
Genome Analysis

Digital Gene Expression Signatures for
Maize Development1[W][OA]

Andrea L. Eveland, Namiko Satoh-Nagasawa2, Alexander Goldshmidt, Sandra Meyer, Mary Beatty,
Hajime Sakai, Doreen Ware3, and David Jackson3*

Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 (A.L.E., A.G., D.W., D.J.); DuPont
Agricultural Biotechnology Experimental Station E353, Wilmington, Delaware 19880 (N.S.-N., H.S.); Pioneer
Hi-Bred International, Johnston, Iowa 50131–1004 (S.M., M.B.); and United States Department of Agriculture-
Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853
(D.W.)

Genome-wide expression signatures detect specific perturbations in developmental programs and contribute to functional
resolution of key regulatory networks. In maize (Zea mays) inflorescences, mutations in the RAMOSA (RA) genes affect the
determinacy of axillary meristems and thus alter branching patterns, an important agronomic trait. In this work, we developed
and tested a framework for analysis of tag-based, digital gene expression profiles using Illumina’s high-throughput sequencing
technology and the newly assembled B73 maize reference genome. We also used a mutation in the RA3 gene to identify
putative expression signatures specific to stem cell fate in axillary meristem determinacy. The RA3 gene encodes a trehalose-6-
phosphate phosphatase and may act at the interface between developmental and metabolic processes. Deep sequencing of
digital gene expression libraries, representing three biological replicate ear samples from wild-type and ra3 plants, generated
27 million 20- to 21-nucleotide reads with frequencies spanning 4 orders of magnitude. Unique sequence tags were anchored to
3#-ends of individual transcripts by DpnII and NlaIII digests, which were multiplexed during sequencing. We mapped 86% of
nonredundant signature tags to the maize genome, which associated with 37,117 gene models and unannotated regions of
expression. In total, 66% of genes were detected by at least nine reads in immature maize ears. We used comparative genomics
to leverage existing information from Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) in functional analyses of
differentially expressed maize genes. Results from this study provide a basis for the analysis of short-read expression data in
maize and resolved specific expression signatures that will help define mechanisms of action for the RA3 gene.

Genome-wide expression analyses provide essential
building blocks for elucidating molecular function.
Recent studies have highlighted the significance of
high-throughput expression data, particularly with
the integration of large, diverse data sets, in construct-
ing biochemical and regulatory networks in silico
(Levesque et al., 2006; Gutiérrez et al., 2007; Capaldi
et al., 2008; Ramsey et al., 2008; Amit et al., 2009).
Resolution of these networks is enhanced by increased

sensitivity and specificity for transcript detection and
by the availability of resources for a given species. For
the model organism Arabidopsis (Arabidopsis thaliana),
large-scale, community-generated expression data sets
have been assembled and integrated into Web-based
repositories (for review, see Bevan and Walsh, 2005;
Brady and Provart, 2009). Interrogation of these data
sets using systems approaches has identified key
transcriptional regulators in various aspects of plant
biology (Gutiérrez et al., 2008; Kaufmann et al., 2009;
Pruneda-Paz et al., 2009). With the release of the first
assembled maize (Zea mays) B73 reference genome
sequence (Schnable et al., 2009) comes a need for com-
parable resources in maize. Comprehensive expres-
sion profiles for maize, as well as leveraging of existing
information from comparative studies with other
model plant species, are pivotal to fueling exploratory
research of agriculturally important traits.

Over the past decade, since the first expression
studies using microarrays, a major focus of the scien-
tific community has been the accumulation and cata-
loging of genome-wide transcript data (Zimmermann
et al., 2004; Toufighi et al., 2005; Goda et al., 2008;
Barrett et al., 2009; Parkinson et al., 2009). Consistent
with this trend, advances in array technology have
progressively enhanced specificity, coverage, and the
ability to address unique research questions. Genome-
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wide tiling arrays provide resolution up to the single
nucleotide level and have been utilized to identify
transcript variants (such as alternatively spliced tran-
scripts), single-feature polymorphisms, and epigenetic
marks (for review, see Gregory et al., 2008). Although
microarray technologies continue to evolve, the recent
emergence of deep-sequencing platforms has moti-
vated the current digital age of functional genomics
(Blow, 2009; Lister et al., 2009, Metzker, 2010). Next-
generation technologies, such as those developed by
Illumina (previously Solexa), 454 Life Sciences (Roche),
and Applied Biosystems (ABI), can generate tens of
thousands (Roche-454) to tens of millions (Illumina and
ABI) of sequence reads, in parallel, with exceptional
reproducibility (Li et al., 2008; Marioni et al., 2008; Simon
et al., 2009). Adapting these technologies to genome-wide
expression studies circumvents the inherent limitations
of hybridization-based methods. For example, sequence-
based methods require no prior knowledge of sequence
and/or transcript composition and thus provide a po-
tentially unbiased view of the transcriptome,which is not
limited to fully sequenced genomes (Blencowe et al.,
2009; Simon et al., 2009). In addition, sequencing tech-
nologies enable the resolution of transcript variants and
novel mRNAs (Sultan et al., 2008; Marioni et al., 2008),
minimize biases due to cross-hybridization (Tang et al.,
2009), and provide quantitative measures of transcript
abundance based on read count over a wide dynamic
range (’t Hoen et al., 2008; Mortazavi et al., 2008; Sultan
et al., 2008; Morrissy et al., 2009; Babbitt et al., 2010).
A number of studies have used next-generation

sequencing technologies for genome-scale expression
analyses in higher eukaryotes. Such approaches include
whole-transcript sequencing and assembly (RNA-seq)
using the long-read, 454 platform (Emrich et al., 2007a;
Weber et al., 2007) and the massively parallel Illumina
(Mortazavi et al., 2008; Wang et al., 2008, 2009) and ABI
SOLiD (Tang et al., 2009) systems. While Illumina and
ABI achieve a much greater depth of sequencing, read
lengths are significantly shorter (typically 36–75 bases)
compared with 454 (up to 500 bases). Alternatively,
tag-based approaches target 3#-ends of transcripts to
generate short (15–21 base) signature sequences from
individual mRNAs (Harbers and Carninci, 2005).
Early tag-based sequencing using serial analysis of
gene expression (Velculescu et al., 1995) yielded rela-
tively low read depth and required laborious cloning
steps. More recently, Illumina’s Digital Gene Expres-
sion (DGE) platform, upgraded from the previous
massively parallel signature sequencing (MPSS) tech-
nology (Brenner et al., 2000; Jongeneel et al., 2003;
Meyers et al., 2004), can generate, at its current capac-
ity, 90 to 100 million reads per run of an eight-lane flow
cell using the Genome Analyzer 2x (GA2x) system
(www.illumina.com). Althoughwhole-transcriptome se-
quencing methods provide information on alternative
splicing (Pan et al., 2008; Sultan et al., 2008) and novel
expression patterns from intergenic regions (Lister et al.,
2008), the nonredundant nature of tag-based profiles
would, in theory, allow for greater depth of sequencing

per transcript. DGE produces a specific 3# signature for
each mRNA, thereby reducing library saturation from
abundant transcripts and enhancing the capacity for
rare transcript detection (’t Hoen et al., 2008; Asmann
et al., 2009; Morrissy et al., 2009; Babbitt et al., 2010).
Likewise, increased read counts per unique transcript
would enhance power for statistical analyses in com-
paring quantitative expression profiles among sam-
ples. In addition, DGE data files can be collapsed to a
smaller number of unique sequences, thus allowing
for less storage requirements, more efficient mapping
without the need for high-performance computing,
and thus less bioinformatic support. Furthermore, the
DGE protocol is strand specific and requires up to 10
times less starting RNA than current whole-transcript,
RNA-seq approaches, which is a key advantage when
tissue is limiting.

Until recently, an unsequenced genome and lack of
adequate gene models and annotations have limited
large-scale transcriptome analyses in maize. The maize
genome is highly complex, having undergone two suc-
cessive rounds of duplication (Messing and Dooner,
2006; Wei et al., 2007). Sequencing of the B73 maize
reference genome revealed that approximately 81% of
the genome could be assigned to homeologous regions
(Schnable et al., 2009). In addition, tandemly duplicated
gene families occur frequently throughout the genome
(Messing and Dooner, 2006; Schnable et al., 2009), and
near-identical, paralogous genes (98% or greater iden-
tity) are often coexpressed (Emrich et al., 2007b). Such
complications have recently been addressed by using
sequence-based transcript profiling methods to identify
novel genes (Emrich et al., 2007a), resolve the expres-
sion of family members and near-identical paralogs
(Eveland et al., 2008), and quantify allelic variants
(Barbazuk et al., 2007; Guo et al., 2008) in maize.

The shift to functional genomics studies in maize
will be dependent on standardized methods for the
analysis and assessment of the various sequencing
methods with regard to specificity, mapability, depth
of coverage, and cost. Despite rapid advances and
extensive applications of next-generation sequencing
technologies, methods for data analysis have not been
well established. In this work, we evaluated the per-
formance of short-read, DGE profiling in cataloging of
gene-specific signatures at a particular stage of maize
inflorescence development. We present a framework
for genome-wide analysis of tag-based expression data
in maize and describe a comprehensive pipeline for
mapping short sequence reads, accessing gene infor-
mation from Ensembl (Flicek et al., 2010), and quan-
tifying differences in transcript abundance based on
read counts using an open-source statistical package.
We also show that analysis of tags mapping indepen-
dently of known gene models can be used to identify
unannotated transcripts, a clear advantage over mic-
roarrays. The analyses described here can also be
adapted to RNA-seq data sets.

We also tested the effect of perturbing a key devel-
opmental pathway in inflorescence architecture using
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a mutant in the RAMOSA3 (RA3) gene. RA3 encodes a
trehalose-6-phosphate phosphatase (TPP) and func-
tions in regulating the determinacy of axillary meri-
stems (Satoh-Nagasawa et al., 2006). Although RA3 has
been cloned and genetically placed in a pathway con-
trolling meristem determinacy, very little is known
about its molecular mechanisms. Here, the quantitative
DGE data were used to investigate putative targets of
the RA3 gene. We leveraged functional information
available for Arabidopsis and rice (Oryza sativa) and
resolved the differential expression of transcription
factors (TFs) across a wide range of transcript abun-
dance. The significance of this study is 2-fold. First, our
results provide a basis for the analysis of short-read,
3#-targeted expression data using the maize B73 ge-
nome as a reference. We demonstrate that quantitative
differences in transcript abundance can also be detected
by DGE with no prior knowledge of the gene space;
therefore, it is applicable to species without sequenced
genomes. Second, genetic control of branching, espe-
cially in the ear where kernels are borne, has clear
relevance to crop improvement programs with respect
to seed number and harvesting ability.

RESULTS

Library Construction and Sequencing

To generate digital expression signatures for young
maize inflorescences, we used the Illumina Genome
Analyzer (GA; first phase) technology for massively
parallel sequencing by synthesis. In addition, we used
a mutant in the RA3 gene as a developmental pertur-
bation. Immature ears were sampled and hand dis-
sected from field-grown wild-type B73 inbred (Fig.
1A) and ra3 mutant plants introgressed into a B73
background (Fig. 1B). Ears were size selected for uni-
formity at a growth stage of 2 mm, where expression of
RA3 is highest (Satoh-Nagasawa et al., 2006) in the wild
type (Fig. 1, C and E) and the very first signs of the
mutant phenotype were visible as outgrowths of the
spikelet pair meristems (Fig. 1, D and F). We repre-
sented the wild-type and ra3 genotypes each with three
pools of four to five ears from individual plants. Total
RNAwas used to construct DGE libraries from each of
the six ear samples: three wild-type biological replicates
and three ra3 biological replicates. A single technical
replicate of a ra3 sample was also run.

Briefly, the DGE technology uses a 3#-targeted se-
quencing strategy to generate a single 20- or 21-base
signature tag from the 3#-end of a given transcript. The
length of the tag depends on the restriction enzyme
used in library construction. We constructed enzyme-
specific libraries for each sample using restriction
digests with DpnII and NlaIII. We hypothesized that
each enzyme would cleave a given transcript at its 3#-
most restriction site and that a dual-enzyme approach
would enhance coverage in cases where a restriction
site was either absent or within 20 bases of the poly(A)

tail. To enablemultiplexing ofDpnII andNlaIII libraries,
we used a custom sequencing primer that incorporated
the restriction site at the 5#-end of each read. The speci-
ficity of the restriction site thus allowed for library rec-
ognition and sorting of reads sequenced concurrently in
a single lane. We sequenced each sample in one lane of
an eight-lane Illumina GA flow cell.

In total, approximately 28 million filtered, high-
quality reads were sequenced from the seven lanes.
Custom Perl scripts were used for adaptor trimming
and read parsing. Total reads sequenced per individ-
ual sample were 3.9 6 1.1 3 106 (Supplemental Fig.
S1A), and about 11% more reads were sequenced from
NlaIII libraries thanDpnII. We consolidated reads from
all seven lanes into 290,000 and 490,000 unique tags
from the DpnII and NlaIII libraries, respectively. Ap-
proximately half of these nonredundant tags were
singlets; however, they only represented 1.5% of total
reads sequenced. Singlets were removed from further

Figure 1. Maize mutants in the RA3 gene show an increased branching
phenotype resulting from a loss of determinacy of basal spikelet pair
meristems. A, Mature ear of wild-type B73 maize. B, Mature ear of ra3
mutant maize. C to F, Scanning electron micrographs at the 2-mm stage
show B73 primordia (C and E) and long branches (D and F) just beginning
to form at the base of ra3 mutant ears (red arrowheads). Bars = 200 mm.
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analyses on the basis that they likely represent se-
quencing errors and there is no statistical support for
their presence. Read frequencies of unique signature
tags represented by two or more reads (consensus
tags) spanned over 4 orders of magnitude (Supple-
mental Fig. S1B).

Mapping Short Reads to the Maize Reference Genome

We used Vmatch (www.vmatch.de) to map unique
consensus sequence tags (total of two or more reads
from all libraries) to the maize reference genome (B73
RefGen_v1 [Schnable et al., 2009]). The Vmatch algo-
rithm uses enhanced suffix arrays (Abouelhoda et al.,
2002) in which a persistent reference index is created
allowing for efficient processing time and reduced space
requirements. This method performs effectively with
DGE data sets, which are reduced in size and complex-
ity since reads are collapsed to unique tags prior to
mapping. Other algorithms for large-scale mapping of
short reads can also be used with the condensed DGE
data, and we have achieved analogous results using
Bowtie (http://bowtie-bio.sourceforge.net).
The short-read mapping pipeline used here in-

cluded two rounds of mapping to the maize reference
genome and associated transcript models (Fig. 2). In
phase I, we used a stringent requirement for a com-
plete match of the sequence tag. Here, we allowed a
given tag to map perfectly up to three places in the
genome. Since we expect that 3# regions of a given
gene tend to be unique, tags mapping to four or more
locations were considered repeats and removed from
further analyses. In this first round of mapping for

DpnII/NlaIII tags, 45%/54% mapped to a single loca-
tion, 6%/8% mapped to two or three individual places
in the genome, 5%/5% were considered repeats, and
44%/33% did not map (Table I). To determine whether
a portion of these unmapped tags covered splice junc-
tions, we used the transcript models associatedwith the
maize reference sequence (www.maizesequence.org) as
a persistent Vmatch index. We recovered an additional
1.7%/4.8% (DpnII/NlaIII) of total tags that mapped to a
single location in the transcriptome and 0.4%/0.9% that
matched two or three transcripts.

In phase II, a second round of mapping used the
remaining 42%/31% (DpnII/NlaIII) of tags that did not
map completely to the genome or associated transcript
models. Here, we allowed for one mismatch to max-
imize the recovery of signatures that did not map due
to sequencing errors in the reference or polymor-
phisms retained after introgression of the ra3 mutant.
While the one-mismatch tags tended to be distributed
uniformly across the genome, we did observe an en-
richment of tags flanking the RA3 locus on chromo-
some 7 that were sequenced exclusively from the ra3
samples and represented by at least 10 reads (Supple-
mental Fig. S2). Although these made up only 0.2% of
all unique mapped tags, they could potentially be used
to resolve areas of variation associated with the intro-
gression. After two rounds of mapping, only 14%/13%
(DpnII/NlaIII) of all unique tags did not map to the
reference maize genome sequence or associated tran-
scripts (Table I). These nonmapped tags most likely
represent regions where the reference sequence is in-
complete or varies between B73 and the original ra3
mutant line. Only 0.02% of nonmapped tags matched
maize chloroplast or mitochondrial genome sequences.

Extracting Gene Information for Mapped Tags

In the next stage of our analysis pipeline, we used the
mapping coordinates for tags that matched one to three
unique places in the genome and extracted the corre-
sponding gene information. Custom scripts used the
Ensembl Perl Application Programming Interface
(http://uswest.ensembl.org/info/docs/api) to associ-
ate mapped tags with a “working” gene set of 108,745
gene models including evidence-based (86%) and ab
initio (14%) predictions (gene build 4a.53; maizese-
quence.org). The working gene set is a broader, less
conservative set of genemodels,which includea smaller
set of high-confidence, “filtered” gene models (gene
build 4a.53; maizesequence.org). We anticipated that by
using these working genes, our analysis would not be
restricted to well-characterized genes and thus enhance
the potential for gene discovery. In order to maximize
the inclusion of unannotated untranslated regions
(UTRs), the predicted gene space was extended 300
bases on either end. In total, we identified 37,117 work-
ing genes (including 22,500 filtered genes) that were
associatedwith at least two read counts inDpnII and/or
NlaIII libraries. Of these, 9% were DpnII specific while
21% were found only in the NlaIII data set. We then

Figure 2. Bioinformatics pipeline used to map unique DGE tags to the
maize reference genome. In phase I, only perfect matches were
allowed. Tags that mapped uniquely up to three places in the genome
or associated cDNA models were used in downstream analyses to
extract Ensembl-based gene information. Tags that did not map during
phase I were subject to an additional round of mapping (phase II),
which allowed for one mismatch along the length of the sequence tag.
All tags that mapped to repeat regions of the genome (more than three
unique places) were removed from further analyses.
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compared total read frequencies to the percentage of
mapped tags associated with working gene models,
nongenic space, and repetitive regions and to nonmap-
ped tags (Fig. 3). Theproportion of tags thatmapped to a
workinggenemodel increased fromapproximately 40%
at low read counts (two to 10 reads) to 80% at 1,000 reads
or more. Overall, there were more of the low-frequency
tags sequenced from the NlaIII libraries (Supplemental
Fig. S1B), and a higher percentage of these mapped to
genic regions compared with those from DpnII librar-
ies. Tags that mapped to repetitive regions represented
about 6%of the total in each frequency class (Fig. 3), and
the majority of nonmapped tags were low copy (50%
and40% forDpnII andNlaIII libraries, respectively).We
also observed a small proportion of tags in each read
count class that mapped to regions of the genome
where no gene model was called. Whenmapping from
phase II (one mismatch allowed) was considered, an
additional 2,936 working genes were identified; how-
ever, most of these were recovered from low-frequency
tags (Supplemental Fig. S3).

Since the number of genes recovered (37,117) was
only 15% of the total number of mapped tags, multiple
signature tags were likely associated with a single gene.
Therefore, we combined consensus sequence tags that
mapped to a given gene model to obtain a cumulative
read count (Fig. 4A). Only 36% and 24% of the genes
identified in DpnII and NlaIII libraries, respectively,
were associated with a single signature tag. We expect
that multiple tags are due to incomplete restriction
enzyme digests during library preparation; however,
a portion may represent alternate splice isoforms or
polyadenylation variants. The number of tags per gene
was distributed over a wider range in the NlaIII data
set, with some genes associated with more than 20 tags.
This distribution was also observed with an indepen-
dent maizeNlaIII data set constructed and sequenced in
a different laboratory (P. Bommert, unpublished data),
suggesting that this was not due to technical errors
during library construction.

Although multiple tags mapped to a given gene, we
expected that the most abundant tags would be those
associated with the 3#-most restriction site for each
gene. To test this, we used a set of 36,394 full-length
maize cDNAs (fl-cDNAs; Alexandrov et al., 2009) as
a “golden” reference set of transcript models with

Table I. Summary statistics from mapping unique sequence tags (represented by two or more reads) to the maize B73 reference genome

Mapping Class

No. of Unique Tags (% of Total)a

Phase I Phase II

Genome Transcripts Only Genome Transcripts Only

DpnII libraries
Total unique tags 134,656 58,746 57,503 19,431
Unique match 60,418 (44.9) 995 (1.7) 20,525 (35.7) 111 (0.6)
Two to three matches 8,668 (6.4) 222 (0.4) 11,084 (19.3) 59 (0.3)
Repeats 6,824 (5.1) 243 (0.04) 6,463 (11.2) 4 (0.2)
Nonmapped 58,746 (43.6) 57,503 (97.9) 19,431 (33.8) 19,257 (99.1)

NlaIII libraries
Total unique tags 237,005 78,662 74,034 30,597
Unique match 128,332 (54.2) 3,794 (4.8) 26,708 (36.1) 289 (0.9)
Two to three matches 18,775 (7.9) 702 (0.9) 11,583 (15.7) 137 (0.4)
Repeats 11,236 (4.7) 132 (0.2) 5,146 (7.0) 21 (0.1)
Nonmapped 78,662 (33.2) 74,034 (94.1) 30,597 (41.3) 30,150 (98.5)

a(% of Total) represents the portion of tags mapped from total tags subjected to each stage of mapping.

Figure 3. Mapping results for unique consensus tags (represented by
two or more reads) and distribution by total read count. Coordinates of
mapped tags from phase I were used to associate sequence reads with a
working set of maize gene models (gene build 4a.53; maizesequence.
org). Tags were classified as mapping to working gene models or
nongenic regions, repeats, or not mapping at all. Results are displayed
as consensus tags, grouped by total read count across all samples. In
both DpnII (top) and NlaIII (bottom) data sets, nonmapped tags tended
to be low copy (two to 10 reads), while the largest portion of tags at read
frequencies greater than 100 tended to be associatedwith genemodels.
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mostly complete 3#-UTRs. We simulated DpnII and
NlaIII digests in silico and matched the predicted DGE
tags from the resulting fragments to our consensus set
of unique sequence tags. In total, 67% and 74% of the
fl-cDNAs were detected in DpnII and NlaIII libraries,
respectively. For each fl-cDNA, associated DGE tags
were ranked based on position starting from the 3#-
most and extending to the 10th possible restriction site.
The percentage of tags representing the most abun-
dant signature was quantified (Fig. 4B). Based on these
data, the canonical, 3#-most tag was the most abun-
dant for 85% of fl-cDNAs identified by DpnII and 60%
with NlaIII.
Since strand information is retained during con-

struction of the DGE libraries, we were also able to
distinguish sense and antisense transcripts. Of the
37,117 working genes identified in this experiment,
approximately 49% showed evidence for transcription
in both orientations, while about 9% showed antisense
expression alone. There were 2,346 working genes
represented by at least 10 reads in both sense and
antisense orientations for wild-type and/or ra3 sam-
ples. We analyzed sense-antisense (S-AS) pairs based

on methods by Morrissy et al. (2009). Here, the ratio
of antisense relative to sense transcript abundance
was calculated for each gene and used to determine if
S-AS transcript ratio (S:AS) was altered in the ra3 mu-
tant. Ratio changes ranged from +5.9 to 26.2, where
positive values indicated a decreased S:AS in the ra3
mutant compared with the wild-type. In DpnII and
NlaIII data sets, 86 and 170 genes, respectively, had S:
AS changes that were at least 2-fold in ra3 mutants
compared with the wild type (Supplemental Fig. S4;
Supplemental Table S1).

Determining Differential Gene Expression

To compare gene expression profiles for the wild type
and mutant, we first used cumulative counts of all
consensus tags mapping in sense to a given working
gene model (Supplemental Fig. S5). Initially, only tags
that mapped completely to the genome and/or tran-
script models (phase I) were used, and data fromDpnII-
andNlaIII-generated data setswere analyzed separately.
Since we included tags that mapped to two or three
locations in the genome, we applied a scoring system to
normalize read count across mapping locations (see
“Materials and Methods”). We verified that read distri-
bution across lanes was not skewed due to saturation of
very-high-frequency sequences by plotting raw read
counts for the most abundant tags encountered inDpnII
and NlaIII libraries (Supplemental Fig. S6).

We used edgeR (empirical analysis of digital gene
expression in R; Robinson and Smyth, 2008; Robinson
et al., 2010), a software package available from Bio-
conductor (Gentleman et al., 2004), to normalize for
tag distribution per library and determine significance
values for differentially expressed genes. The edgeR
algorithm uses an empirical Bayes analysis to improve
power in small sample sizes (Robinson and Smyth
2007, 2008; Robinson et al., 2010). This accounts for
biological and technical variation and has been im-
plemented for tag-based data sets where small num-
bers of replicates are tested and SE values disperse
farther from the mean at low versus high levels of ex-
pression (Robinson and Smyth 2008; Babbitt et al., 2010).
Based on a cutoff of at least nine reads per gene, our
statistical analyses included 20,250 and 22,130 genes for
DpnII and NlaIII data sets, respectively (Supplemental
Data Set S1). From these, we identified 660 and 303
differentially expressed genes, respectively, with false
discovery rate-corrected P values less than 0.05 (Fig. 5A;
Supplemental Fig. S7). A smaller number of signifi-
cantly different genes identified in the NlaIII data set
is likely due to more variation observed among NlaIII
samples and small sample sizes. Among all differen-
tially expressed genes (P, 0.05), 629 were up-regulated
in the ra3mutant while 249were down-regulated.Many
of the genes showing the most significant differences in
expression have not been characterized in maize or in
related species (Supplemental Table S2).

Although 74% of the total expressed gene set used in
the edgeR analysis was present in both DpnII and

Figure 4. Distribution of genes associated with multiple unique tags
and relative frequencies of tags at 3# enzyme cut sites. A, The total
number of maize working genes identified in DpnII andNlaIII data sets
were grouped according to number of unique tags that map to them. B,
Digests were simulated in silico withDpnII andNlaIII on a golden set of
fl-cDNA models. Positions of predicted 20- to 21-nucleotide fragments
that matched unique DGE tags were used to estimate frequency (shown
as percentage) of the most abundant tag per fl-cDNA generated by each
possible site from the 3#-end.
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NlaIII data sets, only 9% of these genes had significant
P values (,0.05) in each of the two data sets (Fig. 5A;
Supplemental Table S3). Although the remaining
65% (675 genes) had significant P values exclusively
in DpnII or NlaIII data sets, the majority of these
(97.4%) showed the same trend (i.e. either up- or
down-regulated in the ra3 mutant) in both data sets
(Fig. 5B). As expected, a larger proportion of genes that
were highly significant (P , 1.0e208) in one of the two
data sets also showed significant expression differ-
ences in the other (Fig. 5A). We used quantitative real-
time PCR (Q-PCR) with independently collected RNA

samples to test whether expression differences were
reproducible for a subset of genes. Significant differ-
ences were validated for 80% of the genes tested using
Q-PCR (Fig. 5C).

Expression Profiling with No Prior Knowledge

To determine differences in transcript abundance
independently of prior information on gene models,
we carried out statistical testing using edgeR for each
mapped tag separately (Supplemental Data Set S2). In
this analysis, we used tags that mapped completely to

Figure 5. Differentially expressed genes identified in the DpnII and NlaIII data sets. A, Venn diagrams show total number of
expressed genes (represented by nine or more reads) analyzed from DpnII and NlaIII data sets and the portion that were
differentially expressed between the wild type and ra3with corrected P values of P, 0.05 (top) and P, 1.0e208 (bottom). Genes
identified as differentially expressed in both data sets tended to have smaller P values. B, Expression trends (up- or down-
regulated in ra3) were compared for genes that were identified in both data sets but had significant P values (P , 0.05) in only
DpnII (left panel) or NlaIII (right panel). For each data set, differentially expressed genes were divided into four classes based on
significance level. Within each class, the percentage of genes that were differentially expressed in both data sets are shown along
with whether they shared common (+) or had opposite (2) trends. Genes with significant P values in either DpnII or NlaIII data
sets, but a P value of 1.0 (no change in expression) in the other, were not included. C, Differential expression was validated by
Q-PCR for a subset of genes. Relative fold changes are shown forDpnII (D) andNlaIII (N) data sets and for Q-PCR data (Q). Some
genes were differentially expressed in only one DGE data set (asterisks) but showed common trends (significant P not always
consistent with fold change). TPS, Trehalose phosphate synthase; NAM, NO APICAL MERISTEM; BES1, BRI1-EMS-Suppressor;
IAA24, auxin/indole-3-acetic acid family protein 24.
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the genome and were independently represented by at
least nine reads, rather than cumulative counts per
gene. We identified 364 unique tags from DpnII li-
braries and 294 tags from NlaIII libraries that showed
significant differences in frequency between wild-type
and ra3mutant samples. These tags were grouped into
four hierarchical classes based on level of significance
(where class I included tags with most significant
P values and class IV included tags with least signif-
icant P values; all classes were,0.05). Their individual
read frequencies were then plotted according to tag
rank order (Fig. 6). Mapping the tags back to their
respective gene models resulted in comparable sets of
differentially expressed genes from DpnII and NlaIII
data sets, as observed with cumulative counts (data
not shown). Results from this analysis showed that
although more counts per tag provided greater power
for statistical testing, we could also capture significant
differences for low-frequency tags with read counts
just above 10.
These data indicate that differential gene expression

can be analyzed without prior knowledge of gene
models and that significant differences can be detected
for low-abundance transcripts. Therefore, with ongo-
ing upgrades in throughput for Illumina and other
sequencing technologies, the ability to multiplex DGE
samples can dramatically improve cost and time effi-
ciency. In addition, these analyses provide a more
unbiased approach and an advantage over microarray
design, since existing gene models may not be com-
plete or capture all transcript variants. We further
tested whether tags that mapped to unannotated
regions of the genome were of potential biological
significance. Of those individual mapped tags with
significant differences in frequency between the wild
type and mutant (Fig. 6), 37DpnII and 25NlaIII unique
tags did not associate with working gene models. We
used mapping coordinates of these 62 unique tags to
cluster those that mapped within 5 kb of each other.
This identified four unique regions where these dif-
ferentially expressed tags clustered (Supplemental Fig.
S8). Among these, a 554-nucleotide region on chromo-
some 8 and a 488-nucleotide region on chromosome
4 were associated with tags expressed only in ra3
samples. Although no gene model has been called in
either of these regions, available RNA-seq data for
maize (maizesequence.org; Schnable et al., 2009) pro-
vide additional evidence for expression. A 57-nucleotide
region on chromosome 5 and a 531-nucleotide region on
chromosome 7 were each associated with two differen-
tially expressed tags and appear to be unannotated
3#-UTRs to adjoining genes (Supplemental Fig. S8). This
clustering method could also be done with all mapped
tags to obtain cumulative read counts in the absence of
predicted gene models.

Resolving TFs across a Wide Range of Abundances

A primary objective was to identify genes that
encode TFs and to determine potential ranges for their

detection. To test this, we used information from the
Ensembl Compara gene trees (Vilella et al., 2009) at
maizesequence.org and gramene.org (Liang et al.,
2008) to retrieve putative orthologs of maize genes in
our expressed set. We then queried known Arabidop-
sis TFs in the Database of Arabidopsis Transcription
Factors (http://datf.cbi.pku.edu.cn/) and between
both DpnII and NlaIII data sets identified 479 maize
genes with sequence similarities to Arabidopsis TFs.
Quantitative analysis of their expression profiles in-
dicated that TFs are expressed over a wide range of
transcript abundances, spanning over 4 orders of
magnitude in young inflorescence tissue (Fig. 7; Sup-
plemental Data Set S3). Of the 479 putative TFs, 27
were differentially expressed (P , 0.05) based on

Figure 6. Distribution of read frequencies for unique consensus tags
that showed differential expression between the wild type and ra3
mutant. Total read counts for each tag are plotted on the x axis (log
scale). Tags are grouped into four significance classes based on their
P value and are plotted by their respective rank order in each class
(y axis). A read count of 10 was used as a cutoff for analysis of dif-
ferential expression (marked by the white line).
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edgeR statistical analysis. We further interrogated the
remaining differentially expressed gene set for addi-
tional TFs using gene ontologies, InterPro domains,
and known maize annotations.

Together, these analyses identified a total of 75
putative TFs, which were differentially expressed
over a wide range of abundances (Fig. 7; Supplemental
Table S4). A subset presented in Table II includes
members of TF families based on InterPro signatures
(www.ebi.ac.uk/interpro) associated with functions in
development and meristem maintenance or identity
(NAC, YABBY, GRAS), while others have roles in
hormone-mediated signaling by auxin (AUX/IAA),
brassinosteroids (BES, BIM), or ethylene (AP2/ERF).
Among the 75 differentially expressed TFs, nine were
characterized as AP2/ERF family proteins (PF00847)
based on InterPro and PFam classifications (Fig. 7).

DISCUSSION

In this study, we developed and tested a framework
for analysis of short-read, sequence-based expression
profiles using Illumina’s DGE technology and the first
assembled maize reference genome (B73 RefGen_v1
[Schnable et al., 2009]). Our results demonstrate that
deep sequencing of 20- to 21-nucleotide DGE tags can
be used to successfully resolve genome-wide expres-

sion profiles in maize and detect differences in tran-
script abundance over a broad dynamic range. In our
test case, which compared three pooled samples each
of wild-type and ra3 ears, we identified 37,117 ex-
pressed maize working genes (including 22,700 high-
confidence filtered genes) from six DGE libraries, each
sequenced in a single lane of an Illumina GA flow cell.
Of these, 67% were represented by sense transcripts
with nine or more reads and were used to test for
significant differences in transcript abundance be-
tween the wild type and ra3 mutants. Results from
these expression analyses provide testable hypotheses
for resolving regulatory and biochemical processes
contributing to maize inflorescence architecture via the
RA pathway.

Evaluation of DGE-Based Analysis with the Maize
Reference Genome

One objective of this work was to evaluate the
performance of DGE as a high-throughput method
for genome-wide transcript profiling in maize. As
deep sequencing technologies continue to develop,
their ability and/or efficiency for addressing specific
research questions will be based on thresholds that
exist for read length, depth of coverage, sequence
specificity, and cost. One limitation of the Illumina tag-
based DGE platform is the short read length (20–21
nucleotides); however, its exceptional throughput at a
lower cost promotes DGE as a candidate for use in
large-scale expression profiling experiments. We spec-
ulated that the availability of a sequenced maize
genome would improve our ability to map the short
DGE tags. From the conservative mapping phase
(phase I) of our DGE analysis pipeline, we were able
to map 51% of unique sequence tags to a single
location in the maize genome. Although 35% of unique
tags did not map in phase I, our results are consistent
with those of ’t Hoen et al. (2008), who showed that
41% of DGE tags could not be mapped in mouse. By
performing an additional round of mapping (phase II,
one mismatch allowed), we were able to recover 63%
of these nonmapped tags. The remaining 14% were
most likely due to incomplete regions of the reference
sequence and variation due to introgression.

Other studies using DGE (’t Hoen et al., 2008;
Morrissy et al., 2009) and MPSS (Meyers et al., 2004;
Nobuta et al., 2007) included only those tags that
mapped unambiguously to the reference sequence in
their analyses. One feature of the Vmatch mapping
software used here is the ability to view all redundant
matches to the genome. In this work, tags that mapped
perfectly to two or three individual loci represented
9% of the total. These were included in our analyses
with the expectation of recovering information on
paralogous genes. For example, for a set of AP2/ERF
family members, we could successfully resolve closely
related paralogs in the maize genome and quantify
their unique transcript profiles. Our confidence for
detecting paralogous loci was improved by combining

Figure 7. Quantitative transcript profiles for putative TFs expressed in
2-mm ears. These include 479 genes with sequence similarity to known
TF genes in Arabidopsis. Also shown are 75 differentially expressed
genes (P , 0.05) encoding possible TFs identified by comparative
analyses with Arabidopsis, GO assignments, and InterPro signatures.
Transcript abundances are plotted on a log scale based on read
frequencies for each TF and distributed along the x axis according to
rank order. TFs found exclusively in DpnII or NlaIII data sets are
highlighted. Nine AP2/ERF family members (noted here by maize gene
identifiers) were identified among differentially expressed TFs.
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tags fromDpnII andNlaIII data sets that associatedwith
a given gene model (Supplemental Table S5).
Similar to observations in this work, previous stud-

ies with tag-based profiling methods using either the
DpnII (Meyers et al., 2004) or the NlaIII (’t Hoen et al.,
2008; Babbitt et al., 2010) enzymes also showed that
multiple tags tended to associate with a single gene
model. Although these have been suggested to repre-
sent polyadenylation variants, we expect, based on the
high frequencies and wide distribution of tags, that
many are due to incomplete restriction enzyme diges-
tion during library preparation and/or enzyme biases
for specific cut sites. In support of this, analysis of the
biological replicates in our study showed that read
frequencies of individual tags varied among replicates
to a larger degree than the cumulative counts for a
given gene (Supplemental Fig. S5). Profiling with
cumulative counts also allowed for the inclusion of

more genes in our statistical analysis, since a cutoff of
nine reads was imposed as a threshold for detection. In
addition, our analysis using the full-length cDNA
models indicated that the 3#-most tag was not always
the most abundant signature for a gene. This was more
commonly observed with the NlaIII enzyme, which
further suggests that multiple signatures per gene
were not due to variation in transcript structure.

Based on these observations, we used a cumulative
count of tags mapping to a given gene, as opposed to
previous DGE and MPSS studies that used a predicted
3#-tag database for detecting individual transcripts
(Meyers et al., 2004; ’t Hoen et al., 2008; Morrissy et al.,
2009). Relying on the latter method in a complex
genome such as maize, which is in the early stages of
annotation, could result in a loss of informative ex-
pression data. Accordingly, recent work using RNA-
seq data to improve gene models in human identified

Table II. Differentially expressed maize genes were identified as putative TFs

*, Q-PCR validations were done for a subset of genes.

Maize Gene ID Annotationa TF Family
Read Frequencyb

LogFCc P Valued

Wild Type ra3

Up-regulated TF genes in ra3 mutants
GRMZM2G307119 Branched silkless1 AP2/ERF 0 6 0 18 6 12.8 3.38e+01 4.06e209

0 6 0 19 6 10.6 3.36e+01 1.28e210

GRMZM2G088309 Drooping leaf* YABBY 1.4 6 0.6 14 6 8.3 3.52 8.43e205

6.0 6 1.2 55 6 13 3.17 1.19e212

GRMZM2G127379 NAM containing NAC 1.7 6 0.8 22 6 9.2 3.67 1.52e207

GRMZM2G017606 SHI SHI 11 6 0.7 43 6 14 2.05 8.42e205

GRMZM2G061487 DRE binding factor 1 AP2/ERF 8.3 6 2.7 22 6 6.9 1.54 3.07e202

10 6 1.5 36 6 7.8 1.83 4.11e204

GRMZM2G055243 KNOX class 2 protein KNOX 4.3 6 0.3 21 6 12 2.39 4.73e204

GRMZM2G089995 Ethylene responsive AP2/ERF 2.3 6 0.4 14 6 8.1 2.67 7.59e204

GRMZM2G310368 Ethylene responsive AP2/ERF 34 6 9.5 81 6 14 1.33 8.95e204

GRMZM2G171852 Uncharacterized C2C2-Dof 26 6 1.2 60 6 3.8 1.37 5.63e203

GRMZM2G078077 TCP domain protein TCP 9.0 6 0.5 27 6 10 1.73 5.83e203

4.3 6 1.2 16 6 3.5 2.12 2.46e203

GRMZM2G003927 Ramosa1 Znf-C2H2 107 6 10 237 6 31 1.27 2.71e203

40 6 13 97 6 24 1.27 1.59e203

GRMZM2G020054 Uncharacterized AP2/ERF 0.4 6 0.3 7.0 6 3.2 4.52 2.34e203

GRMZM2G014653 NAC protein 48 NAC 8.7 6 3.3 29 6 8 1.70 3.22e203

GRMZM2G132367 HDZipI-1 HD-Zip 7.7 6 2.0 23 6 5.7 1.58 1.67e202

GRMZM2G115357 IAA24* AUX/IAA 12 6 3.2 30 6 4.1 1.48 1.29e202

GRMZM2G130149 MYB59 R2R3-MYB 14 6 3.2 34 6 9.2 1.29 3.31e202

Down-regulated TF genes in ra3 mutants
GRMZM2G088242 HSFB4 HSF 198 6 30 36 6 11 2.36 9.51e209

17 6 1.8 3 6 2.8 2.80 8.23e204

GRMZM2G102514 BES1/BZR1 protein* BES 499 6 33 123 6 43 1.91 1.85e206

GRMZM2G171468 Uncharacterized MYB 88 6 8.1 31 6 17 1.35 6.52e203

33 6 6.3 6 6 1.4 2.48 2.22e205

GRMZM2G054277 NAM containing* NAC 17 6 3.4 3 6 1.4 2.58 9.84e204

GRMZM2G148333 Ethylene responsive AP2/ERF 30 6 3.9 5.7 6 4.5 1.92 1.78e203

GRMZM2G116658 Outer cell layer3 HOX 18 6 1.7 3.7 6 1.9 2.20 1.39e203

GRMZM2G051955 ZF-homeobox protein ZF-HD 21 6 3.8 5.5 6 4.9 1.93 1.03e202

GRMZM2G089501 BIM2 BIM 15 6 5.8 3.3 6 1.3 2.07 1.53e202

GRMZM2G172657 Uncharacterized GRAS 70 6 2.5 32 6 13 1.13 3.19e202

aAnnotations are based on Ensembl gene descriptions at maizesequence.org, gene build 4a.53. bRead frequency is average read count 6 SE

(reads per million) for the three biological replicates in wild-type and ra3 samples. cLog fold changes from edgeR analysis of differential gene
expression. dCorrected P values (false discovery rate of 5%) from edgeR analysis of differential gene expression. If P , 0.05 in both enzyme
libraries, values for DpnII and NlaIII are shown, respectively.
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extensive unannotated UTRs (Pickrell et al., 2010). In
our analysis, although we expect to lose the resolution
of alternate transcripts, such as 3#-RNA processing
variants, combining tags on a per-gene basis, includ-
ing tags mapping within 300 bases of a predicted UTR,
provides more comprehensive expression analyses for
poorly annotated genes. Combining DGE data sets
with long-read or paired-end RNA-seq approaches
would likely improve confidence for identifying alter-
natively spliced transcripts.

Analysis of Enzyme-Specific Data Sets

One ambiguity of sequencing methods that use
restriction enzymes in library construction is the po-
tential bias and/or efficiency of enzymes for specific
sequences (Siddiqui et al., 2006). Our study repre-
sented the first direct comparison, to our knowledge,
of two different enzymes across a set of biological
replicates. On average, there were 1.7 times more
unique tags sequenced from NlaIII libraries compared
with DpnII. This may be expected, since NlaIII cuts
approximately 1.5 million more times in the maize
genome, and approximately 132,000 more times in the
transcriptome, than DpnII. In addition, NlaIII gener-
ated more unique tags per gene model overall (in some
cases up to 20 individual tags per transcript) and more
primary signature tags from 3#-most restriction sites
when compared with DpnII. These data suggest that
processing of alternate cut sites is not random between
the two enzymes and that DGE libraries generated
from a single enzyme may be prone to biases.

Based on observations from unrelated experiments
that NlaIII produces more tags per gene (P. Bommert
and M. Regulski, unpublished data), it is possible that
noise from partial restriction enzyme digestions can
skew expression profiles and dilute biologically rele-
vant information. Other factors, such as a slight G+C
bias in the NlaIII library (Supplemental Fig. S9), am-
plification biases prior to sequencing, or the general
instability of the NlaIII enzyme, may contribute to the
limited overlap of differentially expressed genes be-
tween DpnII and NlaIII data sets. This could further be
explained by the small sample sizes typically used in
sequence-based profiling experiments, which are sub-
ject to false positives, and more variation amongNlaIII
samples, presumably due to technical bias during
library construction. However, in this study, our ap-
proach to analyze DpnII and NlaIII data sets indepen-
dently enhanced the power to detect highly significant
changes in gene expression while decreasing false
positives.

Other sequence-based expression studies have
found that analyses of low-copy transcripts were often
unreliable, even in the absence of enzyme-based li-
brary construction (Marioni et al., 2008; Mortazavi
et al., 2008; Fahlgren et al., 2009). Here, although we
observed less variation between replicates for highly
expressed genes, differences in expression trends be-
tween the two data sets did not seem to correlate with

total read count (data not shown). Overall, despite
variations between the enzyme-specific data sets, we
showed that the dual-enzyme approach provided
expression data on a more complete panel of genes
as well as validation for a high-confidence set of genes
identified as significant from both data sets. The latter
was especially true for genes with highly significant
expression differences between test groups. Further-
more, we showed that expression profiles identified in
both DGE data sets could be experimentally validated
by Q-PCR.

Applications for Functional Analyses with DGE Data

After identifying differentially expressed genes, the
next step is to ask whether these genes reveal func-
tionally relevant information. However, most genes
with significant differences in transcript abundance
were largely uncharacterized in maize or closely re-
lated plant species. This is due, in part, to the fact that
functional ontologies used to classify genes (i.e. Gene
Ontogeny [GO] and Pfam) are primarily based on
bacterial and animal models, and many plant-specific
genes have not been functionally annotated. Of the
total expressed genes that were used in statistical
testing (22,267 and 24,997 from DpnII and NlaIII data
sets, respectively), only 48% were associated with GO
terms. Consequently, this impacted our ability to re-
solve significant enrichment for gene ontologies in the
DGE data sets. However, we found overrepresenta-
tion of intercellular (Cellular Compartment, GO:5622;
P = 1.94e204) and RNA binding (Molecular Process,
GO:3723; P = 1.84e202) in the differentially expressed
gene set. These results are consistent with the pre-
dicted roles for RA3 in cell-to-cell signaling and gene
regulation (Satoh-Nagasawa et al., 2006). We anticipate
that as expression data sets for maize are generated,
functional annotations will improve through the inte-
gration of metadata and the curation of coexpressed
genes and pathways (Horan et al., 2008).

Although a large proportion of genes that showed
significant transcriptional changes have not been char-
acterized in maize, we were able to leverage known
functional information from Arabidopsis and rice to
identify putative classes of metabolic and regulatory
genes. For example, rice genes have been associated
with biochemical pathways, and we used the ricecyc
pathway tool (www.gramene.org; Liang et al., 2008)
to determine whether differentially expressed genes
were assigned to common metabolic pathways. For
this, we used a significance threshold of P , 0.08 for
differential expression in order to increase the cover-
age of pathways and identified 781 putative rice
orthologs using the Ensembl Compara gene trees
(maizesequence.org, gramene.org; Vilella et al., 2009).
Of these, 67 (54 up-regulated and 13 down-regulated
in ra3 mutants) could be mapped onto 97 specific
metabolic pathways (Supplemental Table S6).

The RA3 gene is expressed in a narrow band sub-
tending the maize spikelet pair meristems during early
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inflorescence development (Satoh-Nagasawa et al.,
2006). As a TPP, it is possible that a mobile signal,
such as a sugar, could be mediating RA3’s control of
axillary meristem cell fate (Rolland et al., 2006). We
observed thatmany of the differentially expressed genes
that could be mapped onto metabolic pathways were
associated with primary carbohydrate biosynthesis and
degradation, respiration, and energy production as well
as redox and nitrogen cycling processes (Supplemental
Table S6). As expected, trehalose biosynthesis was rep-
resented in the differentially expressed set. Expression
of the RA3 gene was significantly down-regulated in
the mutant, as was a trehalose phosphate synthase
(GRMZM2G077659). In contrast, an uncharacterized
gene in maize (GRMZM2G151044) with sequence sim-
ilarity to a TPP in Arabidopsis was up-regulated in the
mutant, possibly as compensation for reduced RA3
levels (Fig. 5C; Supplemental Fig. S10).
Disruption of trehalose biosynthesis in the ra3 mu-

tant could have global affects on the sugar status of the
cell due to altered Glu-6-P and trehalose-6-phosphate
levels. We found that pathways for transient starch
degradation (Smith et al., 2005) and downstream re-
actions that utilize hexoses as substrates (i.e. Glu-6-P)
were also represented in the differentially expressed set.
These included glycolysis and the oxidative pentose
phosphate pathway, both of which generate reducing
power in the form of NAD(P)H. The intermediates
generated by the reaction of these enzymes represent
potential signals that report the sugar, redox, or aden-
ylate status of the cell (Supplemental Fig. S10). In ad-
dition, a number of genes that encode enzymes with
oxidoreductase activities were differentially expressed
and were primarily up-regulated in the mutant. These
activities also have the potential to generate signals. For
example, previous work has implicated the trehalose
intermediate trehalose-6-phosphate as mediating the
redox regulation of a key starch biosynthetic enzyme
(Kolbe et al., 2005).
Aside from a potential metabolic role, it has also

been proposed that RA3 may have a transcriptional
regulatory role due to its mutant phenotype, which
is shared with two known TFs, RA1 and RA2. Dual
biochemical and transcriptional activity is reminiscent
of other sugar-responsive metabolic genes, such as
HEXOKINASE, which has been shown to function in a
transcriptional complex to regulate gene expression
(Cho et al., 2006). Of the genes that showed significant
differences in expression, 72%were up-regulated in the
ra3 mutant, suggesting that RA3 could act primarily
by repressing transcription. Our analysis of TFs re-
vealed putative candidates for downstream analyses to
determine if they are direct or indirect targets of RA3.
Among these, RA1 (GRMZM2G003927; Vollbrecht
et al., 2005) has been genetically placed in the same
developmental pathway as RA3 (Satoh-Nagasawa
et al., 2006), and BRANCHED SILKLESS1 (BD1;
GRMZM2G307119; Chuck et al., 2002) is involved in
spikelet meristem identity in maize inflorescences, a
phenotype that is affected in ra3 mutants.

The BES1 gene (GRMZM2G102514) regulates brassi-
nosteroid-responsive gene expression and has been
shown to interact with another class of TFs, BES1
Interacting Myc-like proteins (BIM), in Arabidopsis (Yin
et al., 2005). Here, BES1 and BIM2 (GRMZM2G089501)
were both significantly down-regulated in the ra3 mu-
tant. In addition, recent work has identified the Arabi-
dopsis gene SCHIZORIZA (orHSFB4 TF) as controlling
patterning in stem cell divisions (ten Hove et al., 2010)
and AtMYB59 as playing a regulatory role in cell cycle
progression (Mu et al., 2009). Putative orthologs of these
TFs, GRMZM2G088242 and GRMZM2G130149, respec-
tively, weremisexpressed in the ra3mutant. In addition,
differential expression of nine genes from the AP2/ERF
family, including BD1, between the wild type and
mutant suggests that these genes could be coregulated
in response to a signal, such as ethylene, during this
stage of development. Further analyses will test re-
sponses of these TFs and identify their targets in a panel
of different mutants, developmental stages, and stress
conditions.

Advantages of DGE for Genome-Wide
Transcript Profiling

We found that DGE can be used to effectively de-
termine genome-wide transcriptional changes. Aside
from the prospect of using DGE in species where com-
mercial arrays are not available, this method enables
transcript profiling independent of prior knowledge of
gene models, a considerable advantage over micro-
arrays. This is especially relevant in cases where gene
annotations are not complete. By mapping DGE tags
and comparing abundances independently of gene
models, we could resolve novel regions of expres-
sion in the maize genome. Some of these were spe-
cific to the ra3 mutant, suggesting that analyses
limited to existing gene models could exclude tissue-
or mutant-specific transcripts. We also showed that
even with short 20- to 21-nucleotide tags, we could
delineate differential expression of closely related
paralogs, which is limited in arrays due to cross-
hybridization.

The DGE method also provides strand specificity,
which is an advantage even over current RNA-seq
protocols. Previous work showed that differential
expression of antisense transcripts and S-AS pairs
was common in maize (Ma et al., 2006). In human
cell lines, evidence for shifts in the ratios of sense to
antisense transcripts between normal and cancerous
cells has indicated possible antisense-based regulation
of developmental and disease processes (Chen et al.,
2005; Morrissy et al., 2009). Consistent with results from
other recent DGE studies, which resolved genome-wide
expression of previously uncharacterized antisense
transcripts (Morrissy et al., 2009; Babbitt et al., 2010),
we identified a number of S-AS pairs with ratio changes
between wild-type and ra3 mutant samples. Further
analyses will be needed to test the biological signifi-
cance of the antisense transcripts; however, their detec-
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tion provides a more accurate quantification of gene
expression.

The ability to analyze strand-specific DGE data inde-
pendent of gene models also enabled the detection and
quantification of primary microRNA transcripts (pri-
miRNAs). Based on computationally predicted miRNA
hairpin structures (pre-miRNAs) and a set of PCR-
RACE-validated pri-miRNA sequences identified by
Zhang et al. (2009), we identified 14 pri-miRNAs (in
10 different families) represented by 10 or more reads
in our DGE libraries (Supplemental Table S7). One
abundant pri-miRNA, for miR159a, was significantly
reduced in the ra3 mutant; however, we observed
no differential expression of its predicted target genes
(Zhang et al., 2009), presumably due to miRNA redun-
dancy. Resolution of miRNA abundances and correla-
tions with expression differences in putative targets
would be enhanced through the integration of parallel
small RNA libraries with these data.

In addition, the tag-based nature of DGE technically
generates only one read per transcript and thus im-
proves cost efficiency by reducing redundancy. In this
study, we multiplexed two enzyme-specific libraries in
each lane of a flow cell using Illumina’s first-phase GA.
Although we achieved sufficient resolution of a large
panel of TFs and differential expression profiles for
low-frequency transcripts, the rapidly advancing tech-
nology currently generates estimated read depths of
3-fold higher than shown here. Given this current
throughput, a multiplexed approach to concurrently
sequence biological replicates and/or treatmentswould
further reduce cost, time, and potential technical biases.

CONCLUSION

Digital gene expression profiling by high-through-
put sequencing of 20- to 21-nucleotide tags revealed
quantitative changes in transcript abundance on a
genome-wide scale. Results from our DGE analyses in
maize showed that we could effectively identify dif-
ferentially expressed genes across a wide range of
transcript abundances. Cumulative counts of tags that
mapped to predicted gene models enabled the iden-
tification of functionally interesting genes and gene
families with altered expression in ra3 mutants. Our
parallel analysis independent of gene models demon-
strated that expression profiling was not limited by
prior knowledge, thus promoting DGE as a platform
for exploratory studies in species with nonsequenced
genomes and for gene discovery. We also used the
DGE data to resolve sense and antisense transcripts,
distinguish between closely related paralogs, and
identify unannotated genes and UTRs. Our approach
used two enzymes to generate independent data sets
that were multiplexed in a single lane of an Illumina
flow cell. This provided a cost-effective method for
orthogonal validation of genome-wide expression sig-
natures and improved our coverage of the gene space.
Our analyses, applications, and findings used here to
interrogate the maize transcriptome and identify ex-

pression signatures underlying an agriculturally im-
portant trait are readily translated to other systems.

MATERIALS AND METHODS

DGE Library Construction and Sequencing

Field-grown maize (Zea mays) B73 and ra3 plants were collected approx-

imately 7 weeks after planting, and 2-mm ears were hand dissected and

immediately frozen in liquid nitrogen. The ra3 allele used here, ra3-fea1,

results from an insertion, which leads to a frame shift. The ra3 mutant was

introgressed into B73 for five generations. RNA isolation, library construction,

and sequencing were carried out at Pioneer Hi-Bred in Johnston, Iowa. Here,

500 to 2,000 ng of DNaseI-treated total RNAwas used in library construction:

double-stranded cDNAswere synthesized using oligo(dT) beads (Invitrogen).

The cDNAs were then digested with an anchoring restriction enzyme (NlaIII

or DpnII) and ligated to an Illumina-specific adapter, Adapter A, containing a

recognition site for the type IIS restriction enzyme MmeI (New England

Biolabs). Following MmeI digestion and dephosphorylation with shrimp

alkaline phosphatase (USB Corp.), cDNAs were purified and a second

Illumina adapter, Adapter B, containing a 2-bp degenerate 3# overhang, was

ligated. Tags flanked by both adapters were enriched by PCR using Phusion

DNA polymerase (Finnzymes) and Gex PCR primers 1 and 2 (Illumina)

following the manufacturer’s instructions. The PCR products were run on a

12% PAGE gel, and the 85-bp DNA band was excised and purified using a

Spin-X filter column (Costar) followed by ethanol precipitation. The DNA

quality was assessed and quantified using an Agilent DNA 1000 series II

assay, and the DNA sample was diluted to 10 nM. Cluster generation and

sequencing were performed on the Illumina cluster station and Genome

Analyzer (Illumina) following the manufacturer’s instructions. Raw se-

quences were extracted from the resulting image files using the open source

Firecrest and Bustard applications (Illumina). The NlaIII reads were 21 bases

long, since the enzyme cut site (CATG) overlapped with theMmeI binding site

[TCC(G/A)AC] by 1 base in the sequencing primer. The additional base was

later added to the 5#-end of each read in silico.

Mapping Pipeline and Extraction of Gene Information

We used Vmatch (www.vmatch.de) large-scale sequence analysis software

to map the collapsed reads to the maize reference genome. The Vmktree

feature was used to construct persistent indices for each of the 10 unmasked,

assembled maize chromosomes and for an additional chromosome 0, which

includes nonassembled sequence (B73 RefGen_v1). For each of the 11 indices,

the unique DpnII and NlaIII tags were queried for complete matches to all

possible 20- and 21-mer sequences, respectively, using the Vmatch algorithm.

This included both sense and antisense matches, and strand information for

each tag was retained. In phase II of themapping pipeline, an editing distance of

1 was used to allow for a single mismatch, insertion, or deletion. Mapping data

from all indices were parsed together, and results fromDpnII andNlaIII libraries

were analyzed independently. Tags that mapped uniquely up to three places in

the maize genome were used to extract gene information using the Ensembl

Application Perl Interface (http://uswest.ensembl.org/info/docs/api). Awork-

ing gene set was used (gene build 4a.53; maizesequence.org), and for each gene

model, the gene space was computationally extended by 300 nucleotides at

both 5#- and 3#-ends to maximize the capture of complete UTRs. When we used

a filtered set of 32,540 high-confidence maize gene models (build 4a.53;

maizesequence.org), 22,700 genes were identified, of which 79% were found

in both data sets and 6% and 14% were DpnII and NlaIII specific, respectively.

Strand Determination and Cumulative Read Counts

For each gene model, read counts associated with tags mapping in sense

and antisense orientations were combined separately. Ratio changes for S-AS

transcription of a given gene between the wild type and mutant were

calculated based on analyses specified by Morrissy et al. (2009).

To determine consistency among libraries, genome-wide expression values

(normalized to reads per million) were compared by pair-wise correlations of

all libraries. Technical replicates of the same biological sample showed

exceptional correlation in both DpnII and NlaIII libraries (Spearman r2 =

0.998; Supplemental Fig. S5A). Combining all reads from multiple tags

mapping to a given gene improved correlations among biological replicates
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(r2 = 0.963–0.861) compared with plotting individual tag frequencies alone

(r2 = 0.907–0.557; Supplemental Fig. S5B). Before determining a cumulative

count per gene, we applied a scoring convention where a single read count

was kept as 1 if a tag mapped to one place in the genome, 0.5 if it mapped to

two locations, and 0.33 if it mapped three times.

Significance Testing

To compare gene expression profiles between wild-type and ra3 mutant

samples, we used the 26,663 and 30,746 genes identified from sense tags in

phase I mapping ofDpnII andNlaIII libraries, respectively. The edgeR package

(www.bioconductor.org/packages/2.3/bioc/html/edgeR.html) adjusts for

differences in library size; therefore, raw read counts per gene (or per tag)

are directly used as input. One of the NlaIII mutant samples, ra3-3, was highly

variable when compared with all samples (Supplemental Fig. S5, B and C).

This was most likely due to technical variation during library construction,

since the DpnII ra3-3 correlated strongly with other biological replicates. After

evaluation of the results from statistical tests, NlaIII ra3-3 was removed from

the gene expression analyses presented here. We used a moderated, gene-wise

dispersion analysis for both DpnII and NlaIII data sets separately with a

weighted prior of 100. We applied a cutoff of nine reads for each gene, which

reduced the set to 20,250 and 22,130 genes for DpnII and NlaIII libraries,

respectively. Our significance threshold for differential expression was P ,
0.05 after correction using a Benjamini-Hochberg false discovery rate of 5%.

Quantitative Reverse Transcription-PCR Analyses

Total RNA samples for Q-PCR analyses represented three biological

replicates of B73 and ra3 ears and were comparable to those used for the

DGE library construction. RNA integrity was assessed on an Agilent Bio-

Analyzer using a Nano Chip (Agilent 6000 Nano kit 5067-1511) according to

the manufacturer’s protocol. A total of four technical replicates were run for

each RNA sample per assay using the AB7900 instrument (ABI; thermal

cycling conditions were 50�C for 3 min [reverse transcription step], 95�C for

5 min [initial melt], and then 40 cycles of 94�C for 15 s and 60�C for 1 min).

Specificity of each assay was determined by computer database homology

searches. The linear dynamic range was determined using a standard curve

generated from 1, 0.5, and 0.25 ng of RNA from a single replicate in each assay.

The EIF4a reference gene was used as a normalization control and validated

by correlation of its expression level (cycle threshold in 1-ng reactions) to the

RNA concentration for all samples as determined from the Nanodrop quan-

tifications. Sequences for forward primers (FP) and reverse primers (RP;

Integrated DNA Technologies) and Taqman probes (5#-label, 6FAM; 3#-label,
MGB [Applied Biosystems]) used to test genes by Q-PCR are as follows: RA3

(GRMZM2G014729), FP: 5#-TGGACGAGCACAACAGCAA-3#, RP: 5#-AAG-

AAAACAACAAAAAAGGCCAGTA-3#, probe: 5#-AGGCGCTTATTAGCTA-

CAA-3#; trehalose-phosphate synthase (GRMZM2G077659), FP: 5#-CTG-

GTGGTGAAAGGGTGGAT-3#, RP: 5#-GCTCTCCCAGATGCCGTAAG-3#,
probe: 5#-CCCTGCTAGAGCCCCA-3#; TPP (GRMZM2G151044), FP: 5#-CGG-

CCGCACACAAAGC-3#, RP: 5#-GCGCCAACATGCTCAAAAC-3#, probe:

5#-CAGCGTCACTGAAAG-3#; Cyclin (GRMZM2G140633), FP: 5#-CGCCGG-

ATTTCAACCAAA-3#, RP: 5#-TGGCTGTCTGCGCCTCTT-3#, probe: 5#-CGC-

CTGAAAGGCAA-3#; YABBY (similar to Drooping Leaf; GRMZM2G088309),

FP: 5#-TGTACTTTTACCCCCGTACGTGTT-3#, RP: 5#-GGTGCGTACAA-

TCCAACCATAA-3#, probe: 5#-CTGTTGCTGTTATTCTC-3#; NAM domain-

containing (GRMZM2G054277), FP: 5#-ACTGGAGTACTCGATCCGCTTT-3#, RP:
5#-TGTAAGCTACGGCGGCAAA-3#, probe: 5#-CAACCTCGATCGCGATG-3#;
BES1 (GRMZM2G102514), FP: 5#-GCATTCGTGCTGAGTTTCGA-3#, RP:

5#-GCGTCACCTACGCCCTACA-3#, probe: 5#-CGGAGGCACATTC-3#; IAA24

(GRMZM2G115357), FP: 5#-TCCATACATAAACAGAGGCTACAGACA-3#, RP:
5#-GATCCGTGTGTGCTCTTGGAT-3#, probe: 5#-CCACCTGGGAACGC-3#.

Detection of Pri-miRNAs

Locations of all DGE tags that mapped completely to the maize reference

genome were compared with coordinates for a set of computationally pred-

icated pre-miRNA hairpin structures (Zhang et al., 2009). Since the pre-

miRNAs included only 250 nucleotides, an additional 500 nucleotides were

computationally added to 5#- and 3#-ends of predicted hairpin sequences in

order to simulate a region comparable to the length of a typical pri-miRNA

and to recover tags within this space. Next, for each pre-miRNA identified, if it

associated with a validated pri-miRNA model (Zhang et al., 2009), accurate

mapping coordinates of the pri-miRNAs were incorporated to extend the

search space as necessary and recover tags outside of the original 1,250-

nucleotide window.

Sequence data from this article have been deposited in the National Center

for Biotechnology Information Gene Expression Omnibus and are accessible

through Gene Expression Omnibus Series accession number GSE24788.
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