Aphids (Hemiptera: Aphididae) are phloem sap-feeding insects that are important pests of plants. Also, several aphids vector plant viral diseases. Aphids utilize their slender stylets, which are modified mouthparts, to consume phloem sap from sieve elements. As depicted in this illustration, the flexible stylet follows an intercellular path to the sieve elements, thereby minimizing wounding damage to plant tissues. Both antixenotic and antibiotic mechanisms contribute to host defenses against aphids. Antixenotic factors impact insect behavior, for example, the aphid’s ability to find and feed from sieve elements. In comparison, antibiotic factors impact aphid physiology, resulting in adverse effects on insect growth, development, and/or reproduction. The interaction between Arabidopsis (Arabidopsis thaliana) and green peach aphid (GPA; Myzus persicae) identified Arabidopsis PHYTOALEXIN-DEFICIENT4 (PAD4) as an important modulator of antixenotic and antibiotic defenses against GPA. PAD4 encodes a protein with homology to α/β-fold acyl hydrolases that include lipases and esterases. PAD4 is also a component of Arabidopsis defense against pathogens operating with its interacting partner ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). However, EDS1 is not required for PAD4’s involvement in defense against GPA. In this issue, Louis et al. (pp. 1860–1872) demonstrate that mutation of a conserved Ser (S118) in the predicted lipase active site of PAD4 permits the discrimination of PAD4 activities in defense against GPA, suggesting that PAD4 is capable of adopting a number of molecularly and mechanistically different forms, which determine different functions of PAD4 in fighting aphid infestation. Cover image by Nick Sloff (University Park, PA). The cover image by Nick Sloff includes an aphid image adapted from a drawing by Thomas Degen (www.thomas-degen.ch) and an image of plant cells adapted from a drawing by Kerry Mauck.
RESEARCH ARTICLES

BIOCHEMICAL PROCESSES AND MACROMOLECULAR STRUCTURES

Yubing Li, Der Fen Suen, Chien-Yu Huang, Shung-Yee Kung, and Anthony H.C. Huang
1548–1561

[W][OA] A Lipid Droplet Protein of Nannochloropsis with Functions Partially Analogous to Plant Oleosins.
Astrid Vieler, Shane B. Brubaker, Bertrand Vick, and Christoph Benning
1562–1569

Ángel G. Díaz-Sánchez, Lilian González-Segura, Carlos Muñoz-Jiménez, Enrique Ruíz-Piñera, Carmina Montiel, León P Martínez-Castilla, and Rosario A. Muñoz-Clares
1570–1582

[C][W] Subclassification and Biochemical Analysis of Plant Papain-Like Cysteine Proteases Displays Subfamily-Specific Characteristics.
Kerstin H. Richau, Farnusch Kaschani, Martijn Verdoes, Twinkal C. Pansuriya, Sherry Niessen, Kurt Stüber, Tom Colby, Herman S. Overkleeft, Matthew Boggo, and Renier A.L. Van der Hoorn
1583–1599

[C][W] Natural Hypolignification Is Associated with Extensive Oligolignol Accumulation in Flax Stems.
Rudy Huis, Kris Morrel, Ophélie Fliniaux, Anca Lucau-Danila, Stéphane Féna, Sébastien Grec, Godfrey Neutelings, Brigitte Chabbert, François Mesnard, Wout Boerjan, and Simon Hawkins
1893–1915

[C][W][OA] Prunasin Hydrolases during Fruit Development in Sweet and Bitter Almonds.
1916–1932

[C][W][OA] A Revised Architecture of Primary Cell Walls Based on Biomechanical Changes Induced by Substrate-Specific Endoglucanases.
Yong Bum Park and Daniel J. Cosgrove
1933–1943

Zhaohui Hu, Zhonghai Ren, and Chaofu Lu
1944–1954

BIOENERGETICS AND PHOTOSYNTHESIS

Aaron M. Collins, Michelle Libertson, Howland D.T. Jones, Omar F. Garcia, Himadri B. Pakrasi, and Jerilyn A. Timlin
1600–1609

Simon R. Law, Reena Narsai, Nicolas L. Taylor, Etienne Delannoy, Chris Carrie, Estelle Giraud, A. Harvey Millar, Ian Small, and James Whelan
1610–1627

CELL BIOLOGY AND SIGNAL TRANSDUCTION

[C][W][OA] The Ubiquitin E3 Ligase LOSS OF GDU2 Is Required for GLUTAMINE DUMPER1-Induced Amino Acid Secretion in Arabidopsis.
Réjane Pratelli, Damian D. Guerra, Shi Yu, Mark Wogulis, Edward Kraft, Wolf B. Frommer, Judy Callis, and Guillaume Pilot
1628–1642

Friederike Ladwig, Mark Stahl, Uwe Ludewig, Axel A. Hirner, Wolfgang Koch
1643–1655

Chuang-Chih Chu and Hsou-min Li
1656–1665

[W][OA] Characterization of Genes Involved in Cytokinin Signaling and Metabolism from Rice.
Yu-Chang Tsai, Nicholas R. Weir, Kristine Hill, Wenjing Zhang, Hui-Jung Kim, Shin-Han Shiu, G. Eric Schaller, and Joseph J. Kieber
1666–1684

[C][W][OA] Regulatory Functions of SnRK1 in Stress-Responsive Gene Expression and in Plant Growth and Development.
Young-Hee Cho, Jung-Woo Hong, Eun-Chul Kim, and Sang-Dong Yoo
1955–1964

[C][W][OA] Arabidopsis Hexokinase-Like1 and Hexokinase-Like2 Form a Critical Node in Mediating Plant Glucose and Ethylene Responses.
Abhijit Karve, Xiaoxia Xia, and Brandon d. Moore
1965–1975
DEVELOPMENT AND HORMONE ACTION

Poppy APETALA1/FRUITFULL Orthologs Control Flowering Time, Branching, Perianth Identity, and Fruit Development. Natalia Pabón-Mora, Barbara A. Ambrose, and Amy Litt 1685–1704

Reactive Oxygen Species Are Involved in Gibberellin/Abscisic Acid Signaling in Barley Aleurone Cells. Yushi Ishibashi, Tomoya Tawaratsumida, Koji Kondo, Shinsuke Kasa, Masatsugu Sakamoto, Nozomi Aoki, Shao-Hui Zheng, Takashi Yasuda, and Mari Iwaya-Inoue 1705–1714

Role of cis-12-Oxo-Phytodienoic Acid in Tomato Embryo Development. Stephan Goetz, Anja Hellwege, Irene Stenzel, Claudia Kutter, Valeska Hauptmann, Susanne Forner, Bonnie McCaig, Gerd Hause, Otto Miersch, Claus Wasternack, and Bettina Hause 1715–1727

ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS

Constitutive Activation of Transcription Factor OsbZIP46 Improves Drought Tolerance in Rice. Ning Tang, Hua Zhang, Xianghua Li, Jinghua Xiao, and Lizhong Xiong 1755–1768

SCARECROW Has a SHORT-ROOT-Independent Role in Modulating the Sugar Response. Hongchang Cui, Yueling Hao, and Danyu Kong 1769–1778

Fission Yeast HMT1 Lowers Seed Cadmium through Phytochelatin-Dependent Vacuolar Sequestration in Arabidopsis. Jing Huang, Yu Zhang, Jia-Shi Peng, Chen Zhong, Hong-Ying Yi, David W. Ow, and Ji-Ming Gong 1779–1788

GENETICS, GENOMICS, AND MOLECULAR EVOLUTION

PLANTS INTERACTING WITH OTHER ORGANISMS

Phytosterols Play a Key Role in Plant Innate Immunity against Bacterial Pathogens by Regulating Nutrient Efflux into the Apoplast. Keri Wang, Muthappa Senthil-Kumar, Choong-Min Ryu, Li Kang, and Kirankumar S. Mysore 1789–1802

Structure-Function Analysis of the Coiled-Coil and Leucine-Rich Repeat Domains of the RPS5 Disease Resistance Protein. Dong Qi, Brody J. DeYoung, and Roger W. Innes 1819–1832

Brassinosteroids Antagonize Gibberellin- and Salicylate-Mediated Root Immunity in Rice. David De Vleeschauwer, Evelien Van Buyten, Kouji Satoh, Johny Balidion, Ramil Mauleon, Il-Ryong Choi, Casiana Vera-Cruz, Shoshi Kikuchi, and Monica Höfte 1833–1846

Downloaded from on July 19, 2017 - Published by www.plantphysiol.org
Copyright © 2012 American Society of Plant Biologists. All rights reserved.
SR1, a Calmodulin-Binding Transcription Factor, Modulates Plant Defense and Ethylene-Induced Senescence by Directly Regulating NDR1 and EIN3. Haozhen Nie, Chunzha Zhao, Guangheng Wu, Yingying Wu, Yongfang Chen, and Dingzhong Tang 1847–1859

Low Red/Far-Red Ratios Reduce Arabidopsis Resistance to Botrytis cinerea and Jasmonate Responses via a COI1-JAZ10-Dependent, Salicylic Acid-Independent Mechanism. Ignacio Cerrudo, Mercedes M. Keller, Miriam D. Carguel, Patricia V. Demkura, Mieke de Wit, Micaela S. Patitucci, Ronald Pierik, Corne M.J. Pieterse, and Carlos L. Ballare 2042–2052

WHOLE PLANT AND ECOLOGY

The Origin and Composition of Cucurbit “Phloem” Exudate. Cankui Zhang, Xiyan Yu, Brian G. Ayre, and Robert Turgeon 1873–1882

Release of Apical Dominance in Potato Tuber Is Accompanied by Programmed Cell Death in the Apical Bud Meristem. Paula Teper-Bammolker, Yossi Buskila, Yael Lopesco, Shifra Ben-Dor, Inbal Saad, Vered Holdengreber, Eduard Belausov, Hanita Zemach, Naomi Ori, Amnon Lers, and Dani Eshel 2053–2067

SYSTEMS BIOLOGY, MOLECULAR BIOLOGY, AND GENE REGULATION

Expression of an Entire Bacterial Operon in Plants. Rita Mozes-Koch, Ofer Gover, Edna Tanne, Yuval Peretz, Eyal Maori, Leonid Chernin, and Ilan Sela 1883–1892

Some figures in this article are displayed in color online but in black and white in the print edition.

Indicates Web-only data.

Open Access articles can be viewed online without a subscription.