On the Cover: Root system architecture and development traditionally have been difficult to measure with high throughput and accuracy. Using a transparent gellan gum growth system, root systems can be digitally captured and quantified as they grow. By combining improved root imaging and computational analysis techniques, it is now possible to reconstruct root systems in three dimensions and quantify specific root system architecture traits. The current work and other recent research on root system architecture have revealed a wide range of morphological variation in rice (*Oryza sativa*) root systems, and three-dimensional reconstructions help to visualize and quantify those differences. In this issue, Clark et al. (455–465) present a high-throughput growth, imaging, and analysis platform to phenotype growing root systems in three dimensions. The enhanced quantification capabilities and capacity to image over 100 root systems per day, combined with an expanding array of genotypic resources, will now make it possible to more deeply explore the genetic components of root system architecture as they relate to both developmental processes and root traits associated with the acquisition of limiting resources (e.g. water and phosphorous). Images and root system reconstructions provided by Randy Clark, Janelle Jung, James Jones-Rounds, and Leon Kochian. Volume renderings were performed using the Volume Viewer plug-in for ImageJ software (http://imagej.nih.gov/ij/).
CELL BIOLOGY AND SIGNAL TRANSDUCTION

- TNO1 Is Involved in Salt Tolerance and Vacuolar Trafficking in Arabidopsis. Sang-Jin Kim and Diane C. Bassham 514
- MLN4924 Is an Efficient Inhibitor of NEDD8 Conjugation in Plants. Jana Pia Hakenjos, René Richter, Esther Mirjam Natasa Dohmann, Anithi Katsiarimpa, Erika Isono, and Claus Schwechheimer 527

DEVELOPMENT AND HORMONE ACTION

- Integration of Auxin and Salt Signals by the NAC Transcription Factor NTM2 during Seed Germination in Arabidopsis. Jungmin Park, Youn-Sung Kim, Sang-Gyu Kim, Jae-Hoon Jung, Je-Chang Woo, and Chung-Mo Park 537
- The Arabidopsis RING Finger E3 Ligase RHA2b Acts Additively with RHA2a in Regulating Abscisic Acid Signaling and Drought Response. Hongmei Li, Hongling Jiang, Qiyun Bu, Qingzhen Zhao, Jiaqiang Sun, Qi Xie, and Chuanyou Li 550
- Flavonols Accumulate Asymmetrically and Affect Auxin Transport in Arabidopsis. Benjamin M. Kuhn, Markus Geisler, Laurent Bigler, and Christoph Ringli 585
- Cell Wall Integrity Controls Root Elongation via a General 1-Aminocyclopropane-1-Carboxylic Acid-Dependent, Ethylene-Independent Pathway. Dat Luon Tsang, Clare Edmond, Jennifer Louise Harrington, and Thomas Sebastian Nühse 596
- The Role of PENNYWISE and POUND-FOOLISH in the Maintenance of the Shoot Apical Meristem in Arabidopsis. Nolan Ung, Shruti Lal, and Harley M.S. Smith 605
- PERSISTENT TAPETAL CELL1 Encodes a PHD-Finger Protein That Is Required for Tapetal Cell Death and Pollen Development in Rice. Hui Li, Zheng Yuan, Gema Vizcay-Barrena, Caiyun Yang, Wanqi Liang, Jie Zong, Zoe A. Wilson, and Dabing Zhang 615
- FAR-RED INSENSITIVE219 Modulates CONSTITUTIVE PHOTOMORPHOGENIC1 Activity via Physical Interaction to Regulate Hypocotyl Elongation in Arabidopsis. Jhy-Gong Wang, Chih-Hao Chen, Ching-Te Chien, and Hsu-Liang Hsieh 631

ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS

- Control of Abscisic Acid Catabolism and Abscisic Acid Homeostasis Is Important for Reproductive Stage Stress Tolerance in Cereals. Xuemei Ji, Baodi Dong, Behrouz Shiran, Mark J. Talbot, Jane E. Edlington, Trinjite Hughes, Rosemary G. White, Frank Gabler, and Rudy Dolferus 647
- In Situ Distribution and Speciation of Toxic Copper, Nickel, and Zinc in Hydrated Roots of Cowpea. Peter M. Kopittke, Neal W. Menzies, Martin D. de Jonge, Brigid A. McKenna, Erica Donner, Richard I. Webb, David J. Paterson, Daryl L. Howard, Chris G. Ryan, Chris J. Glover, Kirk G. Scheckel, and Enzo Lombi 663
- Identification of a Cis-Acting Element of ART1, a C2H2-Type Zinc-Finger Transcription Factor for Aluminum Tolerance in Rice. Tomokazu Tsutsui, Naoki Yamaji, and Jian Feng Ma 925

GENETICS, GENOMICS, AND MOLECULAR EVOLUTION

- Duplicate Maize Wrinkled1 Transcription Factors Activate Target Genes Involved in Seed Oil Biosynthesis. Benjamin Pouvreau, Sébastien Baud, Vanessa Vernoud, Valérie Morin, Cyrille Py, Gislaine Gendrot, Jean-Philippe Pichon, Jacques Rouster, Wyatt Paul, and Peter M. Rogowsky 674

Continued on next page
PLANTS INTERACTING WITH OTHER ORGANISMS

[WA] Hierarchical and Roles of Pathogen-Associated Molecular Pattern-Induced Responses in *Nicotiana benthamiana*. Cécile Segonzac, Doreen Feke, Selena Gimenez-Ibanez, Dagmar R. Hann, Cyril Zipfel, and John P. Rathjen 687

[WA] Transcripts of Antagonistic Symbioses Reveals Homologs of the Whole Common Symbiotic Signaling Cascade. Valérie Hocher, Nicole Alloisio, Florence Augay, Pascale Fournier, Patrick Doumas, Petar Pujic, Hassen Gherbi, Clothilde Querouix, Corinne Da Silve, Patrick Wincker, Philippe Normand, and Didier Bogusz 700

[WA] Bacterial and Plant Signal Integration via D3-Type Cyclins Enhances Symptom Development in the Arabidopsis-Rhodococcus fascians Interaction. Elisabeth Stes, Stefania Biondi, Marcelle Holsters, and Danny Vereecke 712


[WOA] The Unfolded Protein Response Is Triggered by a Plant Viral Movement Protein. Changming Ye, Martin B. Dickman, Steven A. Whitham, Mark Payton, and Jeanmarie Verchot 741


[WC] Intronic T-DNA Insertion Renders Arabidopsis opr3 a Conditional Jasmonic Acid-Producing Mutant. E. Wassim Chehab, Se Kim, Tatyana Savenchenko, Daniel Kliebenstein, Katayoon Dehesh, and Janet Braam 770


[WC] Terpene Down-Regulation in Orange Reveals the Role of Fruit Aromas in Mediating Interactions with Insect Herbivores and Pathogens. Ana Rodrı́guez, Victoria San Andrés, Magdalena Cervera, Ana Redondo, Berta Alquézar, Takehiko Shimada, José Gadea, María Jesús Rodrigo, Lorenzo Zacarías, Lluís Palou, María M. López, Pedro Castañer, and Leandro Pena 793


[WC] Carbon and Nitrogen Metabolism in Mycorrhizal Networks and Mycoheterotrophic Plants of Tropical Forests: A Stable Isotope Analysis. Pierre-Emmanuel Courty, Florian Walder, Thomas Boller, Kurt Ineichen, Andres Wiemken, Alain Rousteau, and Marc-André Selosse 952

WHOLE PLANT AND ECOPHYSIOLOGY

[WO] Control of Leaf Expansion: A Developmental Switch from Metabolics to Hydraulics. Florent Pantin, Thierry Simonneau, Gaëlle Rolland, Myriam Dauzat, and Bertrand Muller 803


SYSTEMS BIOLOGY, MOLECULAR BIOLOGY, AND GENE REGULATION

[WO] Dynamic Alternations in Cellular and Molecular Components during Blossom-End Rot Development in Tomatoes Expressing sCAX1, a Constitutively Active Ca2+/H+ Antiporter from Arabidopsis. Sergio Tonetto de Freitas, Malket Padda, Qingyu Wu, Sunghun Park, and Elizabeth J. Mitcham 844

Continued on next page
The Bphi008a Gene Interacts with the Ethylene Pathway and Transcriptionally Regulates MAPK Genes in the Response of Rice to Brown Planthopper Feeding. Jing Hu, Jiangbo Zhou, Xinxin Peng, Henghao Xu, Caixiang Liu, Bo Du, Hongyu Yuan, Lili Zhu, and Guangcun He

ABI4 Activates DGAT1 Expression in Arabidopsis Seedlings during Nitrogen Deficiency. Yang Yang, Xiangchun Yu, Lianfen Song, and Chengcai An

EOBII Controls Flower Opening by Functioning as a General Transcriptomic Switch. Thomas A. Colquhoun, Michael L. Schwieterman, Ashlyn E. Wedde, Bernardus C.J. Schimmel, Danielle M. Marciniak, Julian C. Verdonk, Joo Young Kim, Youngjoo Oh, Ivan Gallis, Ian T. Baldwin, and David G. Clark

CORRECTIONS


Some figures in this article are displayed in color online but in black and white in the print edition. Indicates Web-only data. Open Access articles can be viewed online without a subscription.