On the Cover: The cover shows a scanning electron micrograph of the abaxial leaf surface of a peppermint (Mentha × piperita) leaf. The evident spherical structures are peltate glandular trichomes, the sites of monoterpenoid essential oil biosynthesis and storage. In this issue, Rios-Estepa et al. (pp. 2105–2119) report on the utilization of an iterative approach that involves mathematical modeling and experimental testing to identify the determinants of essential oil composition and yield in highly specialized peltate glandular trichomes. Importantly, simulations of monoterpene profiles are based entirely on experimental measurements and are performed without any curve fitting or other computational optimizations. The good fit between simulations and experimentally determined monoterpene profiles indicates that the regulation of essential oil biosynthesis is now well understood at various levels of control, including environmental, developmental, and transgenic effects on transcript abundance, enzyme expression dynamics, glandular trichome size and distribution, and pathway feedback regulation. This opens up new opportunities for guiding metabolic engineering and molecular breeding efforts aimed at modulating monoterpenoid essential oil profiles. The cover image was taken by Dr. Glenn Turner using a FEI Quanta 200 F SEM in environmental mode at the Franceschi Microscopy and Imaging Center of Washington State University.

ON THE INSIDE

Peter V. Minorsky

UPDATES

Simulating Plant Metabolic Pathways with Enzyme-Kinetic Models. Kai Schallau and Björn H. Junker

GENOME ANALYSIS

BREAKTHROUGH TECHNOLOGIES

Characterization of Transcriptional Complexity during Berry Development in Vitis vinifera Using RNA-Seq. Sara Zenoni, Alberto Ferrari, Enrico Giacomelli, Luciano Xumerle, Marianna Fasoli, Giovanni Malerba, Diana Bellin, Mario Pezzotti, and Massimo Delledonne

Tracing Cadmium from Culture to Spikelet: Noninvasive Imaging and Quantitative Characterization of Absorption, Transport, and Accumulation of Cadmium in an Intact Rice Plant. Shu Fujimaki, Nobuo Suzui, Noriko S. Ishioka, Naoki Kawachi, Saşuri Itô, Mitsuo Chino, and Shin-ichi Nakamura

BIOINFORMATICS

PlantMetabolomics.org: A Web Portal for Plant Metabolomics Experiments. Preeti Bais, Stephanie M. Moon, Kun He, Ricardo Leitao, Kate Dreher, Tom Walk, Yees Sucaet, Lenore Barkan, Gert Wohlgemuth, Mary R. Roth, Eve Syrkin Wurtele, Philip Dixon, Oliver Fiehn, B. Markus Lange, Vladimir Shulacov, Lloyd W. Summer, Ruth Welti, Basil J. Nikolau, Seung Y. Rhee, and Julie A. Dickerson

SCIENTIFIC CORRESPONDENCE

The Role of Phloem Loading Reconsidered. Robert Turgeon

Annexins: Components of the Calcium and Reactive Oxygen Signaling Network. Anuphon Laohavisit, Aidan T. Brown, Pietro Cicuta, and Julia M. Davies

Continued on next page
BIOCHEMICAL PROCESSES AND MACROMOLECULAR STRUCTURES

Mutations in the Hyperosmotic Stress-Responsive Mitochondrial BASIC AMINO ACID CARRIER2 Enhance Proline Accumulation in Arabidopsis. Iman Toka, Séverine Planchais, Cécile Cabassa, Anne-Marie Justin, Delphine De Vos, Luc Richard, Arnauld Savouré, and Pierre Carol 1851

The Catalytic and Protein-Protein Interaction Domains Are Required for APM1 Function. Faezaed A. Hosein, Anindita Bandyopadhyay, Wendy Ann Peer, and Angus S. Murphy 2158

Polyphosphoinositides Are Enriched in Plant Membrane Rafts and Form Microdomains in the Plasma Membrane. Fabienne Furt, Sabine König, Jean-Jacques Bessoule, Françoise Sargueil, Réné Zallot, Thomas Stanislas, Elodie Noirot, Jeanine Lherminier, Françoise Simon-Plas, Ingo Heilmann, and Sébastien Mongrand 2173

BIOENERGETICS AND PHOTOSYNTHESIS

Continuous Turnover of Carotenes and Chlorophyll a in Mature Leaves of Arabidopsis Revealed by 14CO2 Pulse-Chase Labeling. Kim Gabriele Beisel, Siegfried Jahnke, Diana Hofmann, Stephan Köppchen, Ulrich Schurr, and Shizue Matsubara 2188

CELL BIOLOGY AND SIGNAL TRANSDUCTION

Inhibition of Target of Rapamycin Signaling and Stress Activate Autophagy in Chlamydomonas reinhardtii. Maria Esther Pérez-Pérez, Francisco J. Florencio, and José L. Crespo 1874

SUGAR-INSENSITIVE3, a RING E3 Ligase, Is a New Player in Plant Sugar Response. Yadong Huang, Chun Yao Li, Donna L. Pattison, William M. Gray, Sungjin Park, and Susan I. Gibson 1889

Interdependence of Endomembrane Trafficking and Actin Dynamics during Polarized Growth of Arabidopsis Pollen Tubes. Yan Zhang, Junmin He, David Lee, and Sheila McCormick 2200

DEVELOPMENT AND HORMONE ACTION

Phytochrome Regulation of Branching in Arabidopsis. Scott A. Finlayson, Srirama R. Krishnareddy, Tesfamichael H. Kebr, and Jorge J. Casal 1914

Regulated Ethylene Insensitivity through the Inducible Expression of the Arabidopsis etr1-1 Mutant Ethylene Receptor in Tomato. Daniel R. Gallie 1928

Differential Impact of Lipoygenase 2 and Jasmonates on Natural and Stress-Induced Senescence in Arabidopsis. Martin A. Seilaman, Nadja E. Stingl, Jens K. Lautenschlaeger, Markus Krische, Martin J. Mueller, and Susanne Berger 1940

Phosphate Regulation of Lipid Biosynthesis in Arabidopsis Is Independent of the Mitochondrial Outer Membrane DGSS Complex. Eric R. Moellering and Christoph Benning 1951

Continued on next page
ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS

[1] Nitric Oxide Mediates the Hormonal Control of Crassulacean Acid Metabolism Expression in Young Pineapple Plants. Luciano Freschi, Maria Aurineide Rodrigues, Douglas Silva Domingues, Eduardo Purgatto, Marie-Anne Van Sluys, Jose Ronaldo Magalhaes, Werner M. Kaiser, and Helenice Mercier 1971

GENETICS, GENOMICS, AND MOLECULAR EVOLUTION

PLANTS INTERACTING WITH OTHER ORGANISMS

[1] Abscisic Acid-Induced Resistance against the Brown Spot Pathogen Cochliobolus miyabeanus in Rice Involves MAP Kinase-Mediated Repression of Ethylene Signaling. David De Vleesschauwer, Yinong Yang, Casiana Vera Cruz, and Monica Höfte 2036

[1] Identification of MicroRNAs Involved in Pathogen-Associated Molecular Pattern-Triggered Plant Innate Immunity. Yan Li, QingQing Zhang, Jiangguang Zhang, Liang Wu, Yijun Qi, and Jian-Min Zhou 2222

WHOLE PLANT AND ECOPHYSIOLOGY

[1] The α-Subunit of the Arabidopsis Heterotrimeric G Protein, GPA1, Is a Regulator of Transpiration Efficiency. Sarah E. Nilson and Sarah M. Assmann 2067

SYSTEMS BIOLOGY, MOLECULAR BIOLOGY, AND GENE REGULATION

Mathematical Modeling-Guided Evaluation of Biochemical, Developmental, Environmental, and Genotypic Determinants of Essential Oil Composition and Yield in Peppermint Leaves.
Rigoberto Rios-Estepa, Iris Lange, James M. Lee, and B. Markus Lange
2105

Matthew A. Hannah, Camila Caldana, Dirk Steinhauser, Ilse Balbo, Alisdair R. Fernie, and Lothar Willmitzer
2120

Transcriptional Profiling of the Arabidopsis Iron Deficiency Response Reveals Conserved Transition Metal Homeostasis Networks.
Thomas J.W. Yang, Wen-Dar Lin, and Wolfgang Schmidt
2130

Probing the Reproducibility of Leaf Growth and Molecular Phenotypes: A Comparison of Three Arabidopsis Accessions Cultivated in Ten Laboratories.
2142

Multiple Roles and Interaction Factors of an E-Box Element in Chlamydomonas reinhardtii.
Stefanie B. Seitz, Wolfram Weisheit, and Maria Mittag
2243

Modulation of Transcriptome and Metabolome of Tobacco by Arabidopsis Transcription Factor, AtMYB12, Leads to Insect Resistance.
Prashant Misra, Ashutosh Pandey, Manish Tiwari, K. Chandrashekar, Om Prakash Sidhu, Mehar Hasan Asif, Debasis Chakrabarty, Pradhyumna Kumar Singh, Prabodh Kumar Trivedi, Pravendra Nath, and Rakesh Tuli
2258

CORRECTIONS

The β-Glucosidases Responsible for Bioactivation of Hydroxynitrile Glucosides in Lotus japonicus.
2269

Some figures in this article are displayed in color online but in black and white in the print edition.

Indicates Web-only data.

Open Access articles can be viewed online without a subscription.