Unusual Small Subunit That Is Not Expressed in Photosynthetic Cells Alters the Catalytic Properties of Rubisco in Rice

Koichi Morita, Tomoko Hatanaka, Shuji Misoo, and Hiroshi Fukayama*

Laboratory of Crop Science, Graduate School of Agricultural Science, Kobe University, Kobe 657–8501, Japan

Rubisco small subunits (RbcSs) are encoded by a nuclear multigene family in plants. Five RbcS genes, OsRbcS1, OsRbcS2, OsRbcS3, OsRbcS4, and OsRbcS5, have been identified in rice (Oryza sativa). Among them, the amino acid sequence of OsRbcS1 differs notably from those of other rice RbcSs. Phylogenetic analysis showed that OsRbcS1 is genetically distant from other rice RbcS genes and more closely related to RbcS from a fern and two woody plants. Reverse transcription-PCR and promoter β-glucuronidase analyses revealed that OsRbcS1 was not expressed in leaf blade, a major photosynthetic organ in rice, but was expressed in leaf sheath, culm, anther, and root central cylinder. In leaf blade of transgenic rice overexpressing OsRbcS1 and leaf sheath of nontransgenic rice, OsRbcS1 was incorporated into the Rubisco holoenzyme. Incorporation of OsRbcS1 into Rubisco increased the catalytic turnover rate (k_{cat}) and its role in photorespiration. Rubisco is considered to be a rate-limiting enzyme of C₃ photosynthesis under the conditions of saturated light intensity and present ambient CO₂ concentration due to its extremely slow catalytic turnover rate (k_{cat}) and its role in photorespiration (von Caemmerer and Quick, 2000). To compensate for these inefficient enzymatic properties, C₃ plants accumulate a large amount of Rubisco, accounting for 15% to 30% of total leaf nitrogen, making Rubisco catalytic efficiency a key parameter underpinning leaf level nitrogen use efficiency (Evans, 1989; Makino et al., 1992). Also, these observations make Rubisco a potential target for the improvement of photosynthesis and agricultural productivity (Peterhansel and Offermann, 2012; Parry et al., 2013).

In most chemoautotrophic bacteria, cyanobacteria, algae, and all land plants, Rubisco holoenzyme comprises eight large subunits (RbcLs) and eight small subunits (RbcSs), i.e. L₈S₈ structure (Andersson and Backlund, 2008). RbcL is encoded by a single gene on the multicopy chloroplast DNA, while RbcS is encoded by a multigene family in the nucleus. There is substantial natural variation in the kinetic properties of L₈S₈ Rubisco even in vascular plants. C₄ plants with a CO₂ concentrating mechanism and C₃ plants from cool habitats, where photorespiration is reduced, contain Rubisco with a high k_{cat} (Sage, 2002). According to structural-functional analyses, most of the important amino acid residues necessary for catalysis are present in RbcL. In accordance with this, the kinetic properties of Rubisco in an interspecific hybrid will follow maternal inheritance (Evans and Austin, 1986). In addition, Whitney et al. (2011) reported that hybrid Rubisco composed of Flaveria bidentis C₄ RbcL and tobacco (Nicotiana tabacum) RbcS showed the catalytic properties of high-activity-type Rubisco from C₄ Flaveria bidentis. These results suggest that the catalytic properties of Rubisco are largely determined by the amino acid sequence of RbcL. On the other hand, it was reported that the kinetic performance of a hybrid Rubisco composed of Chlamydomonas reinhardtii RbcL and vascular plant RbcS partially shifted to that of vascular plants (Karkehabadi et al., 2005; Genkov et al., 2010). In previous work, we clearly showed that chimeric incorporation of RbcS from the C₄ plant sorghum (Sorghum bicolor) greatly enhanced the k_{cat} of Rubisco in transgenic rice (Oryza sativa; Ishikawa et al., 2011). Hence, it is proposed that RbcS as well as RbcL
can make a significant contribution to the catalytic performance of Rubisco across species. The sequences of RbcL are highly conserved among vascular plants, whereas those of RbcS are much more divergent (Speiritz, 2003). Considering these observations, RbcS could actually be a key factor in determining interspecific variation in kinetic properties of Rubisco. In addition to its enzymatic functions, RbcS is also involved in quantitative regulation of Rubisco via coordinated expression of RbcL and RbcS in plants (Rodermel et al., 1996; Suzuki and Makino, 2012).

The number of genes comprising the RbcS multigene family varies depending on species, ranging from two in C. reinhardtii to 22 or more in wheat (Triticum aestivum; Speiritz, 2003). Individual members of the RbcS gene family sometimes show different expression patterns in leaf development and tissue specificity (Dean et al., 1989; Silverthorne and Tobin, 1990); however, these expressions are essentially confined to photosynthetic tissues. In most plants, the amino acid sequences of RbcS share high identity with each other within a gene family and are often identical in mature protein (Speiritz, 2003). Hence, it has been assumed that there are no functional differences in the RbcS gene family within a species. In rice, five RbcS genes, OsRbcS1, OsRbcS2, OsRbcS3, OsRbcS4, and OsRbcS5, have been identified (Suzuki et al., 2007). OsRbcS2 to OsRbcS5 are all located on chromosome 12 and arranged in a tandem array at a single locus. The deduced amino acid sequences of OsRbcS2 to OsRbcS5, without the transit peptide for targeting to the chloroplast, are completely identical. By contrast, OsRbcS1 is located on chromosome 2 and has remarkably lower homology with other rice RbcSs (55.4% similarity in mature protein; Suzuki et al., 2007). Furthermore, it has been reported that OsRbcS1 is not appreciably expressed in leaf blade, the major photosynthetic organ in rice, at any time in the plant’s lifecycle (Suzuki et al., 2009). Other than OsRbcS1, to our knowledge there are no reports, in any plants, of RbcS genes showing such a large diversity of amino acid sequences and expression patterns. Considering these distinct features, OsRbcS1 might be expected to have some specialized functions different from other members of the RbcS gene family.

In this study, we focus on this unusual RbcS in rice and report on expression analyses and functional analyses using transgenic rice. It was found that OsRbcS1 functions in encoding the small subunit of Rubisco in particular tissues such as leaf sheath, and the holoenzyme containing OsRbcS1 has altered kinetic properties similar to the high-catalytic-activity Rubisco typically found in C₄ plants.

RESULTS

RbcS Gene Family in Rice

Deduced amino acid sequences of the coding region of the rice RbcS gene family were obtained from Rice Annotation Project Database (RAP-DB; http://rapdb.dna.affrc.go.jp) and aligned within the gene family or with RbcS from other species (Supplemental Figs. S1 and S2). OsRbcS2 to OsRbcS5 contain only one intron, and this interrupts the coding region between residues 49 to 50, a common characteristic of monocotyledonous RbcS, whereas OsRbcS1 has an additional intron interrupting the coding region between residues 96 to 97 as observed in many dicotyledonous RbcS (Supplemental Fig. S1; Dean et al., 1989). As reported by Suzuki et al. (2007), OsRbcS2 to OsRbcS5 are highly similar to one another at the amino acid level. The mature proteins of OsRbcS2 to OsRbcS5 without chloroplast-targeting transit peptides, are identical. By contrast, the mature protein of OsRbcS1 is notably different and shares only 55.4% similarity with the proteins encoded by other rice RbcSs. In particular, the regions of the N terminus of mature protein, the first half of the βA-βB loop and the C terminus in OsRbcS1 showed a relatively higher degree of divergence from those in other rice RbcSs (Supplemental Fig. S2). However, 10 highly conserved amino acid residues among RbcS reported by Speiritz (2003) are mostly conserved in OsRbcS1, except for one apparently insignificant substitution of Tyr-32 by Phe in OsRbcS1. In addition, the important amino acid residue Arg-54, which forms a hydrogen bond with RbcL in the assembly domain of RbcS (Wasmann et al., 1989), is also conserved in OsRbcS1. Thus, it is anticipated that OsRbcS1 could encode a functional small subunit of Rubisco.

Phylogenetic analysis of RbcS from terrestrial plants revealed that the closely related OsRbcS2 to OsRbcS5 were classified into the group consisting of major flowering plants (Fig. 1). However, OsRbcS1 was distantly related to other rice RbcSs and classified into another group, consisting of RbcS from a fern and two woody plants. It was found that grape (Vitis vinifera) also contains two genetically distant types of RbcS, as in rice. In addition, we also found divergent OsRbcS1-like genes in the published genomes of some plant species such as foxtail millet (Setaria italica; accession no. XM_004954562) and tomato (Solanum lycopersicum; XM_004243031), suggesting that a wide variety of plants could contain genes orthologous to OsRbcS1. To study the distribution of OsRbcS1-like genes among the Poaceae, DNA gel-blot analysis was performed (Supplemental Fig. S3). DNA bands hybridized with OsRbcS1-specific probes could be detected in rice, wild rice species such as Oryza rufipogon (AA genome) and Oryza officinalis (CC genome), and foxtail millet, whereas no clear bands were observed in barley (Hordeum vulgare), maize (Zea mays), and rye (Secale cereale). These results indicate that the presence of OsRbcS1 ortholog is not always common, even among the Poaceae, and not necessarily related to evolutionary conservation.

Expression of OsRbcS1

Reverse transcription (RT)-PCR analysis revealed that OsRbcS2 to OsRbcS5 showed a similar expression pattern of organ specificity, i.e. expressed in green tissues such as leaf blade, leaf sheath, and glumaceous
flower but not in root (Fig. 2A). However, OsRbcS1 expression was not detectable in leaf blade, which is the major photosynthetic tissue in rice, but was detected in leaf sheath, culm, and developing seed. Thus, the organ specificity of the expression of OsRbcS1 was considered to be significantly different from those of other rice RbcSs. These observations are largely consistent with the results reported by Suzuki et al. (2009).

Promoter GUS analysis was carried out to analyze the cell- and tissue-specific expression of OsRbcS1 (Fig. 2, B–F). OsRbcS3 was also analyzed, as representative rice RbcS reported to be highly expressed in photosynthetic tissues (Suzuki et al., 2009). The OsRbcS3 promoter GUS fusion was significantly expressed in mesophyll cells of leaf blade but not expressed in the basal, pale-green part of leaf sheath (Supplemental Fig. S4). By contrast, the expression of the OsRbcS1 promoter GUS fusion was not observed in leaf blade at all but could be found in cells around vascular bundles of pale-green leaf sheath (Fig. 2, B and C). The expression was also observed in upper green parts of leaf sheath. In addition, the expression of OsRbcS1 was detectable in culm, anther, filament, and central cylinder of young root (Fig. 2, D–F). All of these expressions are essentially confined to nonphotosynthetic cells, implying that OsRbcS1 might not be involved in photosynthesis.

The putative transit peptide of OsRbcS1 shows a relatively low degree of identity with other rice RbcSs and lacks a common amino acid motif ([P/G]Xn[R/K]Xn[S/T]Xn[S*/T*], where the asterisk represents the phosphorylation site and n = zero to three amino acids spacer) conserved in some nuclear-encoded chloroplast proteins including RbcS (Supplemental Fig. S1; Waegemann and Soll, 1996). Thus, it is uncertain whether OsRbcS1 could actually be targeted to the chloroplast. To examine the subcellular localization of OsRbcS1, a fusion protein of the N-terminal putative transit peptide of OsRbcS1 and GFP (OsRbcS1:GFP) was expressed in epidermal cells of onion (Allium cepa; Fig. 2, G–I). As a positive control for plastid targeting, a fusion protein AtrecA:DsRed2 (for Arabidopsis chloroplast DNA repair protein; Discosoma spp. Red fluorescent protein2; Imaizumi-Anraku et al., 2005) was expressed together with OsRbcS1:GFP. The GFP fluorescent completely overlapped with DsRed2 fluorescent. These findings indicate that the OsRbcS1 protein should be localized to the plastid, and the phosphorylation motif missing in OsRbcS1 is not always necessary for RbcS targeting to the chloroplast.
Transgenic rice overexpressing OsRbcS1 was generated by *Agrobacterium tumefaciens*-mediated transformation. The expression of the *OsRbcS1* transgene was driven by the chlorophyll a/b-binding protein promoter, which directs green tissue-specific expression (Tada et al., 1991). Because the molecular mass of OsRbcS1 protein is greater than other rice RbcSs, these proteins could be separated by SDS-PAGE. Exploiting this difference in molecular mass, the expression level of OsRbcS1 in leaf blade of transgenic rice was estimated by SDS-PAGE with Coomassie Blue staining. The band of OsRbcS1 was present in most primary transgenic lines. Among these progenies, two homozygous transgenic lines, designated RS32 and RS21, showing Mendelian inheritance and thought to contain the transgene(s) at a single locus, were selected for subsequent experiments (Fig. 3A). The expression level of OsRbcS1 as a proportion of total rice RbcS in lines RS32 and RS21 was 34% and 74%, respectively (Fig. 3B). The expression level of OsRbcS2 to OsRbcS5 was reduced in proportion to the increase in OsRbcS1 in transgenic rice lines.

The subunit composition of Rubisco in leaf blade of transgenic rice was analyzed by blue native-PAGE and subsequent SDS-PAGE and immunoblotting (Fig. 3, C and D). Blue native-PAGE showed that the apparent molecular mass of Rubisco in transgenic lines was almost identical to that of nontransgenic rice (Fig. 3C). After blue native-PAGE, the Rubisco bands were excised from the gel and further separated by SDS-PAGE. Detection of Rubisco bands by Coomassie Blue staining and immunoblotting demonstrated that OsRbcS1 band was only present in transgenic lines (Fig. 3D). These results suggested that OsRbcS1 was correctly incorporated into L8S8 Rubisco in leaves of transgenic rice where Rubisco was present as a chimera of OsRbcS1 and other rice RbcS.

OsRbcS1 expression was detected in some tissues such as leaf sheath and culm of nontransgenic rice (Fig. 2). However, it was still uncertain that OsRbcS1 protein functioned as a small subunit in Rubisco of nontransgenic rice. To resolve this question, subunit composition of Rubisco expressed in leaf sheath of nontransgenic rice was also studied (Fig. 4). Although the expression of Rubisco containing OsRbcS1 would be dominant in the basal, pale-green part of leaf sheath, its expression level was presumed to be considerably low compared with Rubisco in green tissues. Therefore, the greener part of leaf sheath expressing OsRbcS1 as well as other rice RbcSs were used for the analysis to facilitate the excision of the Rubisco band from blue native-PAGE gel. The band of OsRbcS2 to OsRbcS5 was detected both in leaf blade and leaf sheath by immunoblotting, even though antibodies raised against OsRbcS1 were used for detection, suggesting that Rubisco in these tissues contained considerable amount of OsRbcS2 to OsRbcS5. By contrast, OsRbcS1 band could only be detected from Rubisco expressed in leaf sheath but not in leaf blade. These results indicate that OsRbcS1 is actually incorporated into Rubisco and functions as Rubisco small subunit in some tissues of rice.

The effects of overexpression of OsRbcS1 in green tissues on growth of transgenic rice plants were also examined. No remarkable differences in plant length, leaf number, and tiller number were observed between...
transgenic and nontransgenic rice plants, with the exception of a slight decrease in tiller number in a high expression line RS21, compared with nontransgenic rice (Supplemental Fig. S5). Also, panicle and shoot dry weight were significantly decreased only in RS21 compared with nontransgenic rice (Supplemental Fig. S6), possibly due to the decreased tiller number.

Catalytic Properties of Rubisco Containing OsRbcS1

Because the deduced amino acid sequence of OsRbcS1 was significantly different from those of other rice RbcSs (Supplemental Figs. S1 and S2), it was expected that the Rubisco containing OsRbcS1 may have altered catalytic properties. The k_{cat}s of Rubisco of transgenic lines RS32 and RS21 were 1.16- and 1.46-fold higher than that of nontransgenic rice (Fig. 5). K_m for CO$_2$ of Rubisco (K_c) in transgenic lines also tended to be higher than that of nontransgenic rice. Increase in k_{cat} and K_c of Rubisco observed in transgenic lines were largely correlated with the expression level of OsRbcS1. However, the extent of increase in K_c, particularly of RS21, a high expression line, was much larger than that in k_{cat} showing more than 3-fold higher K_c compared with nontransgenic rice. The CO$_2$/O$_2$ specificity of Rubisco (S_{co}/o) of transgenic line RS21 was lower than that of nontransgenic rice. These results indicate that the overexpression and the incorporation of OsRbcS1 into Rubisco shift its catalytic properties to a high-activity-type Rubisco with a higher k_{cat} and lower affinity for CO$_2$, as found in C$_4$ plants and cold-resistant plants (Sage, 2002; Ishikawa et al., 2009).

Photosynthesis and Leaf Constituents of Transgenic Rice

The CO$_2$ assimilation rate as a function of intercellular partial pressure of CO$_2$ inside leaf (C_i) was measured in two transgenic rice lines (Fig. 6A). The CO$_2$ assimilation rates in both transgenic lines were similar at ambient to higher CO$_2$ partial pressures, whereas they tended to be lower with decreasing C_i compared with that of nontransgenic rice. The initial slopes of the CO$_2$ assimilation rate/C_i curve, an indicator of Rubisco-limited photosynthetic capacity, were decreased in transgenic

74.1 ± 5.25 for RS32 and RS21, respectively. These values were significantly different from each other ($P < 0.01$). The total amount of RbcS in nontransgenic rice, RS32, and RS21 were 0.65, 0.68, and 0.74 μg, respectively. C, Analysis of Rubisco by blue native-PAGE. Total soluble proteins (2.0 μg protein) in leaf blade were separated by a 3% to 12% gradient gel and stained with Coomassie Brilliant Blue. D, SDS-PAGE and immunoblotting of Rubisco separated by blue native-PAGE. Rubisco bands from blue native-PAGE were excised from the gel and further separated by SDS-PAGE. Rubisco proteins were detected by Coomassie Brilliant Blue staining and immunoblotting with an antiserum raised against OsRbcS1. BN, Blue native; CBB, Coomassie Brilliant Blue; NT, nontransgenic rice. [See online article for color version of this figure.]

Figure 3. Overexpression of OsRbcS1 in green tissues of transgenic rice. A, Transgenic rice plants overexpressing OsRbcS1 grown in soil at 37 d after transplanting. B, Expression levels of OsRbcS1 analyzed by SDS-PAGE. Total soluble proteins (6.4 μg protein) in leaf blade were separated by SDS-PAGE and stained with Coomassie Brilliant Blue. Intensities of RbcS bands were quantified using the National Institutes of Health image program. The mean ratios of OsRbcS1 to total rice RbcS of five biological replicates (means ± se) were 33.6 ± 0.77 and
lines compared with nontransgenic rice (Fig. 6, B and C). By contrast, the CO₂ assimilation rate under high Cᵢ (approximately 60 Pa), in which photosynthetic rate would be largely limited by RuBP regeneration capacity, was unchanged (Fig. 6C). Using the data of CO₂ assimilation rate and kinetic properties of Rubisco, the maximum rate of RuBP carboxylation (V_cmax) and the maximum rate of photosynthetic electron transport (J_max) were estimated (Supplemental Fig. S7). Although the initial slopes of the CO₂ assimilation rate/Cᵢ curve were decreased, V_cmax in transgenic lines was substantially higher than that in nontransgenic rice. These results are likely due to significant changes in the kinetic properties of Rubisco to high-activity type in transgenic lines (Fig. 5). By contrast, consistent with the results of the CO₂ assimilation rate at higher CO₂ partial pressure, J_max did not differ among genotypes. Because the V_cmax was substantially increased, the J_max/V_cmax ratio was significantly decreased in transgenic lines, suggesting that the capacity of photosynthetic electron transport was insufficient to support the capacity of RuBP carboxylation enhanced by the introduction of OsRbcS1 in transgenic rice under higher CO₂ conditions.

The Rubisco content was increased by 13% to 21% in transgenic lines compared with nontransgenic rice, and its increase was dependent on the expression levels of OsRbcS1 (Fig. 7). With this increase in Rubisco content, the soluble protein content was marginally increased in transgenic lines. By contrast, the chlorophyll content was decreased in the high-expression line RS21. Although the contents of major leaf constituents such as Rubisco and chlorophyll varied, there were no significant differences in the leaf total nitrogen content between transgenic and nontransgenic rice.

The activation state of Rubisco in leaves was decreased in transgenic lines (Fig. 8). The decreases in Rubisco activation were more marked under high light intensity than under low light intensity and were largely correlated with the expression levels of OsRbcS1. As shown in Figure 3B, Rubisco in line RS21 was composed of more than 70% OsRbcS1. Considering the expression level of OsRbcS1 in leaves of transgenic lines, it is apparent that Rubisco containing OsRbcS1 can be activated by Rubisco activase expressed in photosynthetic tissues. Because the J_max/V_cmax ratio was significantly decreased in the transgenic lines (Supplemental Fig. S7), the observed lower Rubisco activation might be caused by the imbalance between the capacities of RuBP carboxylation and photosynthetic electron transport, as previously observed in transgenic rice overexpressing sorghum RbcS (Ishikawa et al., 2011).

DISCUSSION

In this study, we focused on OsRbcS1, the only member of five RbcS in rice that showed remarkably low deduced amino acid sequence identity with the other RbcS members of the gene family. This unique amino acid sequence raises the question whether OsRbcS1 could be correctly assembled with rice RbcL to form a functional Rubisco holoenzyme. We found that OsRbcS1 was targeted to the chloroplast and incorporated into L₅S₅ Rubisco in the leaf blade of transgenic rice.

![Figure 4. Subunit composition of Rubisco in nontransgenic rice.](image-url)
overexpressing OsRbcS1 (Figs. 2 and 3). Likewise, OsRbcS1 was present in Rubisco of nontransgenic rice in leaf sheath where OsRbcS1 expression level was relatively high (Fig. 4). These results clearly demonstrate that OsRbcS1 can function as the small subunit of Rubisco in rice.

In a previous study, sorghum RbcS expressed in rice was successfully assembled with rice RbcL to form functional Rubisco (Ishikawa et al., 2011). Also, functional incorporations of sunflower (Helianthus annuus) RbcL or Flaveria spp. RbcL with tobacco RbcS have been reported in transgenic tobacco (Sharwood et al., 2008; Whitney et al., 2011). Moreover, it has been reported that even more genetically distant combinations such as RbcL from cyanobacteria and algae could assemble with RbcS from vascular plants to form functional hybrid Rubisco (van der Vies et al., 1986; Wang et al., 2001; Genkov et al., 2010). These observations imply that a wide range of foreign RbcS can be processed during Rubisco assembly in nature. Additionally, most of the highly conserved amino acid residues among RbcS are present in OsRbcS1 (Supplemental Fig. S2). These may enable markedly different RbcS proteins, namely, OsRbcS1 and other rice RbcSs, to function in a plant.

Because the catalytic sites of Rubisco reside in RbcL, there is no doubt that RbcL plays a crucial role in the catalysis of the reaction. Consistent with this, the amino acid sequences of RbcL are highly homologous among photosynthetic organisms containing L_8S_8 Rubisco, whereas RbcS shows much more diversity than RbcL (Spreitzer, 2003). This implies that RbcS might be related to the natural variation of the catalytic properties of Rubisco observed among photosynthetic organisms. Recently, Ishikawa et al. (2011) showed that the introduction of RbcS of a high k_cat Rubisco from sorghum significantly increased the k_cat and K_c of rice Rubisco. Similarly, substantial effects on the catalytic properties of Rubisco were also observed when OsRbcS1 was incorporated into rice Rubisco in this study (Fig. 5). These results strongly support the hypothesis that RbcS can make a significant contribution to determining the catalytic performance of Rubisco. In the amino acid sequence of RbcS, the betaA-betaB loop is highly variable among species and has been suggested to be important for Rubisco catalytic function (Spreitzer, 2003). In this region, nine amino acid residues of OsRbcS1 differ from those of other rice RbcSs (Supplemental Fig. S2). Among these amino acid substitutions, two of the nine are common to sorghum RbcS. These are Val-49 and His-57 in OsRbcS2 to OsRbcS5 and Glu and Ser in OsRbcS1 and sorghum RbcS, respectively. Although functional significance has not yet been demonstrated, these amino acid substitutions may affect the catalytic properties of Rubisco observed in our transgenic lines.

Previous studies have reported that the overexpression of native or sorghum C_4 RbcS in transgenic rice did not affect photosynthetic CO_2 assimilation rate under any given CO_2 partial pressures (Suzuki et al., 2007; Ishikawa et al., 2011). Consistent with these observations, the CO_2 assimilation rate under ambient to higher CO_2 conditions did not differ from that of the nontransgenic control (Fig. 6).

![Figure 6](image_url)

Figure 6. Photosynthetic rate of transgenic rice overexpressing OsRbcS1. A, Dependence on C_i of photosynthetic CO_2 assimilation rate. The CO_2 assimilation rate of the uppermost fully expanded leaves at vegetative growth stage was measured at a PPFD of 1,500 \(\mu \text{mol} \text{ m}^{-2} \text{ s}^{-1} \), leaf temperature of 28˚C, and CO_2 partial pressures ranging from 4.5 to 88 Pa. B, Magnified figure of Figure 6A at low C_i. C, Initial slope of CO_2 assimilation rate as a function of C_i and CO_2 assimilation rate at C_i of approximately 60 Pa. The values were calculated by the data of Figure 6B. Data represent means ± SD of five biological replicates. Different letters above the bars indicate significant difference (P < 0.05) between lines determined by Tukey’s test. NT, Nontransgenic rice.
differ between OsRbcS1 overexpression lines and non-transgenic rice (Fig. 6). However, in this study, the overexpression of OsRbcS1 reduced the photosynthetic rate under low CO₂ conditions compared with non-transgenic rice (Fig. 6, B and C). These observations suggest that Rubisco catalysis under low CO₂ conditions is compromised in transgenic rice. Rubisco from these transgenic rice lines showed a higher \(K_c \) and slightly lower \(S_{c/o} \) than those in nontransgenic rice (Fig. 5). These catalytic properties would be expected to be disadvantageous for CO₂ fixation under low CO₂ conditions. Sorghum RbcS had similar effects on the kinetic properties and the expression level of Rubisco with OsRbcS1, whereas the effect of OsRbcS1 on \(K_c \) was larger than that of sorghum RbcS: \(K_c \) in transgenic rice that expresses sorghum RbcS was between 1.25- and 1.39-fold higher, while in rice expressing OsRbcS1, \(K_c \) was 1.54- to 3.27-fold higher than in nontransgenic rice (Fig. 5; Ishikawa et al., 2011). This large effect on \(K_c \) could be responsible for the decrease in photosynthetic rate seen here under low CO₂ conditions in OsRbcS1 overexpression lines.

It has been reported in many plant species that the expression of individual members of the RbcS gene family is differently regulated depending on organ, developmental stage, and environmental conditions such as light and temperature (Dean et al., 1989; Silverthorne and Tobin, 1990; Wanner and Gruissem, 1991; Dedonder et al., 1993; Peters and Silverthorne, 1995; Yoon et al., 2001). Given the high homology between the amino acid sequences of these gene family members, it is difficult to infer functional significance to this observation. In addition, the expression of RbcS is basically confined to photosynthetic tissues such as leaf. It has been assumed that plants contain multiple RbcS genes to achieve high-level expression and to modulate their expression level in response to various signals. In rice, the deduced amino acid sequence and the organ specificity of the expression of OsRbcS1 were substantially different from those of the other members of RbcS gene family (Fig. 2; Supplemental Figs. S1 and S2). Moreover, the incorporation of OsRbcS1 into Rubisco significantly altered the catalytic properties of the enzyme (Fig. 5). These results imply that rice utilizes functionally distinct RbcS isoforms to alter the catalytic properties of Rubisco depending on the tissues and the conditions in which they function. As described in “Results,” OsRbcS1-like genes are also present in plants other than rice. Detailed expression analyses of these genes will be of interest in understanding their functional significance.

Figure 7. Rubisco, soluble protein, chlorophyll, and nitrogen contents in leaves of transgenic rice overexpressing OsRbcS1. The uppermost fully expanded leaves were collected after the measurement of photosynthetic rate. Data represent means ± so of five biological replicates. Different letters above the bars indicate significant difference (\(P < 0.05 \)) between lines determined by Tukey’s test. NT, Nontransgenic rice.

Figure 8. The activation state of Rubisco in leaves of transgenic rice overexpressing OsRbcS1 under different light intensities. Rice leaves were collected under the irradiation of PPFD of 250 or 1,000 \(\mu \)mol m⁻² s⁻¹, leaf temperature of 28˚C, and CO₂ partial pressure of 38 Pa. The activation state of Rubisco was analyzed by measuring Rubisco activity. Data represent means ± so of five biological replicates. Different letters above the bars indicate significant difference (\(P < 0.05 \)) between lines determined by Tukey’s test. NT, Nontransgenic rice.
OsRbcS1 expresses and functions as the small subunit of Rubisco in leaf sheath of nontransgenic rice but not in leaf blade (Figs. 2 and 4). This observation raises the possibility that Rubisco containing OsRbcS1 did not evolve to function in normal C_4 photosynthetic CO_2 fixation. Rubisco has been reported to function in some metabolic pathways other than the Calvin cycle and in the fixation of CO_2 in particular tissues; for example, C_3-like photosynthesis can be operative in the cells around vascular bundles in stems and petioles of some C_3 species (Hibberd and Quick, 2002), and in developing seeds and siliques of some oil-producing plant species, Rubisco is considered to contribute significantly to the fixation of CO_2 released during oil biosynthesis (Ruuska et al., 2004). It was also proposed that Rubisco is involved in fatty acid biosynthesis to improve carbon use efficiency without operation of a full Calvin cycle in *Brassica napus* (Schwender et al., 2004). In these tissues, CO_2 concentrations would be higher than that in mesophyll cells when photosynthetic CO_2 fixation is operative. The kinetic properties of Rubisco containing OsRbcS1 could be more suitable for catalysis in these high CO_2 environments than those of Rubisco with other rice RbcSs.

In this study, we report the first demonstration of an RbcS encoded by *RbcS* gene family significantly altering catalytic properties of Rubisco. This unusual RbcS, designated OsRbcS1, increases k_{cat} and K_c to become a high-activity-type Rubisco similar to that found in photosynthetic organisms such as algae and C_4 plants whose Rubisco is adapted to function in high CO_2 environments. A catalytic “tradeoff” is often observed between k_{cat} and K_c (Ishikawa et al., 2009) or k_{cat} and S_c/ξ (Tcherkez et al., 2006). Hence, increasing k_{cat} is likely to lead to a decrease in the affinity and specificity for CO_2. However, considering the recent rapid rise in atmospheric CO_2 concentration, a high-activity-type Rubisco is expected to provide potential improvement of photosynthetic performance for C_3 plants in the future. In a previous study, we successfully increased the k_{cat} of rice Rubisco by the introduction of sorghum RbcS (Ishikawa et al., 2011). To enhance the k_{cat} of Rubisco, we propose that OsRbcS1 could be a much better candidate than sorghum RbcS, because native RbcS would be expected to be more amenable to biosynthesis, turnover, and activation of Rubisco holoenzyme in transgenic plants. However, the expected enhancement of photosynthetic rate was not achieved here by the overexpression of OsRbcS1 alone (Fig. 6). Makino et al. (1997) estimated that Rubisco content could be in excess at elevated CO_2, and it could be reduced to improve nitrogen use efficiency without compromising photosynthetic rate. A reduction of Rubisco content would allow a greater nitrogen investment in the other photosynthetic components. Therefore, engineering both the catalytic properties and the optimization of content of Rubisco will be required to improve photosynthesis and eventually agricultural productivity in C_3 plants. OsRbcS1 may not currently be an important gene for rice photosynthesis but may become more important for rice of the future.

MATERIALS AND METHODS

Plant Materials and Growth Conditions

Rice (*Oryza sativa* Nipponbare) plants were grown in soil under natural sunlight conditions in a temperature-controlled greenhouse at day and night temperatures of 30°C and 23°C, respectively, and relative humidity of 70%, as described previously (Fukayama et al., 2012). All samples for molecular and biochemical analyses were collected at 11 AM to 1 PM on sunny days, immediately frozen in liquid nitrogen, and stored at ~80°C until required.

Sequence Alignment and Phylogenetic Analysis

The information of amino acid sequences of Rbsc were obtained from the RAP-DB (http://rapdb.dna.afcric.go.jp), National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov), and the Surveyed Conserved Motif Alignment Diagram and the Associating Dendrogram (SALAD) database (http://salad.dna.afcric. go.jp/salad). The sequences were aligned using ClustalX software (http://www. clustal.org/cluster2) and imported into NJplot software (http://pbil.univ-louvain.fr/ software/njplot.html) to construct a phylogenetic tree. The tree was constructed using the neighbor-joining method.

Plasmid Construction and Transformation of Rice

All primers used for plasmid construction are listed in Supplemental Table S1. To construct promoter::GUS chimeric genes, 5′-flanking regions of *OsrRbcS1* (from –1,044 to +218, numbered from the translation initiation site) and *OsRbcS3* (from –1,000 to +67) were amplified from rice genomic DNA by PCR and inserted upstream of GUS in the binary vector pB4-Hm (a generous gift from Makoto Matsuoka [Nagoya University]). To construct the OsRbcS1::GFP fusion protein, the nucleotide sequence encoding the putative transit peptide of the OsRbcS1 (amino acid residues 1–50; Supplemental Fig. S1) was amplified from a first-strand complementary DNA (cDNA) of leaf sheath by PCR and cloned into a GFP expression vector (pCAMBIA1301-GFP) with a generous gift from Yassuo Niwa [University of Shizuoka]; Chua et al., 1996). For overexpression of OsRbcS1, a full-length cDNA of *OsRbcS1* was amplified from the first-strand cDNA by PCR and cloned into the binary vector pG121Hm (a generous gift from Kenzo Nakamura [Chubu University]) containing the rice chlorophyll a/b-binding protein promoter. Rice transformation was performed via *Agrobacterium tumefaciens*-mediated gene transfer. Antibiotic-resistant transgenic rice plants (T1 generation) were regenerated and grown in soil. Among these progeny (T2 generation), two homozygous transgenic lines, designated RS32 and RS31, showing a segregation ratio of around 1:3 were selected and used for subsequent experiments.

RT-PCR

Total RNA was extracted from rice tissues using the RNaseasy Plant Mini Kit (Qiagen). First-strand cDNA was synthesized using the PrimeScriptII First-Strand cDNA Synthesis Kit (Takara). Semiquantitative RT-PCR was performed using Quick Taq HS DyeMix (Toyobo) with 5% (v/v) dimethyl sulfoxide and the primers listed in Supplemental Table S1. The DNA polymerase was first activated at 94°C for 2 min, and PCR was carried out for 20 to 25 cycles of 30 s at 94°C, 30 s at 56°C to 62°C, and 30 to 50 s at 68°C, followed by a final extension step for 7 min at 68°C.

Promoter GUS and GFP Analysis

Histochemical analysis of GUS activity was performed as described in Matsuoka and Numazawa (1991). Plant tissues were incubated with GUS staining solution (50 mM sodium phosphate, 0.5 mM 5-bromo-4-chloro-3-indolyl-β-D-glucuronic acid, 0.5 mM K$_3$Fe(CN)$_6$, 0.5 mM K$_4$Fe(CN)$_6$, and 0.05% [v/v] Triton X-100, pH 7.0) for 5 to 8 h at 37°C. An ethanol wash was performed to stop the GUS reaction and remove chlorophyll from the tissues. The GFP expression vector was introduced into the epidermis of onion (*Allium cepa*) by particle bombardment using 1-μm gold particles and a gene delivery system (PDS-1000, Bio-Rad). As a positive control for plastid targeting, a vector containing a chimeric construct, AtRedA::DsRed2 (Imazumi-Axruka et al., 2005), was introduced together with the GFP expression vector. After incubation in darkness for 48 h at room temperature, the epidermis was peeled from the bombarded segment, and GFP and DsRed2 activity were observed with a
Electrophoresis and Immunoblotting

Total soluble proteins were extracted from rice tissues in extraction buffer containing 50 mM HEPES-KOH, 10 mM MgCl₂, 1 mM EDTA, 5 mM dithiothreitol (DTT), 0.01 mM leupeptin, 1 mM phenylmethylsulfonyl fluoride, 10% (w/v) glycerol, and 5% (w/v) polyvinylpyrrolidone, pH 7.4, with a small amount of quartz sand. For blue native-PAGE, 20 mM ascorbate, 4 mM aminoterp-carponic acid, and 0.8 mM benzamidine were added to the extraction buffer. The homogenates were centrifuged at 15,000 rpm for 5 min at 4°C. SDS-PAGE (14%) was performed as described previously (Masumoto et al., 2010). Blue native-PAGE was carried out using a precast gradient gel (NATIVEPAGE Novex 3%–12% Bis-Tris Gel, Life Technologies) according to the manufacturer’s instructions. Rubisco bands of blue native-PAGE were excised from the gel and incubated in equilibrium buffer containing 62.5 mM Tris-HCl, 2% (w/v) DTT, 1% (w/v) SDS, and 6 mM urea (pH 6.8). Proteins in the gels were further separated by SDS-PAGE. The gels were stained with Coomassie Brilliant Blue R-250 or subjected to immunoblotting using an antisera raised against OsRbcS1. Immunoreacted bands were visualized with the ECL Advance Western Blotting Detection Kit (GE Healthcare) and exposed to x-ray film.

Rubisco Activity

For measurement of total activity of Rubisco, leaves were homogenized in extraction buffer containing 100 mM NaHCO₃, 5 mM MgCl₂, 1 mM EDTA, 2 mM NaH₂PO₄, 5 mM DTT, 4 mM amino-n-capronic acid, 0.8 mM benzamidine, 0.4% (w/v) bovine serum albumin, and 1% (w/v) polyvinylpyrrolidone, pH 8.0, using a chilled mortar and pestle. The homogenates were centrifuged at 12,000 rpm for 2 min at 4°C. The supernatants were used for determination of Rubisco activity and catalytic sites. Rubisco in the supernatant was activated by a Hanes-Woolf plot as described in Ishikawa et al. (2011). For measurement of Rubisco activity and catalytic sites, Rubisco in the supernatant was activated by adding 100 mM bicine-NaOH, 20 mM MgCl₂, 1 mM EDTA, and 5 mM DTT, pH 8.2) containing 0.5 mM RuBP, 40 Wilbur-Anderson units mL⁻¹ carbonic anhydrase, and 1 to 20 mM NaHCO₃. After 1 min, formic acid was added to stop the reaction. The kcat and Kcat of Rubisco were determined and calculated by the Hanes-Wool plot as described in Ishikawa et al. (2011). For measurement of initial activity of Rubisco, leaves were ground to a fine powder in liquid nitrogen using a mortar and pestle. The leaf powder was suspended in extraction buffer containing 0.5 mM RuBP, 4.0 Wilbur-Anderson units mL⁻¹ carbonic anhydrase, 100 mM bicine-NaOH, 20 mM MgCl₂, 1 mM EDTA, and 5 mM DTT, pH 7.4. After brief centrifugation, the supernatant was used for determination of Rubisco activity and catalytic sites. All reactions were performed at 25°C. The activation state of Rubisco was calculated as the ratio of initial activity to total activity.

Photosynthetic Rate

CO₂ gas exchange rates of the uppermost fully expanded leaves of the main culm were measured with an open gas-exchange system (LI-6400, LI-COR). Measurements were performed at a photosynthetic photon flux density (PPFD) of 1,500 mol m⁻² s⁻¹, a leaf temperature of 28°C, and ambient CO₂ partial pressures ranging from 4.5 to 88 Pa. Sₚₑ₀ was determined by measurement of CO₂ compensation points under different O₂ partial pressures ranging from 2% to 20% (Laish and Loreto, 1996).

Rubisco, Soluble Protein, Chlorophyll, and Nitrogen

Leaves were homogenized in extraction buffer containing 50 mM HEPES-KOH, 5 mM MgCl₂, 1 mM EDTA, 5 mM DTT, 4 mM aminoterp-carponic acid, 0.8 mM benzamidine, 5% (w/v) glycerol, 0.05% (v/v) Triton X-100, and 0.1% (w/v) polyvinylpyrrolidone, pH 7.5, using a chilled mortar and pestle. The homogenate was centrifuged at 15,000 rpm for 5 min at 4°C, and the supernatant was used for determination of Rubisco and total soluble protein. Rubisco was determined by assuming the stoichiometric binding of [14C]carbonic anhydrase, as described in Ishikawa et al. (2011). The initial activity of Rubisco, leaves were ground to a fine powder in liquid nitrogen using a mortar and pestle. The leaf powder was suspended in extraction buffer containing 50 mM HEPES-KOH, 100 mM bicine-NaOH, 1 mM EDTA, and 5 mM DTT, pH 7.4. After brief centrifugation, the supernatant was used for determination of Rubisco activity and catalytic sites. All reactions were performed at 28°C. The activation state of Rubisco was calculated as the ratio of initial activity to total activity.

ACKNOWLEDGMENTS

We thank Dr. Makoto Matsuoka (Nagoya University), Dr. Yasuo Niwa (University of Shizuoka), and Dr. Haruko Imaizumi-Anraku (National Institute of Agrobiological Sciences) for generous gifts of binary vector, GFP expression vector, and AtrecA:DsRed2 vector, respectively. Received September 6, 2013; accepted November 16, 2013; published November 19, 2013.

LITERATURE CITED

