On the Cover: Chloroplasts play vital roles in photosynthesis and various other metabolic processes, and their development depends on the import of thousands of nucleus-encoded proteins from the cytosol. The chloroplast β-barrel proteins Toc75 (Translocon at the outer envelope membrane of chloroplasts, 75 kD) and OEP80 (Outer Envelope Protein, 80 kD) are both members of the Omp85 superfamily, whose constituents are ubiquitously distributed in the outer membranes of gram-negative bacteria and mitochondria as well as in plastids. Toc75 functions as a translocation channel during chloroplast protein import, whereas the role of OEP80 remains uncertain. Both proteins are essential because Arabidopsis (Arabidopsis thaliana) knockout mutants abort during embryogenesis, a fact that has, until now, precluded functional, in vivo studies in plants. In this issue, Huang et al. (147–159) describe the use of dexamethasone-inducible RNA interference to circumvent this problem by silencing the expression of the proteins in Arabidopsis plants. The results reveal that both proteins are important for the normal development of chloroplasts and nonphotosynthetic plastids during postembryonic growth. Similarities between the Toc75 and OEP80 knockdown phenotypes, together with the observation that Toc75 levels are reduced in OEP80-silenced plants, suggest that OEP80 may be important for the biogenesis of Toc75 and possibly other outer membrane β-barrel proteins, as has been proposed previously. In this scenario, OEP80’s function would be analogous to those of other Omp85-related proteins in bacteria and mitochondria. The left side of the cover image shows wild-type (top) and Toc75 knockdown (bottom) plants growing on dexamethasone-containing medium, whereas the right side shows corresponding transmission electron micrographs of typical chloroplasts in the two genotypes. Cover design and images by Qihua Ling, Weihua Huang, Natalie Allcock, Stefan Hyman, and Paul Jarvis.

The Cytosolic Kinases STY8, STY17, and STY46 Are Involved in Chloroplast Differentiation in Arabidopsis. Giorgia Lamberti, Irene L. Gugel, Jörg Meurer, Jürgen Soll, and Serena Schwenkert


A Peroxygenase Pathway Involved in the Biosynthesis of Epoxy Fatty Acids in Oat. Dauenpen Meesapyodsuk and Xiao Qiu

Purification and Biochemical Characterization of a Novel Ecto-Apyrase, MP67, from Mimosa pudica. Riku Okuhata, Takeshi Takishima, Naoaki Nishimura, Shogo Ueda, Takahide Tsuchiya, and Nobuyuki Kanzawa

Experimental Evidence of Phospho-enol-pyruvate Resynthesis from Pyruvate in Illuminated Leaves. Guillaume Tcherkez, Aline Malé, Edouard Boex-Fontvienne, Elisabeth Gout, Florence Guérard, and Richard Bligny

Functional Analysis of Two Isoforms of Leaf-Type Ferredoxin-NADP+-Oxidoreductase in Rice Using the Heterologous Expression System of Arabidopsis. Mieko Higuchi-Takeuchi, Takaran Ichikawa, Youichi Kondou, Keiko Matsui, Yukako Hasegawa, Mika Kawashima, Masaki Mori, Hirohiko Hirochiuka, and Minami Matsui

Impaired Function of the Tonoplast-Localized Sucrose Transporter in Rice, OsSUT2, Limits the Transport of Vacuolar Reserve Sucrose and Affects Plant Growth. Joon-Seob Eom, Jung-Il Cho, Anke Reinders, Sang-Won Lee, Youngchul Yoo, Pham Quoc Tuan, Sang-Bong Choi, Geul Bang, Youn-Il Park, Man-Ho Cho, Seong Hee Booh, Gynheung An, Tae-Ryong Hahn, John M. Ward, and Jong-Seong Jeon

Enhancing Arabidopsis Leaf Growth by Engineering the BRASSINOSTEROID INSENSITIVE1 Receptor Kinase. Man-Ho Oh, Jindong Sun, Dong Ha Oh, Raymond E. Zielinski, Steven D. Clouse, and Steven C. Huber

Small Heat Shock Protein Hsp17.8 Functions as an AKR2A Cofactor in the Targeting of Chloroplast Outer Membrane Proteins in Arabidopsis. Dae Heon Kim, Zheng-Yi Xu, Yun Jeong Na, Yun-Joo Yoo, Junho Lee, Eun-Ju Sohn, and Inhwan Huang

In Vivo Analyses of the Roles of Essential Omp85-Related Proteins in the Chloroplast Outer Envelope Membrane. Weihua Huang, Qihua Ling, Jocelyn Bédard, Kathryn Lilley, and Paul Jarvis

Growth Arrest by Trehalose-6-Phosphate: An Astonishing Case of Primary Metabolite Control over Growth by Way of the SnRK1 Signaling Pathway. Thierry L. Delatte, Prapti Sedijani, Youichi Kondou, Minami Matsui, Gerhardus J. de Jong, Govert W. Somsen, Anika Wiese-Klinkenberg, Lucia F. Primavesi, Matthew J. Paul, and Henriette Schlümpmann

Propidium Iodide Competes with Ca2+ to Label Pectin in Pollen Tubes and Arabidopsis Root Hairs. Caleb M. Rounds, Eric Lubeck, Peter K. Hepler, and Lawrence J. Winship

Mechanisms of Molecular Mimicry of Plant CLE Peptide Ligands by the Parasitic Nematode Globodera rostochiensis. Yongfeng Guo, Jun Ni, Robert Denver, Xiaoqiong Wang, and Steven E. Clark

Abscisic Acid Plays an Important Role in the Regulation of Strawberry Fruit Ripening. Hai-Feng Jia, Ye-Mao Chai, Chun-Li Li, Dong Lu, Jing-Jing Luo, Ling Qin, and Yuan-Yue Shen

Continued on next page
ENVIROMENTAL STRESS AND ADAPTATION TO STRESS


[2] Rice Ethylene-Response AP2/ERF Factor OsEATB Restricts Internode Elongation by Down-Regulating a Gibberellin Biosynthetic Gene. Weivei Qi, Fan Sun, Qianjie Wang, Mingluan Chen, Yunqing Huang, Yu-Qi Feng, Xiaojin Luo, and Jinshui Yang

ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS

[3] Inositol Polyphosphate 5-Phosphatase7 Regulates the Production of Reactive Oxygen Species and Salt Tolerance in Arabidopsis. Yuval Kaye, Yael Golani, Yanitie Singer, Yehoram Leshem, Gil Cohen, Mustafa Ercetin, Glenda Gillaspy, and Alex Levine


PLANTS INTERACTING WITH OTHER ORGANISMS


WHOLE PLANT AND ECOPHYSIOLOGY

[OA] Responses of Legume Versus Nonlegume Tropical Tree Seedlings to Elevated CO₂ Concentration.
Lucas A. Cernusak, Klaus Winter, Carlos Martínez, Edwin Correa, Jorge Aranda, Milton García, Carlos Jaramillo, and Benjamin L. Turner

[W] Investigating the Contribution of the Phosphate Transport Pathway to Arsenic Accumulation in Rice.
Zhongchang Wu, Hongyan Ren, Steve P. McGrath, Ping Wu, and Fang-Jie Zhao

Keren Stimler, Joseph A. Berry, Steve A. Montzka, and Dan Yakir

SYSTEMS BIOLOGY, MOLECULAR BIOLOGY, AND GENE REGULATION

[W] Intracompartmental and Intercompartmental Transcriptional Networks Coordinate the Expression of Genes for Organellar Functions.
Dario Leister, Xi Wang, Georg Haberer, Klaus F.X. Mayer, and Tatjana Kleine

[OA] Systems Biology of Tomato Fruit Development: Combined Transcript, Protein, and Metabolite Analysis of Tomato Transcription Factor (nor, rin) and Ethylene Receptor (Nr) Mutants Reveals Novel Regulatory Interactions.
Sonia Osorio, Rob Alba, Cynthia M.B. Damasceno, Gloria Lopez-Casado, Marc Lohse, Maria Inés Zanor, Takayuki Tohge, Björn Usadel, Jocelyn K.C. Rose, Zhangjun Fei, James J. Giovannoni, and Alisdair R. Fernie

Kazuhiko Enami, Tomoki Ozawa, Noriko Motohashi, Masayuki Nakamura, Kan Tanaka, and Mitsumasa Hanaoka

CORRECTIONS

Broad-Spectrum Suppression of Innate Immunity Is Required for Colonization of Arabidopsis Roots by the Fungus Piriformospora indica.

[C] Some figures in this article are displayed in color online but in black and white in the print edition.

[OA] Open Access articles can be viewed online without a subscription.