Why is White Light Better?

q_M - is the fluorescence change caused primarily by chloroplast migration. Chloroplast migration is a light avoidance mechanism that occurs at high actinic light levels, found in nature.

q_M only occurs under intense white light and under intense blue light. Intense red light has little effect. Furthermore, q_M causes leaf absorbance to change.

The iFL measures leaf absorbance. (See Above)

q_M can affect reliable measurements of $Y(II)$, ETR, J, NPQ, q_M, C_C, A/Q curves and A/C_C curves at high light levels.

Reference:

Opti-Sciences uses a stable white light actinic light source with an intense blue spectrum in the iFL, the OS5p+, and the OS5p+ chlorophyll fluorometers.

The OS5p+ measures q_E, q_M, q_I, q_T, & q_Z.

Includes:
The Loriaux 2013 F_M^0 correction protocol
Kramer lake model quenching protocol
Hendrickson lake model quenching protocol
Puddle model quenching protocol
Strasser OJIP protocol
Vredenberg OJIP quenching protocol
Rapid light curves with curve fitting
F_V/F_M & F_V/F_O, $Y(II)$, ETR

q_M represents about 30% of fluorescence non-photochemical quenching or NPQ.

q_M only occurs under intense white light and under intense blue light. Intense red light has little effect. Furthermore, q_M causes leaf absorbance to change. q_M can affect reliable measurements of $Y(II)$, ETR, J, NPQ, q_M, C_C, A/Q curves and A/C_C curves at high light levels. A/Q curves and A/C_C curves at high light levels.

Authors interested in contributing should indicate this in the cover letter when submitting papers online at http://submit.plantphysiol.org/. Please select “Plant Roots (October 2014)” from the Focus Issue list in the online submission system. Articles published in Plant Physiology on this topic within 2 years before and after the Focus Issue publication date will be collected in an online Focus Collection on Plant Roots.

Please contact Niko Geldner (niko.geldner@unil.ch) or David Salt (david.salt@abdn.ac.uk) for additional information.
“Teaching Tools in Plant Biology was created to address the stress and pressure of busy educators when they develop course material. Each Tool is developed to make the research as current as possible while giving educators the flexibility to make it work for their students—a kind of living text.”

Mary Williams
Features Editor, The Plant Cell

Teaching Tools in Plant Biology combines up-to-date peer-reviewed research-based content with flexible presentation components that can be used alone or integrated into your lesson plans so that you can confidently present these exciting topics in your classroom. Each tool includes a short essay introducing each topic, PowerPoint slides, and suggested readings.

Teaching Tools is available free with a subscription to The Plant Cell and also on a per-Tool basis for $50.

Teaching Tools in Plant Biology is an editorial innovation from The Plant Cell, one of the most trusted names in plant biology.

PowerPoint slides • Lecture notes • Customizable
Peer reviewed • Current and up-to-date

www.teachingtoolsinplantbiology.org

American Society of Plant Biologists
“Game Changing” Research

Why is White Light Better?

q_m - is the fluorescence change caused primarily by chloroplast migration. Chloroplast migration is a light avoidance mechanism that occurs at high actinic light levels, found in nature.

q_m only occurs under intense white light and under intense blue light. Intense red light has little affect. Furthermore, q_m causes leaf absorptance to change.

The iFL measures leaf absorptance. (See Above)

q_m can affect reliable measurements of Y(II), ETR, J, NPQ, q_m, q_C, A/C_C curves at high light levels, A/Q curves and A/C curves at high light levels.

Reference:

Opti-Sciences uses a stable white light actinic light source with an intense blue spectrum in the iFL, the $OS1p$, and the $OS5p+$ chlorophyll fluorometers.

The $OS5p+$ measures q_E, q_M, q_I, q_T, & q_Z.

Includes:
- The Loriaux 2013 F_{m}' correction protocol
- Kramer lake model quenching protocol
- Hendrickson lake model quenching protocol
- Puddle model quenching protocol
- Strasser OJIP protocol
- Vredenberg OJIP quenching protocol
- Rapid light curves with curve fitting
- F_v/F_m & F_v/F_o Y(II), ETR

q_m represents about 30% of fluorescence non-photochemical quenching or NPQ.

q_m only occurs under intense white light and under intense blue light. Intense red light has little affect. Furthermore, q_m causes leaf absorptance to change.

The iFL measures leaf absorptance. (See Above)

q_m can affect reliable measurements of Y(II), ETR, J, NPQ, q_m, q_C, A/C_C curves at high light levels, A/Q curves and A/C curves at high light levels.

Reference:

Opti-Sciences uses a stable white light actinic light source with an intense blue spectrum in the iFL, the $OS1p$, and the $OS5p+$ chlorophyll fluorometers.

The $OS5p+$ measures q_E, q_M, q_I, q_T, & q_Z.

Includes:
- The Loriaux 2013 F_{m}' correction protocol
- Kramer lake model quenching protocol
- Hendrickson lake model quenching protocol
- Puddle model quenching protocol
- Strasser OJIP protocol
- Vredenberg OJIP quenching protocol
- Rapid light curves with curve fitting
- F_v/F_m & F_v/F_o Y(II), ETR

q_m represents about 30% of fluorescence non-photochemical quenching or NPQ.

q_m only occurs under intense white light and under intense blue light. Intense red light has little affect. Furthermore, q_m causes leaf absorptance to change.

The iFL measures leaf absorptance. (See Above)

q_m can affect reliable measurements of Y(II), ETR, J, NPQ, q_m, q_C, A/C_C curves at high light levels, A/Q curves and A/C curves at high light levels.

Reference:
SYMPOSIUM I: Plant Responses to Abiotic Stress
Presenting new insights regarding a broad range of abiotic stresses that impact plants that have resulted from employing a variety of experimental approaches used in both laboratory and field settings.
Organizer: Michael Thomashow
Speakers: Mike Thomashow, Don Ort, Steve Howell, and Mary Lou Guerinot

SYMPOSIUM II: CSPB President’s Symposium – Synthetic Biology of Specialized Metabolism
Highlighting advances in probing the immense diversity of plant specialized metabolism made possible by high throughput sequencing of medicinal plant species combined with bioinformatic tools and other approaches to identify unknown candidate genes involved in the biosynthesis of different classes of major plant natural products.
Organizer (Canadian Society of Plant Biology): Vince De Luca
Speakers: Sarah O'Connor, Barbara Halkier, Vincent Martin, and Boo Kyeon Ro

Bringing together some of the most influential individuals and creative thinkers across the societal spectrum to discuss aspects of ensuring food security that are not readily identified by plant scientists.
Organizer: ASPB’s journals – Plant Physiology and The Plant Cell
Speakers: Tim Benton, Mark Tester, Pamela Ronald, and Philip Pardey and Derek Yach

SYMPOSIUM IV: Plant Signaling
Highlighting the latest advances in multifaceted plant signaling pathways encompassing novel mechanisms orchestrating energy, peptide and hormonal signaling that govern cellular bioenergetics, stem cell homeostasis, vascular differentiation, and cell-cell communication.
Organizer (Gibbs Medal Awardee): Jen Sheen, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
Speakers: Jen Sheen, Thomas Laurin, Hiroo Fukuda, and Ykä Helariutta

SYMPOSIUM V: ASPB President’s Symposium – Firsts in Plant Science
Celebrating discoveries in plant biology that were the first instance of the identity and elucidation of a principle that is relevant to all eukaryotes and often pointed to some paramount issue in human disease.
Organizer: Alan Jones
Speakers: David Baulcombe, Julie Law, Magnus Nordborg, and Pamela Ronald

Early Bird Registration is Now Available
OREGON2014.ASPB.ORG