Filamentous plant pathogens such as the late blight pathogen *Phytophthora infestans* form digit-like infection structures called haustoria inside plant cells. Haustoria enable the pathogen to feed on its host, and secrete effector proteins that modulate the physiology of the host cell to facilitate infection. Haustoria are enveloped by a specialized plant-derived membrane (the extrahaustorial membrane) the biogenesis of which is poorly understood. In this issue, Bozkurt et al. (pp 1005–1018) used the plant membrane microdomain protein REMORIN1.3, known to accumulate around *P. infestans* haustoria, to reveal discrete extrahaustorial domains labeled by REMORIN1.3 and *P. infestans* effector AVRblb2. SYNAPTOTAGMIN1, another previously identified perihaustraional protein, localized to subdomains which are mainly not labeled by REMORIN1.3 and AVRblb2. Functional characterization of REMORIN1.3 revealed that it is a susceptibility factor that promotes infection by *P. infestans*. This activity, and REMORIN1.3 recruitment to the EHM, require REM1.3 membrane-binding domain. These results implicate REMORIN1.3 membrane microdomains in plant susceptibility to an oomycete pathogen. The cover shows *Nicotiana benthamiana* epidermal cells expressing fluorescently labeled REMORIN1.3 (blue) infected by *P. infestans* expressing the red fluorescent protein (red). Cover image credits: Sylvain Raffaele.
Cytochrome P450 93G1 Is a Flavone Synthase II That Channels Flavanones to the Biosynthesis of Tricin O-Linked Conjugates in Rice. Pui Ying Lam, Fu-Yuan Zhu, Wai Lung Chan, Hongjia Liu, and Clive Lo

The rice cytochrome P450 enzyme CYP93G1 is a phylogenetically unique flavone synthase II that converts flavanones directly to flavones, a key branch point reaction leading to the production of tricin O-linked glycosides and flavanolignans.

CELL BIOLOGY

A fasciclin-like arabinogalactan protein mediates Arabidopsis seed coat mucilage adherence primarily through its influence on pectin.

The Plant Membrane-Associated REMORIN1.3 Accumulates in Discrete Perihaustorial Domains and Enhances Susceptibility to Phytophthora infestans. Tolga O. Bozkurt, Annis Richardson, Yasin F. Dagdas, Sébastien Mongrand, Sophien Kamoun, and Sylvain Raffaele

The plant protein remorin is localized to discrete perihaustorial domains and is recruited as a susceptibility factor enhancing host colonization by the late blight oomycete pathogen.

Endosidin 7 Specifically Arrests Late Cytokinesis and Inhibits Callose Biosynthesis, Revealing Distinct Trafficking Events during Cell Plate Maturation. Eunsook Park, Sara M. Díaz-Moreno, Destiny J. Davis, Thomas E. Wilkop, Vincent Bulone, and Georgia Drakakaki

Fluorescent protein markers and a newly discovered specific inhibitor of callose synthesis identify discrete trafficking events during late cytokinesis.

An Arabidopsis trafficking protein complex is required in the scission of internal vesicles and membrane cargo degradation from both secretory and endocytic pathways.

GENES, DEVELOPMENT, AND EVOLUTION

CYTOKININ OXIDASE/DEHYDROGENASE4 Integrates Cytokinin and Auxin Signaling to Control Rice Crown Root Formation. Shaopei Gao, Jun Fang, Fan Xu, Wei Wang, Xiaohong Sun, Jinfang Chu, Baodong Cai, Yuqi Feng, and Chengai Chu

A rice cytokinin oxidase/dehydrogenase gene promotes crown root formation and growth by mediating the interaction between cytokinin and auxin and is a potential target for the manipulation of rice root architecture.

Uncovering Divergence of Rice Exon Junction Complex Core Heterodimer Gene Duplication Reveals Their Essential Role in Growth, Development, and Reproduction. Pichang Gong and Chaoying He

Divergence of junction complex genes in rice implicates their importance in cereal growth, development, reproduction, and adaptive evolution.

Genome-wide gene expression analyses in strawberry flowers identified key regulatory genes of the developing receptacle and anthers.

Evolution of the Phosphoenolpyruvate Carboxylase Protein Kinase Family in C3 and C4 Flaveria spp. Sophia H. Aldous, Sean E. Weise, Thomas D. Sharkey, Daniel M. Waldera-Lupa, Kai Stühler, Julia Mallmann, Georg Groth, Udo Gowik, Peter Westhoff, and Borjana Arsova

Parallel evolution of two functionally linked gene families has resulted in diel regulatory characteristics in the phosphorylation of PEPC that differs between Flaveria spp. with C3 and C4 photosynthetic types.

Disruption of multiple auxin-input pathways reveals developmental roles for these auxin forms and a feedback loop necessary for maintaining optimal free hormone levels.

The Emerging Role of ROS Signaling during Lateral Root Development. Concepción Manzano, Mercedes Pallero-Baena, Ilda Casimiro, Bert De Rybel, Beata Orman-Ligeza, Gert Van Isterdael, Tom Beeckman, Xavier Draye Pedro Casero, and Juan C. del Pozo

ROS signaling is crucial for lateral root emergence and root growth, and it regulates distinct sets of genes in these processes.

Genome-Wide Association in Tomato Reveals 44 Candidate Loci for Fruit Metabolic Traits. Christopher Sauvage, Vincent Segura, Guillaume Bauchet, Rebecca Stevens, Phúc Thi Do, Zoran Nikoloski, Alisdair R. Fernie, and Mathilde Causse

Genome-wide association sheds light on the genetic architecture of metabolic traits underlying fruit quality in tomato.

Ribosomal Protein RPL27a Promotes Female Gametophyte Development in a Dose-Dependent Manner. Agustin Zsógor, Dóra Szakonyi, Xiuling Shi, and Mary E. Byrne

The dose of a ribosomal protein affects the level of plant fertility.

MEMBRANES, TRANSPORT, AND BIOENERGETICS

Galactolipids play an important role in plant salt tolerance through maintaining chloroplast structure and function.

Suppression of Photosynthetic Gene Expression in Roots Is Required for Sustained Root Growth under Phosphate Deficiency. Jun Kang, Haopeng Yu, Caihuan Tian, Wenkun Zhou, Chunyou Li, Yuling Jiao, and Dong Liu

Plastidial Expression of Type II NAD(P)H Dehydrogenase Increases the Reducing State of Plastoquinones and Hydrogen Photoproduction Rate by the Indirect Pathway in Chlamydomonas reinhardtii. Anthony Baltz, Kieu-Van Dang, Audrey Beyly, Pascaline Auroy, Pierre Richaud, Laurent Cournac, and Gilles Peltier

Nonphotochemical reduction of plastoquinones is the limiting step of hydrogen production by the indirect pathway in Chlamydomonas.

SIGNALING AND RESPONSE

Phosphoproteomic Analyses Reveal Early Signaling Events in the Osmotic Stress Response. Kelly E. Stecker, Benjamin B. Minkoff, and Michael R. Sussman

Rapid changes in protein phosphorylation across abiotic stress, hormone, and pathogen treatments reveal proteins undergoing phosphorylation in response to dehydration.

The Arabidopsis NUCLEUS- AND PHRAGMoplast-LOCALIZED KINASE1-Related Protein Kinases Are Required for Elicitor-Induced Oxidative Burst and Immunity. Daniel Valentin Savatin, Nora Gigli Bisceglia, Lucia Marti, Claudia Fabbri, Felice Cervone, and Giulia De Lorenzo

An Arabidopsis mitogen-activated protein triple kinase subfamily is required for elicitor-triggered immunity and reactive oxygen species (ROS) generation, as well as for response to ROS, but is not required for elicitor/auxin antagonism.

An Arabidopsis zinc finger protein acts as a negative regulator of ABA-suppressed seed germination and modulates plant development, fertility, and hypocotyl elongation under red light.

Strigolactone Hormones and Their Stereoisomers Signal through Two Related Receptor Proteins to Induce Different Physiological Responses in Arabidopsis. Adrian Scaffidi, Mark T. Waters, Yueming K. Sun, Brian W. Skelton, Kingsley W. Dixon, Emilio L. Ghisalberti, Gavin R. Flematti, and Steven M. Smith

Strigolactone hormones signal through a specific receptor to induce particular responses in Arabidopsis, whereas their stereoisomers induce different responses by signaling through a closely related receptor that also perceives karrikins from wildfires.

A Functional Antagonistic Relationship between Auxin and Mitochondrial Retrograde Signaling Regulates Alternative Oxidase1 Expression in Arabidopsis. Aneta Ivanova, Simon R. Law, Reena Narsai, Owen Duncan, Jae-Hoon Lee, Botao Zhang, Olivier Van Aken, Jordan D. Radomiljac, Margaretta van der Merwe, KeKe Yi, and James Whelan

The induction of mitochondrial stress response is antagonized by auxin signaling revealing regulation of mitochondrial respiratory pathway gene expression by auxin.

The Putative E3 Ubiquitin Ligase ECERIFERUM9 Regulates Abscisic Acid Biosynthesis and Response during Seed Germination and Postgermination Growth in Arabidopsis. Huayan Zhao, Huoming Zhang, Peng Cui, Feng Ding, Guangchao Wang, Rongjun Li, Matthew A. Jenks, Shiyou Liu, and Liming Xiong

A wax locus negatively regulates ABA response within a small time window during seed germination and also affects ABA levels in seeds.
Enhanced Disease Susceptibility Mediates Pathogen Resistance and Virulence Function of a Bacterial Effector in Soybean.
Jialin Wang, M.B. Shine, Qing-Ming Gao, Duroy Navarre, Wei Jiang, Chunyan Liu, Qingshan Chen, Guohua Hu, and Aardra Kachroo

A single gene product mediates in the virulence activity of a bacterial effector.

Cotyledon-Generated Auxin Is Required for Shade-Induced Hypocotyl Growth in Brassica rapa.
Carl Procko, Charisse Michelle Crenshaw, Karin Ljung, Joseph Patrick Noel, and Joanne Chory

Shade light perceived in cotyledons induces de novo auxin biosynthesis and transport to hypocotyl cells leading to their elongation.

Temporal Dynamics of Growth and Photosynthesis Suppression in Response to Jasmonate Signaling.
Elham Attaran, Ian T. Major, Jeffrey A. Cruz, Bruce A. Rosa, Abraham J.K. Koo, Jin Chen, David M. Kramer, Sheng Yang He, and Gregg A. Howe

A combination of real-time fluorescence imaging and high-temporal-resolution RNA sequencing reveals dynamic changes in growth, photosynthesis, and associated global gene expression during jasmonate signaling.

The Ethylene Receptors ETHYLENE RESPONSE1 and ETHYLENE RESPONSE2 Have Contrasting Roles in Seed Germination of Arabidopsis during Salt Stress.
Rebecca L. Wilson, Heejung Kim, Arkadipta Bakshi, and Brad M. Binder

Specific ethylene receptors have antagonistic roles in seed germination that are mediated by abscisic acid.

The Cysteine2/Histidine2-Type Transcription Factor ZINC FINGER OF ARABIDOPSIS THALIANA6 Modulates Biotic and Abiotic Stress Responses by Activating Salicylic Acid-Related Genes and C-REPEAT-BINDING FACTOR Genes in Arabidopsis.
Haitao Shi, Xin Wang, Tiantian Ye, Fangfang Chen, Jiao Deng, Pingfang Yang, Yansheng Zhang, and Zhulong Chan

An Arabidopsis C4H2-type zinc finger protein increases both biotic and abiotic stress resistances through gene activation, including salicylic acid-related genes.

SYSTEMS AND SYNTHETIC BIOLOGY

Bottom-up Metabolic Reconstruction of Arabidopsis and Its Application to Determining the Metabolic Costs of Enzyme Production.
Anne Arnold and Zoran Nikoloski

A large-scale metabolic model of Arabidopsis with three condition-specific biomass compositions is assembled in a bottom-up fashion to estimate the enzyme costs of Rubisco.

CORRECTION

A Limited Role for Carbonic Anhydrase in C4 Photosynthesis as Revealed by a ca1ca2 Double Mutant in Maize.

Some figures in this article are displayed in color online but in black and white in the print edition.
The online version of this article contains Web-only data.
Articles can be viewed online without a subscription.