On the Cover: Non-photochemical quenching (NPQ) of chlorophyll fluorescence is a widely accepted indicator of diverse mechanisms that protect the photosynthetic apparatus against excess light and protect PSII reaction centers from photodamage. Old shade leaves of avocado (*Persea americana*) have very low rates of photosynthesis and are very sensitive to photodamage, but they also accumulate high levels of the α-branch xanthophyll lutein epoxide relative to the more ubiquitous and structurally analogous β-branch xanthophyll violaxanthin. Jia et al. (pp. 836–852) show that with increasing irradiance and/or time the capacities for, and properties of, NPQ are modulated by deepoxidation of these pigments to lutein (L), and to antheraxanthin (A) and zeaxanthin (Z), respectively, within an hour of exposure to sunlight. The cover photo shows a full-size image of the remarkably heterogeneous (green to red = NPQ 0.3–1.6) increase in NPQ after the 2-min exposure of a shade leaf to approximately 5% sunlight in air. Heterogeneity is due to differential stomatal opening and access to CO₂ in adjacent vein-defined areas of the mesophyll (heterobaric anatomy) that produce transient increases in trans-thylakoid ΔpH (hereafter termed NPQΔpH) during photosynthetic induction. However, the insert (from Fig. 8 in Jia et al.) summarizes the sequential engagement of differentially reversible forms of NPQ associated with these pigments (NPQ₄₋₇, NPQ₆₋₇, NPQ₅₋₇, and NPQ₄₋₇). These forms of photoprotection are insufficient to fully mitigate photodamage in longer sunlight exposures. Independent measurements of the decline in functional fraction of PSII reaction centers suggest that their photoinactivation dominates the most slowly reversible form of NPQ (NPQ₄₋₇). Chlorophyll fluorescence image provided by Kotaro Takayama. Cover image designed by Barry Osmond.

ON THE INSIDE

Peter V. Minorsky

BREAKTHROUGH TECHNOLOGIES

III The Perennial Ryegrass GenomeZipper: Targeted Use of Genome Resources for Comparative Grass Genomics. [C][W] Matthias Pfeifer, Mihaela Martis, Torben Asp, Klaus F.X. Mayer, Thomas Lübberstedt, Stephen Byrne, Ursula Frei, and Bruno Studer

Summary: The GenomeZipper presented here is a model of the perennial ryegrass genome on the basis of conserved synteny to barley, Brachypodium, rice, and sorghum.

IV A Noninvasive Platform for Imaging and Quantifying Oil Storage in Submillimeter Tobacco Seed. [W][OA] Johannes Fuchs, Thomas Neuberger, Hardy Rolletschek, Silke Schiebold, Thuy Ha Nguyen, Nikolai Borisjuk, Andreas Börner, Gerd Melkus, Peter Jakob, and Ljudmilla Borisjuk

Summary: This study describes a non-invasive NMR approach that enables counting of seeds inside the intact tobacco capsule, to measure seed sizes, to model the seed interior in three dimensions, to quantify the lipid content, and to visualize lipid gradients.

SCIENTIFIC CORRESPONDENCE

CSGRqtl, a Comparative Quantitative Trait Locus Database for Saccharinae Grasses. [C] Dong Zhang, Hui Guo, Changsoo Kim, Tae-Ho Lee, Jingping Li, Jon Robertson, Xiyin Wang, Zining Wang, and Andrew H. Paterson

Summary: By aligning QTLs from many populations and several species, this study increases knowledge of the genetic control of agriculturally and developmentally important traits in the Saccharinae clade of grasses, expedites translation of knowledge from better-studied to less-studied species, and facilitates investigation of fundamental questions across the genomes and paleoduplicated “subgenomes” of divergent taxa.
RESEARCH ARTICLES

BIOCHEMISTRY AND METABOLISM

Evolution of Conifer Diterpene Synthases: Diterpene Resin Acid Biosynthesis in Lodgepole Pine and Jack Pine Involves Monofunctional and Bifunctional Diterpene Synthases.
Dawn E. Hall, Philipp Zerbe, Sharon Jancsik, Alfonso Lara Quesada, Harpreet Dullat, Lina L. Madilao, Macaire Yuen, and Jörg Bohlmann

Summary: The biosynthesis of diterpenoid specialized (i.e. secondary) metabolites in conifers is emerging as a modular metabolic network that is built from multiple diterpene synthases and cytochromes P450 of variable functions and activities to produce a diverse and dynamic array of metabolites for plant defense.

Defense Activated by 9-Lipoxygenase-Derived Oxylipins Requires Specific Mitochondrial Proteins.
Tamara Vellosillo, Verónica Aguilera, Ruth Marcos, Michael Bartsch, Jorge Vicente, Tomas Cascón, Mats Hamberg, and Carmen Castresana

Summary: 9-lipoxygenase-mediated defense and cell wall repair responses share common signaling processes that require specific mitochondrial proteins.

Alteration of the Interconversion of Pyruvate and Malate in the Plastid or Cytosol of Ripening Tomato Fruit Invokes Diverse Consequences on Sugar But Similar Effects on Cellular Organic Acid, Metabolism, and Transitory Starch Accumulation.
Sonia Osorio, José G. Vallarino, Marek Szcewouka, Shai Ufaz, Vered Tzin, Ruthie Angelovici, Gad Galili, and Alisdair R. Fernie

Summary: Normal tomato ripening is influenced by alterations on both cytosolic phosphoenolpyruvate carboxykinase and plastidic NADP-malic enzyme. This study provides compelling evidence of their roles in starch biosynthesis, respiration rates, and tricarboxylic acid cycle flux.

Ling Jiang, Yanyan Liu, Hong Sun, Yueing Han, Jinglai Li, Changkun Li, Wenzhu Guo, Hongyan Meng, Sha Li, Yunliu Fan, and Chunyi Zhang

Summary: The mitochondrial folylpolyglutamate synthetase DFC is involved in nitrogen utilization through its participation in photorespiration during early seedling development in Arabidopsis.

CELL BIOLOGY

Acquisition, Conservation, and Loss of Dual-Targeted Proteins in Land Plants.
Lin Xu, Chris Carrie, Simon R. Law, Monika W. Marcha, and James Whelan

Summary: The dual-targeting ability of proteins arose early in evolution, and although it is conserved in many cases, acquisition and loss still occur.

Rice GLYCOSYLTRANSFERASE1 Encodes a Glycosyltransferase Essential for Pollen Wall Formation.
Sunok Moon, Sung-Ryul Kim, Guochao Zhao, Jakyung Yi, Youngchul Yoo, Ping Jin, Sang-Won Lee, Ki-hong Jung, Dabing Zhang, and Gynheung An

Summary: This study elucidates functional roles of Golgi-localized rice Glycosyltransferase1 that is essential for intine construction and pollen maturation.

Recruitment of Arf1-GDP to Golgi by Glo3p-Type ArfGAPs Is Crucial for Golgi Maintenance and Plant Growth.
Myung Ki Min, Milhie Jang, Myounghui Lee, Junho Lee, Kyungyoung Song, Yongik Lee, Kwan Yong Choi, David G. Robinson, and Inhwan Hwang

Summary: Recruitment of GDP-bound Arf1 from the cytosol to the Golgi apparatus by Arf GAP proteins is essential in maintenance of the Golgi apparatus and protein trafficking through the Golgi apparatus.

Continued on next page
Direct Interaction between a Precursor Mature Domain and Transport Component Tha4 during Twin Arginine Transport of Chloroplasts. Debjani Pal, Kristen Fite, and Carole Dabney-Smith

Summary: Significant interaction between thylakoid twin arginine transport pathway component Tha4 and a twin arginine transport precursor under transport conditions suggests the point of passage across the membrane for the precursor is membrane protein dependent.

ECOPHYSIOLOGY AND SUSTAINABILITY

Summary: Radiotracer studies reveal how roots can regulate a plant’s defensive responses to insect herbivory.

Summary: Analysis of all the expressed genes in white lupin roots and leaves shows that acclimation to phosphorous deficiency involves changes in root development and modifications in metabolism.

Sulfite Reductase Protects Plants against Sulfite Toxicity. Dmitry Yarmolinsky, Galina Brychkova, Robert Fluhr, and Moshe Sagi

Summary: Sulfite oxidase, and the key elements of the sulfite network enzymes that include sulfite reductase, UDP-sulfoquinovose synthase, β-mercaptopyruvate sulfurtransferases, and adenosine-5’-phosphosulfate reductase, has a important role in maintaining sulfite homeostasis, where sulfite appears to act as an orchestrating signal molecule.

Multiple Roles for UV RESISTANCE LOCUS8 in Regulating Gene Expression and Metabolite Accumulation in Arabidopsis under Solar Ultraviolet Radiation. Luis O. Morales, Mikael Brosché, Julia Vainonen, Gareth I. Jenkins, Jason J. Wargent, Nina Sipari, Åke Strid, Anders V. Lindfors, Riitta Tegelberg, and Pedro J. Aphalo

Summary: Under natural sunlight, this study demonstrates multiple and complex roles for the UV-B photoreceptor UV RESISTANCE LOCUS8 in the acclimation of Arabidopsis plants to UV radiation.

GENES, DEVELOPMENT, AND EVOLUTION

The Impact of the Long-Distance Transport of a BEL1-Like Messenger RNA on Development. Tian Lin, Pooja Sharma, Daniel H. Gonzalez, Ivana L. Viola, and David J. Hannapel

Summary: Through regulation by light, a mobile mRNA of potato is involved in controlling processes of growth and in mediating the activation of its own gene.

Functional Divergence of the Glutathione S-Transferase Supergene Family in Physcomitrella patens Reveals Complex Patterns of Large Gene Family Evolution in Land Plants. Yan-Jing Liu, Xue-Min Han, Lin-Ling Ren, Hai-Ling Yang, and Qing-Yin Zeng

Summary: This study characterized the functional divergence of the GST gene family in Physcomitrella patens, and revealed complex patterns of evolutionary divergence among the GST gene family in land plants.

Summary: Apple is shown to contain only a small number of functional terpene synthase genes whose evolution appears to have been shaped by genome-wide duplication events and commercial breeding strategies.

Continued on next page
SIGNALING AND RESPONSE

Reciprocal Interaction of the Circadian Clock with the Iron Homeostasis Network in Arabidopsis.
Sunghyun Hong, Sun A. Kim, Mary Lou Guerinot, and C. Robertson McClung

Summary: Description of a novel feedback loop between the circadian clock and the iron homeostasis network in which the circadian clock regulates the transcription of multiple iron homeostasis genes and iron nutritional status feeds back on the clock to modulate circadian period.

Functional Phosphoproteomic Analysis Reveals That a Serine-62-Phosphorylated Isoform of Ethylene Response Factor110 Is Involved in Arabidopsis Bolting.
Lin Zhu, Dandan Liu, Yaojun Li, and Ning Li

Summary: The simple gaseous plant hormone ethylene regulates Arabidopsis flowering via Yin-and-Yang signal transduction pathways.

Proteome Analysis in Arabidopsis Reveals Shoot- and Root-Specific Targets of Cytokinin Action and Differential Regulation of Hormonal Homeostasis.
Marke´ta Zˇd’a´rska´, Pavlı´na Zatloukalova´, Mariana Benı´tez, Ondrej Šedo, David Potšˇel, Ondrej Novoš, Jana Svačinová, Bedrˇich Pešek, Jiﬁ Malbeck, Jana Vašı’ková, Zbynˇek Zdraˇhal, and Jan Hejátko

Summary: The plant hormone cytokinin regulates the Arabidopsis proteome in a shoot- and root-specific way, and the cytokinin-mediated tissue-specific modulation of hormonal metabolism is an intrinsic component of the Arabidopsis response to cytokinins.

PYRABACTIN RESISTANCE1-LIKE8 Plays an Important Role for the Regulation of Abscisic Acid Signaling in Root.
Regina Antoni, Miguel Gonzalez-Guzman, Lesia Rodriguez, Marta Peirats-Llobet, Gaston A. Pizzio, Maria A. Fernandez, Nancy De Winne, Geert De Jaeger, Daniela Dietrich, Malcom J. Bennett, and Pedro L. Rodriguez

Summary: The abscisic acid receptor PYL8 plays an important role for regulation of root abscisic acid sensitivity, and abscisic acid-dependent inhibition of PP2Cs by PYR/PYLs is required for root hydrotropism.

Role of the Putative Osmosensor Arabidopsis Histidine Kinase1 in Dehydration Avoidance and Low-Water-Potential Response.
M. Nagaraj Kumar, Wann-Neng Jane, and Paul E. Verslues

Summary: AHK1 mutants had increased stomatal density and faster leaf water loss; however, AHK1 mutants were not more sensitive to controlled low water potential stress and not impaired in abscisic acid, Pro, or osmoregulatory solute accumulation, thus indicating that AHK1 is not the main plant osmosensor controlling these drought tolerance-associated phenotypes.

Transcriptional and Functional Classification of the GOLVEN/ROOT GROWTH FACTOR/CLE-Like Signaling Peptides Reveals Their Role in Lateral Root and Hair Formation.
Ana Fernandez, Andrzej Drozdzecki, Kurt Hoogewijs, Anh Nguyen, Tom Beeckman, Annemieke Madder, and Pierre Hilson

Summary: The expression domains and phenotypes associated with distinct members of the GLV/RFG/CLEL secreted peptide family indicate that they function in multiple developmental programs, including meristem maintenance, gravitropism, lateral root emergence, and the formation of root hairs.

A Cyclic Nucleotide-Gated Channel (CNGC16) in Pollen Is Critical for Stress Tolerance in Pollen Reproductive Development.

Summary: A genetic knockout of a pollen-expressed cyclic nucleotide-gated ion channel (cn gc16) provides evidence for a signaling pathway that links a cyclic nucleotide signal to changes in gene expression that are critical for heat or drought stress tolerance during reproductive development.
Recombinant Antibody Production in Arabidopsis Seeds Triggers an Unfolded Protein Response.

Kirsten De Wilde, Sylvie De Buck, Kevin Vanneste, and Ann Depicker

Summary: This study shows that seed-specific recombinant antibody production evokes endoplasmic reticulum stress, triggering the unfolded protein response without greatly affecting seed germination and seedling growth, however, making the PPHAS-driven expression cassette a suitable system for molecular farming.

Gene Regulation of Carbon Fixation, Storage, and Utilization in the Diatom Phaeodactylum tricornutum Acclimated to Light/Dark Cycles.

Matilde Skogen Chauton, Per Winge, Tore Brembu, Olav Vadstein, and Atle M. Bones

Summary: Analyses of gene regulation and cell chemistry in acclimated fed batch cultures of Phaeodactylum tricornutum identify genes and metabolic pathways of carbon metabolism, and the subcellular localization and timing of genes and processes during light/dark cycles.

Alteration of the Alkaloid Profile in Genetically Modified Tobacco Reveals a Role of Methyltetrahydrofolate Reductase in Nicotine N-Demethylation.

Chiu-Yueh Hung, Longjiang Fan, Farooq Ahmed S. Kittur, Kehan Sun, Jie Qiu, She Tang, Bronwyn M. Holliday, Bingguang Xiao, Kent O. Burkey, Lowell P. Bush, Mark A. Conkling, Sanja Roje, and Jiahua Xie

Summary: The primary metabolic pathway gene NtMTHFR negatively regulates the secondary metabolism pathway nicotine demethylation gene to potentially recycle methyl groups from alkaloids.

Some figures in this article are displayed in color online but in black and white in the print edition.
Indicates Web-only data.
Open Access articles can be viewed online without a subscription.