On the Cover: Exine, the outer plant pollen wall, has elaborate species-specific patterns, provides a protective barrier for male gametophytes, and serves as a mediator of strong and species-specific pollen-stigma adhesion. Although several genes important for exine development have been identified in recent years, there is still very limited understanding of how exine is developed and its complex patterns are laid out. The systematic identification of the genetic network required for biosynthesis, transport, and assembly of exine components has been largely lacking because of the very limited number of previous genetic screens and the technical challenges associated with these screens. In this issue, Dobritsa et al. (947–970) describe a simple yet effective strategy for screening for exine mutants and present results of a large-scale genetic screen. As a result, multiple mutants exhibiting a large variety of abnormal exine phenotypes were isolated. In this image, two wild-type Arabidopsis (Arabidopsis thaliana) pollen grains that have a regular reticulate exine pattern and three equally spaced apertures are shown in the middle. These two grains are surrounded by the mutants that have various defects in exine patterning. Isolation of these mutants opens new avenues for genetic, biochemical, developmental, and evolutionary studies of exine production. Photographs and image design by Anna Dobritsa.

ON THE INSIDE

Peter V. Minorsky

UPDATES

Chromatin Configuration as a Battlefield in Plant-Bacteria Interactions. Ka-Wai Ma, Cristina Flores, and Wenbo Ma

BREAKTHROUGH TECHNOLOGIES


The Rice Miniature Inverted Repeat Transposable Element mPing Is an Effective Insertional Mutagen in Soybean. C. Nathan Hancock, Feng Zhang, Kristen Floyd, Aaron O. Richardson, Peter LaFayette, Donna Tucker, Susan R. Wessler, and Wayne A. Parrott

Subtissue-Specific Evaluation of Promoter Efficiency by Quantitative Fluorometric Assay in Laser Microdissected Tissues of Rapeseed. Jan Jasik, Silke Schiebold, Hardy Rolletschek, Peter Denolf, Katrien Van Adenhove, Thomas Altman, and Ljudmilla Borisjuk

RESEARCH ARTICLES

Functional Characterization of Evolutionarily Divergent 4-Coumarate:Coenzyme A Ligases in Rice. Jinshan Gui, Jianhui Shen, and Laieng Li

Defining the Protein Complex Proteome of Plant Mitochondria. Jennifer Klodmann, Michael Senkler, Christina Rode, and Hans-Peter Braun

Structural Resolution of the Complex between a Fungal Polygalacturonase and a Plant Polygalacturonase-Inhibiting Protein by Small-Angle X-Ray Scattering. Manuel Benedetti, Claudia Leggio, Luca Federici, Giulia De Lorenzo, Nicole Viorel Pavel, and Felice Cervone

Seed Storage Oil Mobilization Is Important But Not Essential for Germination or Seedling Establishment in Arabidopsis. Amélie A. Kelly, Anne-Laure Quettier, Eve Shaw, and Peter J. Eastmond

Continued on next page
Biosynthesis of the Major Tetrahydroxystilbenes in Spruce, Astringin and Isorhapontin, Proceeds via Resveratrol and Is Enhanced by Fungal Infection. Almuth Hammerbacher, Steven G. Ralph, Joerg Bohlmann, Trevor M. Fenning, Jonathan Gershenzon, and Axel Schmidt

BIOENERGETICS AND PHOTOSYNTHESIS


CELL BIOLOGY AND SIGNAL TRANSDUCTION
The Small GTPase Rab5α Is Essential for Intracellular Transport of Proglutelin from the Golgi Apparatus to the Protein Storage Vacuole and Endosomal Membrane Organization in Developing Rice Endosperm. Masako Fukuda, Mio Satoh-Cruz, Liuying Wen, Andrew J. Crofts, Aya Sugino, Haruhiko Washida, Thomas W. Okita, Masahiro Ogawa, Yasushi Kawagoe, Masayoshi Maeshima, and Toshihiro Kumamaru

An Arabidopsis Prenylated Rab Acceptor 1 Isoform, AtPRA1.B6, Displays Differential Inhibitory Effects on Anterograde Trafficking of Proteins at the Endoplasmic Reticulum. Myoung Hui Lee, Chanjin Jung, Junho Lee, Soo Youn Kim, Yongjik Lee, and Inhwan Huang

DEVELOPMENT AND HORMONE ACTION
Adenosine Kinase Contributes to Cytokinin Interconversion in Arabidopsis. Sarah Schoor, Scott Farrow, Hanna Blaschke, Sanghyun Lee, Gregory Perry, Klaus von党校zenberg, Neil Emery, and Barbara Moffatt

Zinc Finger Protein5 Is Required for the Control of Trichome Initiation by Acting Upstream of Zinc Finger Protein8 in Arabidopsis. Zhongjing Zhou, Lijun An, Lili Sun, Shuaijun Zhu, Wanyan Xi, Pierre Broun, Hao Yu, and Yinbo Gan

miR393 and Secondary siRNAs Regulate Expression of the TIR1/AFB2 Auxin Receptor Clade and Auxin-Related Development of Arabidopsis Leaves. Azeddine Si-Ammour, David Windels, Estelle Arn-Bouldoires, Claudia Kutter, Jérôme Aillhès, Frederick Meins, and Franck Vazquez


Mutations in MYB3R1 and MYB3R4 Cause Pleiotropic Developmental Defects and Preferential Down-Regulation of Multiple G2/M-Specific Genes in Arabidopsis. Nozomi Haga, Kosuke Kobayashi, Takamasa Suzuki, Kenichiro Maehara, Minoru Kubo, Misato Ohtani, Nobutaka Matsuura, Kenzo Nakamura, Gerd Jurgens, and Masaki Ito

Low-Fluence Red Light Increases the Transport and Biosynthesis of Auxin. Xing Liu, Jerry D. Cohen, and Gary Gardener

ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS
A Common Genetic Determinism for Soil Water Deficit and Evaporative Demand: Meta-Analysis of Quantitative Trait Loci and Introgression Lines of Maize. Claude Welcker, Walid Sadok, Grégoire Dignat, Morgan Renault, Silvio Salvi, Alain Charcosset, and François Tardieu

Inhibition of Protein Synthesis by TOR Inactivation Revealed a Conserved Regulatory Mechanism of the BiP Chaperone in Chlamydomonas. Sandra Diaz-Troya, María Esther Pérez-Pérez, Marta Pérez-Martín, Suzette Moe, Paul Jeno, Francisco J. Florencio, and José L. Crespo

Arabidopsis Cys2/His2 Zinc-Finger Proteins AZF1 and AZF2 Negatively Regulate Abscisic Acid-Repressive and Auxin-Inducible Genes under Abiotic Stress Conditions. Ken-Suke Kodaira, Feng Qin, Lan-Son Phan Tran, Kyonoshin Maruyama, Satoshi KidoKoro, Yasunari Fujita, Kazu Shinozaki, and Kazuko Yamaguchi-Shinozaki