The electronic form of this issue, available as of April 11, 2012, at www.plantphysiol.org, is considered the journal of record.

On the Cover: Aphids (Hemiptera: Aphididae) are phloem sap-feeding insects that are important pests of plants. Also, several aphids vector plant viral diseases. Aphids utilize their slender styles, which are modified mouthparts, to consume phloem sap from sieve elements. As depicted in this illustration, the flexible stylet follows an intercellular path to the sieve elements, thereby minimizing wounding damage to plant tissues. Both antixenotic and antibiotic mechanisms contribute to host defenses against aphids. Antixenotic factors impact insect behavior, for example, the aphid’s ability to find and feed from sieve elements. In comparison, antibiotic factors impact aphid physiology, resulting in adverse effects on insect growth, development, and/or reproduction. The interaction between Arabidopsis (*Arabidopsis thaliana*) and green peach aphid (GPA; *Myzus persicae*) identified Arabidopsis PHYTOALEXIN-DEFICIENT4 (*PAD4*) as an important modulator of antixenotic and antibiotic defenses against GPA. *PAD4* encodes a protein with homology to α/β-fold acyl hydrolases that include lipases and esterases. *PAD4* is also a component of Arabidopsis defense against pathogens operating with its interacting partner ENHANCED DISEASE SUSCEPTIBILITY1 (*EDS1*). However, *EDS1* is not required for *PAD4*’s involvement in defense against GPA. In this issue, Louis et al. (pp. 1860–1872) demonstrate that mutation of a conserved Ser (S118) in the predicted lipase active site of *PAD4* permits the discrimination of *PAD4* activities in defense against GPA, suggesting that *PAD4* is capable of adopting a number of molecularly and mechanistically different forms, which determine different functions of *PAD4* in fighting aphid infestation. Cover image by Nick Sloff (University Park, PA). The cover image by Nick Sloff includes an aphid image adapted from a drawing by Thomas Degen (www.thomas-degen.ch) and an image of plant cells adapted from a drawing by Kerry Mauck.

ON THE INSIDE

Peter V. Minorsky

1485–1486

GENOME ANALYSIS

Exploring Tomato Gene Functions Based on Coexpression Modules Using Graph Clustering and Differential Coexpression Approaches. Atsushi Fukushima, Tomoko Nishizawa, Mariko Hayakumo, Shoko Hikosaka, Kazuki Saito, Eiji Goto, and Miyako Kusano

1487–1502

BREAKTHROUGH TECHNOLOGIES

A Novel Method of Transgene Delivery into Triticale Plants Using the Agrobacterium Transferred DNA-Derived Nano-Complex. Alicja Ziemienowicz, Youn-Seb Shim, Aki Matsuoka, Francois Eudes, and Igor Kovalchuk

1503–1513

1514–1522

BIOINFORMATICS

ANAP: An Integrated Knowledge Base for Arabidopsis Protein Interaction Network Analysis. Congmiao Wang, Alex Marshall, Dabing Zhang, and Zoe A. Wilson

1523–1533

Matapax: An Online High-Throughput Genome-Wide Association Study Pipeline. Liam H. Childs, Jan Lise, and Dirk Walther

1534–1541

SCIENTIFIC CORRESPONDENCE

Mutant Flower Morphologies in the Wind Orchid, a Novel Orchid Model Species. Sascha Duttke, Nicholas Zoulias, and Minsung Kim

1542–1547

Continued on next page
RESEARCH ARTICLES

BIOCHEMICAL PROCESSES AND MACROMOLECULAR STRUCTURES

[W][OA] A Lipid Droplet Protein of Nannochloropsis with Functions Partially Analogous to Plant Oleosins. Astrid Vieler, Shane B. Brubaker, Bertrand Vick, and Christoph Benning 1562–1569

[C][W][OA] A Revised Architecture of Primary Cell Walls Based on biomechanical Changes Induced by Substrate-Specific Endoglucanases. Yong Bum Park and Daniel J. Cosgrove 1933–1943

BIOENERGETICS AND PHOTOSYNTHESIS

CELL BIOLOGY AND SIGNAL TRANSDUCTION

[C][W][OA] The Ubiquitin E3 Ligase LOSS OF GDU2 Is Required for GLUTAMINE DUMPER1-Induced Amino Acid Secretion in Arabidopsis. Réjane Prattelli, Damian D. Guerra, Shi Yu, Mark Wogulis, Edward Kraft, Wolf B. Frommer, Judy Callis, and Guillaume Pilot 1628–1642

[C][W][OA] The Amino-Terminal Domain of Chloroplast Hsp93 Is Important for Its Membrane Association and Functions in Vivo. Chung-Chih Chu and Hsou-min Li 1656–1665

[C][W][OA] Arabidopsis Hexokinase-Like1 and Hexokinase1 Form a Critical Node in Mediating Plant Glucose and Ethylene Responses. Abhijit Karve, Xiaoxia Xia, and Brandon d. Moore 1965–1975

Continued on next page
DEVELOPMENT AND HORMONE ACTION

Poppy APETALA1/FRUITFULL Orthologs Control Flowering Time, Branching, Perianth Identity, and Fruit Development. Natalia Pabón-Mora, Barbara A. Ambrose, and Amy Litt

Reactive Oxygen Species Are Involved in Gibberellin/Abscisic Acid Signaling in Barley Aleurone Cells. Yushi Ishibashi, Tomoya Tawaratsumida, Koji Kondo, Shinsuke Kasa, Masatsugu Sakamoto, Nozomi Aoki, Shao-Hui Zheng, Takeshi Yusa, and Mari Iwaya-Inoue

Role of cis-12-Oxo-Phytodienoic Acid in Tomato Embryo Development. Stephan Goetz, Anja Hellwege, Irene Stenzel, Claudia Kutter, Valeska Hauptmann, Susanne Forner, Bonnie McCaig, Gerd Hause, Otto Miersch, Claus Wasternack, and Bettina Hause

Strigolactones Suppress Adventitious Rooting in Arabidopsis and Pea. Amanda Rasmussen, Michael Glenn Mason, Carolien De Cuyper, Philip B. Brewer, Silvia Herold, Javier Agusti, Danny Geelen, Thomas Greb, Sofie Goormachtig, Tom Beeckman, and Christine Anne Beveridge

Transport of Indole-3-Butyric Acid and Indole-3-Acetic Acid in Arabidopsis Hypocotyls Using Stable Isotope Labeling. Xing Liu, Lana Barkawi, Gary Gardner, and Jerry D. Cohen

ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS

Constitutive Activation of Transcription Factor OsbZIP46 Improves Drought Tolerance in Rice. Ning Tang, Hua Zhang, Xianghua Li, Jinghua Xiao, and Lizhong Xiong

SCARECROW Has a SHORT-ROOT-Independent Role in Modulating the Sugar Response. Hongchang Cui, Yueling Hao, and Danyu Kong

Fission Yeast HMT1 Lowers Seed Cadmium through Phytochelatin-Dependent Vacuolar Sequestration in Arabidopsis. Jing Huang, Yu Zhang, Jia-Shi Peng, Chen Zhong, Hong-Ying Yi, David W. Ow, and Ji-Ming Gong

GENETICS, GENOMICS, AND MOLECULAR EVOLUTION

PLANTS INTERACTING WITH OTHER ORGANISMS

Phytosterols Play a Key Role in Plant Innate Immunity against Bacterial Pathogens by Regulating Nutrient Efflux into the Apoplast. Keri Wang, Muthappa Senthil-Kumar, Choong-Min Ryu, Li Kang, and Kirankumar S. Mysore

Type III Secretion and Effectors Shape the Survival and Growth Pattern of Pseudomonas syringae on Leaf Surfaces. Jiyong Lee, Gail M. Teitzel, Kathy Munsoold, Olga del Pozo, Gregory B. Martin, Richard W. Michelmore, and Jean T. Greenberg

Structure-Function Analysis of the Coiled-Coil and Leucine-Rich Repeat Domains of the RPS5 Disease Resistance Protein. Dong Qi, Brody J. DeYoung, and Roger W. Innes

Brassinosteroids Antagonize Gibberellin- and Salicylate-Mediated Root Immunity in Rice. David De Vleeschauwer, Evelien Van Buyten, Kouji Satoh, Johny Balidion, Ramil Mauleon, Il-Ryong Choi, Casiana Vera-Cruz, Shoshi Kikuchi, and Monica Höfte
SR1, a Calmodulin-Binding Transcription Factor, Modulates Plant Defense and Ethylene-Induced Senescence by Directly Regulating NDR1 and EIN3. Haozhen Nie, Chunzhao Zhao, Guangheng Wu, Yingying Wu, Yongfang Chen, and Dingzhong Tang
1847–1859

Discrimination of Arabidopsis PAD4 Activities in Defense against Green Peach Aphid and Pathogens. Joe Louis, Enrico Gobbato, Hossain A. Mondal, Bart J. Fays, Jane E. Parker, and Jyoti Shah
1860–1872

2013–2027

2028–2041

Low Red/Far-Red Ratios Reduce Arabidopsis Resistance to Botrytis cinerea and Jasmonate Responses via a COI1-JAZ10-Dependent, Salicylic Acid-Independent Mechanism. Ignacio Cerrudo, Mercedes M. Keller, Miriam D. Carguel, Patricia V. Demkura, Mieke de Wit, Micaela S. Patitucci, Ronadl Pierik, Corné M.J. Pieterse, and Carlos L. Ballaré
2042–2052

WHOLE PLANT AND ECOPHYSIOLOGY

The Origin and Composition of Cucurbit “Phloem” Exudate. Cankui Zhang, Xiyan Yu, Brian G. Ayre, and Robert Turgeon
1873–1882

Release of Apical Dominance in Potato Tuber Is Accompanied by Programmed Cell Death in the Apical Bud Meristem. Paula Tepar-Bannolker, Yossi Buskila, Yael Lopesco, Shifra Ben-Dor, Inbal Saad, Vered Holdengreber, Eduard Belausov, Hanita Zemach, Naomi Ori, Amnon Lers, and Dani Eshel
2053–2067

SYSTEMS BIOLOGY, MOLECULAR BIOLOGY, AND GENE REGULATION

Expression of an Entire Bacterial Operon in Plants. Rita Mozes-Koch, Ofer Gover, Edna Tamne, Yuval Peretz, Eyal Maori, Leonid Chernin, and Ilan Sela
1883–1892

Some figures in this article are displayed in color online but in black and white in the print edition.

Indicates Web-only data.

Open Access articles can be viewed online without a subscription.