin-ichi Nakamura

1796

BIOINFORMATICS

PlantMetabolomics.org: A Web Portal for Plant Metabolomics Experiments. Preeti Bais, Stephanie M. Moon, Kun He, Ricardo Letitio, Kate Dreher, Tom Walk, Yeis Sucoet, Lenore Barkan, Gert Wohlgemuth, Mary R. Roth, Eve Syrkin Wurtele, Philip Dixon, Oliver Fiehn, B. Markus Lange, Vladimir Shulacov, Lloyd W. Summer, Ruth Weltl, Basil J. Nikolau, Seung Y. Rhe, and Julie A. Dickerson

1807

SCIENTIFIC CORRESPONDENCE

The Role of Phloem Loading Reconsidered. Robert Turgeon

1817

Annexins: Components of the Calcium and Reactive Oxygen Signaling Network. Anuphon Laohavisit, Aidan T. Brown, Pietro Cicuta, and Julia M. Davies

1824

Continued on next page
RESEARCH ARTICLES

BIOCHEMICAL PROCESSES AND MACROMOLECULAR STRUCTURES

[W]The Plastidial Glyceraldehyde-3-Phosphate Dehydrogenase Is Critical for Viable Pollen Development in Arabidopsis. 1Jesús Muñoz-Bertomeu, Borja Cascales-Miñana, Asunción Irles-Segura, Isabel Mateu, Adriano Nunes-Nesi, Alisdair R. Fernie, Juan Segura, and Roc Ros 1830

[W]OCrystal Structure and Functional Insights of Hemopexin Fold Protein from Grass Pea. Vineet Gaur, Insof A. Qureshi, Apekshita Singh, Venu Channa, and Dinakar M. Salunke 1842

[C]WMutations in the Hyperosmotic Stress-Responsive Mitochondrial BASIC AMINO ACID CARRIER2 Enhance Proline Accumulation in Arabidopsis. Iman Toka, Séverine Planchais, Cécile Cabassa, Anne-Marie Justin, Delphine De Vos, Luc Richard, Arnold Savouré, and Pierre Carol 1851

[C]WOThe Catalytic and Protein-Protein Interaction Domains Are Required for APM1 Function. Fazaeda N. Hosein, Anindita Bandyopadhyay, Wendy Ann Peer, and Angus S. Murphy 2158

WPolyphosphoinositides Are Enriched in Plant Membrane Rafts and Form Microdomains in the Plasma Membrane. Fabienne Furt, Sabine König, Jean-Jacques Bessoule, Françoise Sargueil, Rémi Zallot, Thomas Stanislas, Elodie Noiro, Jeanine Lherminier, Françoise Simon-Plas, Ingo Heilmann, and Sébastien Mongrand 2173

BIOENERGETICS AND PHOTOSYNTHESIS

[W]OMetabolome and Photochemical Analysis of Rice Plants Overexpressing Arabidopsis NAD Kinase Gene. Kentaro Takahara, Ichiro Kasajima, Hideyuki Takahashi, Shin-nosuke Hashida, Taketo Itami, Haruko Onodera, Seiichi Toki, Shuichito Yanagisawa, Maki Kawai-Yamada, and Hirofumi Uchimiy 1863

[O]Continuous Turnover of Carotenes and Chlorophyll a in Mature Leaves of Arabidopsis Revealed by 14CO2 Pulse-Chase Labeling. Kim Gabriele Beisel, Siegfried Jahnke, Diana Hofmann, Stephan Köppchen, Ulrich Schurr, and Shizue Matsubara 2188

CELL BIOLOGY AND SIGNAL TRANSDUCTION

[W]Inhibition of Target of Rapamycin Signaling and Stress Activate Autophagy in Chlamydomonas reinhardtii. María Esther Pérez-Pérez, Francisco J. Florencio, and José L. Crespo 1874

[OSUGAR-INSENSITIVE3, a RING E3 Ligase, Is a New Player in Plant Sugar Response. Yadong Huang, Chun Yao Li, Donna L. Pattison, William M. Gray, Sungjin Park, and Susan I. Gibson 1889

[W]OThe Lesion-Mimic Mutant cpr22 Shows Alterations in Abscisic Acid Signaling and Abscisic Acid Insensitivity in a Salicylic Acid-Dependent Manner. Stephen Mosher, Wolfgang Moeder, Noriyuki Nishimura, Yusuke Ikumaru, Se-Hwan Joo, William Urquhart, Daniel F. Klessig, Seong-Ki Kim, Eiji Nambara, and Keiko Yoshoka 1901

[C]WOInterdependence of Endomembrane Trafficking and Actin Dynamics during Polarized Growth of Arabidopsis Pollen Tubes. Yan Zhang, Junmin He, David Lee, and Sheila McCormick 2200

DEVELOPMENT AND HORMONE ACTION

[W]OPhytochrome Regulation of Branching in Arabidopsis. Scott A. Finlayson, Srirama R. Krishnareddy, Tesfamichael H. Kebrom, and Jorge J. Casal 1914

[O]Regulated Ethylene Insensitivity through the Inducible Expression of the Arabidopsis etr1-1 Mutant Ethylene Receptor in Tomato. Daniel R. Gallie 1928

[W]Differential Impact of Lipoygenase 2 and Jasmonates on Natural and Stress-Induced Senescence in Arabidopsis. Martin A. Selmann, Nadja E. Stingl, Jens K. Lautenschlaeger, Markus Krischke, Martin J. Mueller, and Susanne Berger 1940

[O]Phosphate Regulation of Lipid Biosynthesis in Arabidopsis Is Independent of the Mitochondrial Outer Membrane DGSI Complex. Eric R. Moellering and Christoph Benning 1951

Continued on next page
ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS

[Wi][Oa] Nitric Oxide Mediates the Hormonal Control of Crassulacean Acid Metabolism Expression in Young Pineapple Plants. Luciano Freschi, Maria Aurineide Rodrigues, Douglas Silva Domingues, Eduardo Purgatto, Marie-Anne Van Slays, Jose Ronaldo Magalhaes, Werner M. Kaiser, and Helenee Mercier

GENETICS, GENOMICS, AND MOLECULAR EVOLUTION

[Wi][Oa] Cloning of the Papaya Chromoplast-Specific Lycopene b-Cyclase, CpCYC-b, Controlling Fruit Flesh Color Reveals Conserved Microsynteny and a Recombination Hot Spot. Andrea L. Blas, Ray Ming, Zhiyong Liu, Olivia J. Veatch, Robert E. Paul, Paul H. Moore, and Qingyi Yu

PLANTS INTERACTING WITH OTHER ORGANISMS

[C][Wi][Oa] S-Glycoprotein-Like Protein Regulates Defense Responses in Nicotiana Plants against Ralstonia solanacearum. Milimo Maimbo, Kouhei Ohnishi, Yasufumi Hikichi, Hirofumi Yoshioka, and Akinori Kiba

[C][Wi][Oa] Abscisic Acid-Induced Resistance against the Brown Spot Pathogen Cochliobolus miyabeanus in Rice Involves MAP Kinase-Mediated Repression of Ethylene Signaling. David De Vleeschauwer, Yinong Yang, Casiana Vera Cruz, and Monica Höfte

[C][Wi] Identification of MicroRNAs Involved in Pathogen-Associated Molecular Pattern-Triggered Plant Innate Immunity. Yan Li, QingQing Zhang, Jiangguang Zhang, Liang Wu, Yijun Qi, and Jian-Min Zhou

WHOLE PLANT AND ECOPHYSIOLOGY

[C][Wi][Oa] The a-Subunit of the Arabidopsis Heterotrimeric G Protein, GPA1, Is a Regulator of Transpiration Efficiency. Sarah E. Nilson and Sarah M. Assmann

SYSTEMS BIOLOGY, MOLECULAR BIOLOGY, AND GENE REGULATION

Continued on next page
Mathematical Modeling-Guided Evaluation of Biochemical, Developmental, Environmental, and Genotypic Determinants of Essential Oil Composition and Yield in Peppermint Leaves.
Rigoberto Rios-Estepa, Iris Lange, James M. Lee, and B. Markus Lange

Matthew A. Hannah, Camila Caldana, Dirk Steinhauser, Ilse Balbo, Alisdair R. Fernie, and Lothar Willmitzer

Transcriptional Profiling of the Arabidopsis Iron Deficiency Response Reveals Conserved Transition Metal Homeostasis Networks.
Thomas J.W. Yang, Wen-Dar Lin, and Wolfgang Schmidt

Probing the Reproducibility of Leaf Growth and Molecular Phenotypes: A Comparison of Three Arabidopsis Accessions Cultivated in Ten Laboratories.

Multiple Roles and Interaction Factors of an E-Box Element in Chlamydomonas reinhardtii.
Stefanie B. Seitz, Wolfram Weisheit, and Maria Mittag

Modulation of Transcriptome and Metabolome of Tobacco by Arabidopsis Transcription Factor, AtMYB12, Leads to Insect Resistance.
Prashant Misra, Ashutosh Pandey, Manish Tiwari, K. Chandrashekar, Om Prakash Sidhu, Mehar Hasan Asif, Debasis Chakrabarty, Pradhyumna Kumar Singh, Prabodh Kumar Trivedi, Pravendra Nath, and Rakesh Tuli

The β-Glucosidases Responsible for Bioactivation of Hydroxynitrile Glucosides in Lotus japonicus.

CORRECTIONS
The β-Glucosidases Responsible for Bioactivation of Hydroxynitrile Glucosides in Lotus japonicus.

Some figures in this article are displayed in color online but in black and white in the print edition.

Indicates Web-only data.

Open Access articles can be viewed online without a subscription.