On the Cover: Ser/Arg-rich (SR) proteins constitute a family of RNA-binding proteins implicated in both constitutive and alternative splicing in plants and animals. Arabidopsis (Arabidopsis thaliana) SR proteins are involved in plant development and have been shown to be regulated by environmental cues. Rausin et al. (pp. 273–284) investigated the dynamic distribution of the Arabidopsis RSZp22 splicing factor, a homolog of the human 9G8 SR protein. This work provides a detailed analysis of the RSZp22 expression profile, and the cover shows fluorescent imaging of RSZp22:GUS activity throughout Arabidopsis floral organs. Comparison of transient ectopic- and stable tissue-specific expression highlights key advantages of both approaches for protein dynamic studies. RSZp22 is a nucleocytoplasmic shuttling protein, and the RNA-binding motifs are required for CRM1/XPO1-dependent nuclear export in vivo. Photography and cover design by Patrick Motte.
DONGLE and DEFECTIVE IN ANther DEHISCENCE1 Lipases Are Not Essential for Wound- and Pathogen-Induced Jasmonate Biosynthesis: Redundant Lipases Contribute to Jasmonate Formation. Dorothea Ellinger, Nadja Stingl, Ines Ingeborg Kubistettig, Thomas Bals, Melanie Juenger, Stephan Pollmann, Susanne Berger, Danja Schuenemann, and Martin Johannes Mueller

DEVELOPMENT AND HORMONE ACTION


Sugar Levels Regulate Tryptophan-Dependent Auxin Biosynthesis in Developing Maize Kernels. Sherry LeClere, Eric A. Schmelz, and Prem S. Chourey

ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS


Cytosolic Action of Phytochelatin Synthase. Ralph Blum, Katrin C. Meyer, Jana Wünschmann, Klaus J. Lendzian, and Erwin Grill


Root-Specific Expression of OsNAC10 Improves Drought Tolerance and Grain Yield in Rice under Field Drought Conditions. Jin Seo Jeong, Youn Shic Kim, Kwang Hun Baek, Harin Jung, Sun-Hwa Ha, Yang Do Choi, Minkyun Kim, Christophe Reuzeau, and Ju-Kon Kim

GENETICS, GENOMICS, AND MOLECULAR EVOLUTION

The Soybean Stem Growth Habit Gene Dt1 Is an Ortholog of Arabidopsis TERMINAL FLOWER1. Baohui Liu, Satoshi Watanabe, Tomoo Uchiyama, Fanjiang Kong, Akira Kanazawa, Zhengjun Xia, Atsushi Nagamatsu, Maiko Arai, Tetsuya Yamada, Keisuke Kilamura, Chikara Masuta, Kyuya Harada, and Jun Abe

PLANTS INTERACTING WITH OTHER ORGANISMS

Involvement of Abscisic Acid in the Coordinated Regulation of a Stress-Inducible Hexose Transporter (VvHT5) and a Cell Wall Invertase in Grapevine in Response to Biotrophic Fungal Infection. Matthew A. Hayes, Angela Feechan, and Ian B. Dry

CLE Peptides Control Medicago truncatula Nodulation Locally and Systemically. Virginie Mortier, Griet Den Herder, Ryan Whitford, Willem Van de Velde, Stephane Rombauts, Katrien D’haeseleer, Marcelle Holsters, and Sofie Goormachtig

WHOLE PLANT AND ECOPHYSIOLOGY

Differential Oxidative Metabolism and 5-Ketoclamazone Accumulation Are Involved in Echinochloa phyllopogon Resistance to Clomazone. Hagai Yasuor, Wei Zou, Vladimir V. Tolstikov, Ronald S. Tjeerdema, and Albert J. Fischer


SYSTEMS BIOLOGY, MOLECULAR BIOLOGY, AND GENE REGULATION

Concerted Modification of Flowering Time and Inflorescence Architecture by Ectopic Expression of TFL1-Like Genes in Maize. Olga N. Danilevskaya, Xin Meng, and Evgenii V. Ananiev

Mathematical Modeling of the Central Carbohydrate Metabolism in Arabidopsis Reveals a Substantial Regulatory Influence of Vacuolar Invertase on Whole Plant Carbon Metabolism. Thomas Nägele, Sebastian Henkel, Imke Hürlimann, Thomas Sauter, Oliver Sawodny, Michael Ederer, and Arnd G. Heyer

Dynamic Nucleocytoplasmic Shuttling of an Arabidopsis SR Splicing Factor: Role of the RNA-Binding Domains. Glwadys Rausin, Vinciane Tillemans, Nancy Stankovic, Marc Hanikenne, and Patrick Motte

RNA Interference-Mediated Change in Protein Body Morphology and Seed Opacity through Loss of Different Zein Proteins. Yongrui Wu and Joachim Messing

A Complex Interplay of Three R2R3 MYB Transcription Factors Determines the Profile of Aliphatic Glucosinolates in Arabidopsis. Ida Elken Sønderby, Meike Burow, Heather C. Rowe, Daniel J. Kliebenstein, and Barbara Ann Halkier

GIGANTEA Acts in Blue Light Signaling and Has Biochemically Separable Roles in Circadian Clock and Flowering Time Regulation. E.L. Martin-Tryon, J.A. Kreps, and S.L. Harmer

Some figures in this article are displayed in color online but in black and white in the print edition. Indicates Web-only data. Open Access articles can be viewed online without a subscription.