The electronic form of this issue, available as of March 11, 2011, at www.plantphysiol.org, is considered the journal of record.

On the Cover: Terpenes are versatile natural compounds that are essential for critical biological processes such as protein prenylation, glycoprotein biosynthesis, and the metabolism of growth hormones. The cover illustration shows some of these diverse compounds, including ubiquinone and plastoquinone, which are derived from linear prenyl pyrophosphates. These, in turn, are synthesized by prenyltransferases via condensation reactions of dimethylallyl diphosphate, geranyl pyrophosphate, farnesyl pyrophosphate, or geranylgeranyl pyrophosphate, with the corresponding number of isopentenyl pyrophosphates. In this issue, Fu et al. (1079–1090) identified a novel Arabidopsis polyprenyl pyrophosphate synthase, formerly thought to be a geranyl pyrophosphate synthase, that participates in the terpene biosynthesis. Images and artwork by Fu-Lien Hsieh and Tao-Hsin Chang.

ON THE INSIDE

Peter V. Minorsky

UPDATES

Nathan G. McDowell 1051

RESEARCH ARTICLES

BIOCHEMICAL PROCESSES AND MACROMOLECULAR STRUCTURES

[OA] Red Clover HCT2, a Hydroxycinnamoyl-Coenzyme A:Malate Hydroxycinnamoyl Transferase, Plays a Crucial Role in Biosynthesis of Phaselic Acid and Other Hydroxycinnamoyl-Malate Esters in Vivo.
Michael L. Sullivan and Robert Zarnowski 1060

[WI][OA] Loss-of-Function Mutation of REDUCED WALL ACETYLATION2 in Arabidopsis Leads to Reduced Cell Wall Acetylation and Increased Resistance to Botrytis cinerea.
Yuzuki Manabe, Majie Nafisi, Yves Verhertbruggen, Caroline Orfila, Sascha Gille, Carsten Rautengarten, Candice Cherk, Susan E. Marcus, Shauna Somerville, Markus Pauly, J. Paul Knox, Yumiko Sakuragi, and Henrik Vibe Scheller 1068

[WI][OA] Structure and Mechanism of an Arabidopsis Medium/Long-Chain-Length Prenyl Pyrophosphate Synthase.
Fu-Lien Hsieh, Tao-Hsin Chang, Tzu-Ping Ko, and Andrew H.-J. Wang 1079

[C][WI][OA] Interaction of the Tobacco Lectin with Histone Proteins.
Dieter Schauppe, Bart Ghesquière, Gerben Menschaert, Winnok H. De Vos, Stéphane Bourque, Geert Trooskens, Paul Proost, Kris Gevaert, and Els J.M. Van Damme 1091

[WI][OA] Production of Complex Multiantennary N-Glycans in Nicotiana benthamiana Plants.
Bieke Nagels, Els J.M. Van Damme, Martin Pabst, Nico Callewaert, and Koen Weterings 1103

[WI][OA] Identification and Characterization of Thioredoxin h Isoforms Differentially Expressed in Germinating Seeds of the Model Legume Medicago truncatula.
Michelle Renard, Fatima Alkhalfioui, Corinne Schmitt-Keichinger, Christophe Ritzenthaler, and Françoise Montrichard 1113

[WI][OA] Overexpression of Sinapine Esterase BnSCE3 in Oilseed Rape Seeds Triggers Global Changes in Seed Metabolism.
Kathleen Clafl, Edda von Roepenack-Lahaye, Christoph Böttcher, Mary R. Roth, Ruth Welti, Alexander Erban, Joachim Kopka, Dieter Scheel, Carsten Milkowski, and Dieter Strack 1127

[OA] Expression of Fungal diacylglycerol acyltransferase2 Genes to Increase Kernel Oil in Maize.
Janette Oakes, Doug Brackenridge, Ron Colletti, Maureen Daley, Deborah J. Hawkins, Hui Xiong, Jennifer Mai, Steve E. Screen, Dale Val, Kathryn Lardizabal, Ken Gruys, and Jill Deikman 1146

Continued on next page
BIOENERGETICS AND PHOTOSYNTHESIS

A Three-Dimensional Multiscale Model for Gas Exchange in Fruit. Quang Tri Ho, Pieter Verboven, Bert E. Verlinden, Els Herremans, Martine Weyers, Jan Carmeliet, and Bart M. Nicolaë 1158


CELL BIOLOGY AND SIGNAL TRANSDUCTION

Distribution of Callose Synthase, Cellulose Synthase, and Sucrose Synthase in Tobacco Pollen Tube Is Controlled in Dissimilar Ways by Actin Filaments and Microtubules. Giampiero Cai, Claudia Faleri, Cecilia Del Casino, Anne Mie C. Emons, and Mauro Cresti 1169

Expression, Splicing, and Evolution of the Myosin Gene Family in Plants. Valera V. Peremyslov, Todd C. Mockler, Sergei A. Filichkin, Samuel E. Fox, Pankaj Jaiswal, Kiria S. Makarova, Eugene V. Koonin, and Valerian V. Dolja 1191

Photosynthesis-Dependent But Neochrome1-Independent Light Positioning of Chloroplasts and Nuclei in the Fern Adiantum capillus-veneris. Yuka Sugiyama and Akeo Kadota 1205

DEVELOPMENT AND HORMONE ACTION

The Populus Class III HD ZIP, popREVOLUTA, Influences Cambium Initiation and Patterning of Woody Stems. Marcel Robischon, Juan Du, Eiko Miura, and Andrew Groover 1214

1-Hydroxyjasmonic Acid Glucoside Is a COI1-JAZ-Independent Activator of Leaf-Closing Movement in Samanea saman. Yoko Nakamura, Axel Mithöfer, Erich Kombrink, Wilhel Boland, Shin Hamamoto, Nobuyuki Itozumi, Kentaro Tohma, and Minoru Ueda 1226


Identical Amino Acid Substitutions in the Repression Domain of Auxin/Indole-3-Acetic Acid Proteins Have Contrasting Effects on Auxin Signaling. Hanbing Li, Shih B. Tiuari, Gretchen Hagen, and Toni J. Guilfoyle 1252

Hypomorphic Alleles Reveal FCA-Independent Roles for FY in the Regulation of FLOWERING LOCI C. Wei Feng, Yannick Jacob, Kiria M. Veley, Lei Ding, Xuhong Yu, Goh Choe, and Scott D. Michaels 1425

ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS

Natural Variation of Root Hydraulics in Arabidopsis Grown in Normal and Salt-Stressed Conditions. Moira Sutka, Guowei Li, Julie Boudet, Yann Boursiac, Patrick Doumas, and Christophe Maurel 1264

Crop Root Behavior Coordinates Phosphorus Status and Neighbors: From Field Studies to Three-Dimensional in Situ Reconstruction of Root System Architecture. Suqin Fang, Xiang Gao, Yan Ding, Xinping Chen, and Hong Liao 1277

Nonsymbiotic Hemoglobin-2 Leads to an Elevated Energy State and to a Combined Increase in Polyunsaturated Fatty Acids and Total Oil Content When Overexpressed in Developing Seeds of Transgenic Arabidopsis Plants. Helene Vigeolas, Daniela Huhn, and Peter Geigenberger 1435

GENETICS, GENOMICS, AND MOLECULAR EVOLUTION

Reversion-Reporter Transgenes to Analyze All Six Base-Substitution Pathways in Arabidopsis. Stephanie R. Bollmann, Colin M. Tominey, Peter D. Hoffman, Taylor M.C. Hoffman, and John B. Hays 1286

Genetic Control of a Transition from Black to Straw-White Seed Hull in Rice Domestication. Bo-Feng Zhu, Lichen Si, Zixuan Wang, Yan Zhou, Jingjie Zhu, Yingying Shangguan, Danfeng Lu, Danlin Fan, Canyang Li, Hongxuan Lin, Qian Qian, Tao Song, Bo Zhou, Yuzo Minobe, and Bin Han 1301

Continued on next page
PLANTS INTERACTING WITH OTHER ORGANISMS

[C][W][OA] A Novel Interaction between CCaMK and a Protein Containing the Scythe_N Ubiquitin-Like Domain in Lotus japonicus. Heng Kang, Hui Zhu, Xiaojie Chu, Zhenzhen Yang, Songli Yuan, Dunqiang Yu, Chao Wang, Zonglie Hong, and Zhongming Zhang 1312

[W][OA] ZmPep1, an Ortholog of Arabidopsis Elicitor Peptide 1, Regulates Maize Innate Immunity and Enhances Disease Resistance. Alisa Huffaker, Nicole J. Dafoe, and Eric A. Schmelz 1325

WHOLE PLANT AND ECOPHYSIOLOGY


SYSTEMS BIOLOGY, MOLECULAR BIOLOGY, AND GENE REGULATION

[C][W][OA] Combining Enhanced Root and Shoot Growth Reveals Cross Talk between Pathways That Control Plant Organ Size in Arabidopsis. Liesbeth Vercruyssen, Nathalie Gonzalez, Tomáš Werner, Thomas Schmülling, and Dirk Inze 1339

[W][OA] Genome-Wide Analysis of Light-Dependent Transcript Accumulation Patterns during Early Stages of Arabidopsis Seedling Deetiolation. Florian Peschke and Thomas Kretsch 1353

[W][OA] Target of Rapamycin Regulates Development and Ribosomal RNA Expression through Kinase Domain in Arabidopsis. Maozhi Ren, Shuqing Qiu, Prakash Venglat, Daoquan Xiang, Li Feng, Gopalan Selvaraj, and Raju Datla 1367

[C][W] Coexpression-Based Clustering of Arabidopsis Root Genes Predicts Functional Modules in Early Phosphate Deficiency Signaling. Wen-Dar Lin, Ya-Yun Liao, Thomas J.W. Yang, Chao-Yu Pan, Thomas J. Buckhout, and Wolfgang Schmidt 1383

[W][OA] The Arabidopsis Mutant jason Produces Unreduced First Division Restitution Male Gametes through a Parallel/Fused Spindle Mechanism in Meiosis II. Nico De Storme and Danny Geelen 1403

[C][W][OA] Differentiation of Arabidopsis Guard Cells: Analysis of the Networks Incorporating the Basic Helix-Loop-Helix Transcription Factor, FAMA. Charles Hachez, Kyoko Ohashi-Ito, Juan Dong, and Dominique C. Bergmann 1458

CORRECTIONS

Metabolic Engineering of Seeds Can Achieve Levels of ω-7 Fatty Acids Comparable with the Highest Levels Found in Natural Plant Sources. H.T. Nguyen, G. Mishra, E. Whittle, S.A. Bevan, A.O. Merlo, T.A. Walsh, and J. Shanklin 1473

[C] Some figures in this article are displayed in color online but in black and white in the print edition.

[W] Indicates Web-only data.

[OA] Open Access articles can be viewed online without a subscription.