Floral Transcriptomes in Woodland Strawberry Uncover Developing Receptacle and Anther Gene Networks

Courtney A. Hollender1,2,3, Chunying Kang2, Omar Darwish, Aviva Geretz, Benjamin F. Matthews, Janet Slovin, Nadim Alkharouf, and Zhongchi Liu*

Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20817 (C.A.H., C.K., A.G., Z.L.); Department of Computer and Information Sciences, Towson University, Towson, Maryland 21252 (O.D., N.A.); and Soybean Genomics and Improvement (B.F.M.), and Genetic Improvement of Fruits and Vegetables (J.S.), United States Department of Agriculture-Agricultural Research Service, Beltsville, Maryland 20705

ORCID IDs: 0000-0002-6902-740X (C.K.); 0000-0001-9969-9381 (Z.L.).

Flowers are reproductive organs and precursors to fruits and seeds. While the basic tenets of the ABCE model of flower development are conserved in angiosperms, different flowering plants exhibit different and sometimes unique characteristics. A distinct feature of strawberry (Fragaria spp.) flowers is the development of several hundreds of individual apocarpous (unfused) carpels. These individual carpels are arranged in a spiral pattern on the subtending stem tip, the receptacle. Therefore, the receptacle is an integral part of the strawberry flower and is of significant agronomic importance, being the precursor to strawberry fruit. Taking advantage of next-generation sequencing and laser capture microdissection, we generated different tissue- and stage-transcriptomic profiling of woodland strawberry (Fragaria vesca) flower development. Using pairwise comparisons and weighted gene coexpression network analysis, we identified modules of coexpressed genes and hub genes of tissue-specific networks. Of particular importance is the discovery of a developing receptacle-specific module exhibiting similar molecular features to those of young floral meristems. The strawberry homologs of a number of meristem regulators, including LOST MERISTEM and WUSCHEL, are identified as hub genes operating in the developing receptacle network. Furthermore, almost 25% of the F-box genes in the genome are transiently induced in developing anthers at the meiosis stage, indicating active protein degradation. Together, this work provides important insights into the molecular networks underlying strawberry’s unique reproductive developmental processes. This extensive floral transcriptome data set is publicly available and can be readily queried at the project Web site, serving as an important genomic resource for the plant biology research community.

Flowers are reproductive organs and precursors to fruits and seeds. Past work in model systems, mainly Arabidopsis (Arabidopsis thaliana) and Antirrhinum majus, led to the formulation of the ABCE model of flower development (Coen and Meyerowitz, 1991; Krizek and Fletcher, 2005). Although the essential tenets of the ABCE model for flower development are conserved in angiosperms, each family of flowering plants can exhibit different and sometimes unique characteristics. In Fragaria vesca, a diploid wild strawberry (also called woodland strawberry), flowers differ from those of Arabidopsis in several aspects (Hollender et al., 2012). The most striking distinction is the formation of several hundreds of independent carpels arranged in a spiral pattern on an enlarged stem tip, the receptacle. These carpels are apocarpous, meaning they do not fuse with one another. Molecular communication from the fertilized carpels to the subtending receptacle triggers the receptacle growth into the edible flesh fruit (Nitsch, 1950; Kang et al., 2013). Therefore, flower development in strawberry is intimately tied to strawberry (Fragaria spp.) fruit development.

As part of developing F. vesca into a model plant for the Rosaceae family (Shulaev et al., 2011), we previously described in detail the morphological and developmental progression of F. vesca flower development (Hollender et al., 2012), dividing flower development from stage 1, floral primordial initiation, to stage 12, the completion of flower development. That work laid the foundation for this article in detailing transcriptomes of various floral tissues at different stages. Tissue- and stage-specific transcriptomes enable in-depth molecular studies of...
flower development and have a wide applicability across the economically important members of the Rosaceae family, including cultivated strawberry (Fragaria ananassa), apple (Malus domestica), peach (Prunus persica), raspberry (Rubus idaeus), and rose (Rosa spp.).

Taking advantage of next-generation sequencing and laser capture microdissection (LCM), two-dimensional (tissue and stage) transcriptome data for flower development in F. vesca were generated. Using K-means clustering and weighted gene coexpression network analysis (WGCNA), tissue- and stage-specific gene clusters and network modules are identified. A number of key meristem regulatory genes, including LOST MERISTEM (FveLOM) and WUSCHEL (FveWUS), are identified as hub genes operating in the developing receptacle network. In addition, we found a transient surge of transcript levels of a large number of F-box (FBX) genes in anthers of stage 9 flowers, at which stage microspore mother cells are undergoing meiosis (Hollender et al., 2012). Network analysis of the anther module at meiosis stage identified highly connected hub genes that are homologous to genes with roles in protein degradation. Finally, transcripts of putative F. vesca ABCE floral homeotic genes are shown to accumulate in expected floral organs, suggesting conserved functions of the ABCE genes. Together, the genome-scale gene expression profiling described here places the foundation for further biochemical and functional analysis of strawberry flower development. The data are publicly available and can be readily queried at the project Web site Strawberry Genome Resources (http://bioinformatics.towson.edu/Strawberry; Darwish et al., 2013).

RESULTS

Global Analysis of RNA-Seq Data

RNA sequencing (RNA-seq) data were generated from 15 different floral samples at different developmental stages (Fig. 1A; Supplemental Fig. S1, A and B). Stages 1 to 7 floral samples were isolated by LCM (Supplemental Fig. S1B; “Materials and Methods”), while stages 7 to 12 floral samples were isolated by hand dissection (HD) under a microscope. Microspores from stage 10 flowers were also isolated by LCM (Supplemental Fig. S1B). All samples are named tissue stage, where the stage refers to the flower developmental stage defined in Hollender et al., 2012. For LCM-isolated samples, the average number of raw reads per library was about 27 million (Supplemental Data S1). Thirty percent to 40% of these raw reads mapped to the coding sequence (CDS), while 50% to 66% of these raw reads mapped to the gene (200 bp upstream + exons + introns + 200 bp downstream). Because LCM-derived sample preparation utilized a strategy other than polyA selection to capture nonribosomal RNAs (see “Materials and Methods”), the higher percentage of mapped reads to the gene than to CDS may reflect noncoding RNAs from introns, 5′...
untranslated region or 3’ untranslated region. For HD-isolated samples, the average number of raw reads per library was 31 million (Supplemental Data S1). Sixty-one percent to 72% of these raw reads mapped to CDS, while slightly higher percentages (71% to 76%) mapped to the gene. Mapped reads against CDS were used in all subsequent analyses.

Normalized read counts (reads per kilobase of transcript per million [RPKM]) for each gene were calculated, and genes with RPKM lower than 0.5 were considered not expressed (Kang et al., 2013). The F. vesca genome was predicted to have 34,809 genes (Shulaev et al., 2011), and 34,527 genes were found to be expressed in all floral tissues combined (Supplemental Data S1). Pollen has the least number of expressed genes, at 11,548 (Fig. 1B; Supplemental Data S1). Surprisingly, LCM samples have more expressed genes than HD samples by about 10,000, yet LCM samples have more genes expressed at a low level (1 to 10 RPKM; Fig. 1B). Two factors may have contributed to this difference. First, LCM-derived RNAs were processed differently, including a nonribosomal RNA capture step and a complementary DNA (cDNA) amplification step (see “Materials and Methods”). This may result in detection of genes expressed at levels not detectable by standard RNA-seq method used for preparing HD samples. Second, LCM samples are mostly younger tissues with more complex transcriptomes. To distinguish these two possibilities, we isolated stage 10 carpels using HD as well as LCM. The carpel_10 HD sample was processed as other HD samples, while the carpel_10 LCM sample was processed as other LCM samples. The carpel_10 LCM sample showed about 10,000 more expressed genes than the carpel_10 HD sample (Fig. 1B; Supplemental Data S1), indicating that the difference in the number of expressed genes is due to tissue isolation and RNA processing methods.

The overall relatedness of transcriptomes of different tissues was shown by the cluster dendrogram done for the HD and LCM samples. For HD samples (Fig. 1C), the two biological replicates (A and B) show good correlation, and mature pollen transcriptome is closely related to that of stage 12 anthers, which contain mature pollen. For the most part, different stage anthers are similar to each other and different stage carpels are similar to each other, except that the mature carpel (stage 12) transcriptome is more similar to that of the leaf. For LCM samples (Fig. 1D), stages 6 to 7 receptor and stages 1 to 4 flowers cluster closely to each other, supporting similar molecular networks. Biological replicates of LCM samples are not as closely paired as the HD replicates. The laser capture from sections of a smaller number of flowers may result in higher variability between biological replicates.

Identification of Gametophyte and Sporophyte Genes

Pairwise comparisons were made with either DESeq or Baggerley’s test in CLC Genomics Workbench (CLC; Supplemental Fig. S1A; Supplemental Data S2). For the four LCM samples, the transcriptomes of stages 5 to 6 perianth, stages 6 to 7 anthers, and stages 6 to 7 receptacles were respectively compared with that of stages 1 to 4 flowers using the Baggerley’s test in CLC. For the HD carpels, each carpel stage is compared with its immediate earlier stage using DESeq. Likewise, the transcriptomes of HD anthers were compared between successive stages using DESeq. Up- or down-regulated genes with 2-fold cutoff were identified for each pairwise comparison (Supplemental Data S2). The numbers of overlapping up- or down-regulated genes between each comparison for LCM samples (Supplemental Fig. S2A), HD carpels (Supplemental Fig. S2B), and HD anthers (Supplemental Fig. S2C) are shown by the Venn diagram. Few up- or down-regulated genes are shared among the comparisons. For instance, not a single gene is up-regulated continuously in all HD anther stages (stages 9–12), and only four genes are continuously up-regulated in all three HD carpel stages (stages 9, 10, and 12).

We identified gametophyte-specific genes by determining genes in common between microspore_10-preferential and pollen-preferential gene lists. To facilitate comparisons between LCM and HD samples, the original expression values were further normalized using the quantile method within CLC, leading to normalized RPKM (NRPKM). Comparison between stage 10 anther and stage 10 microspore genes using NRPKM as input in CLC resulted in 3,498 genes preferentially expressed in stage 10 anthers and 2,257 genes preferentially expressed in stage 10 microspores (with 2-fold cutoff; Supplemental Data S3). Likewise, stage 12 anther data were compared with that of pollen by DESeq using read counts as input, which identified 4,287 genes preferentially expressed in stage 12 anthers and 3,177 genes preferentially expressed in pollen (Supplemental Data S3). Eight hundred sixty-two genes were found in common between stage 10 anther preferential and stage 12 anther preferential lists and thus considered male sporophyte-abundant genes (Fig. 2A; Supplemental Data S3). Gene Ontology (GO) analysis revealed enriched metabolic processes (small molecule, organic acid, cellular ketone, and others) among these male sporophyte-abundant genes (Fig. 2B). Similarly, 119 genes were identified as male gametophyte-abundant genes due to their presence in both stage 10 microspore-preferential and pollen-preferential lists (Fig. 2C; Supplemental Data S3).

Transcription factor GaMYB (gene23946), Adiponectin Receptor (ADIOR)-like (gene31121), and Cyclic-Nucleotide-Gated (CNG) channel a3 (gene13563) are among the highest expressed male-gametophyte-abundant genes. To examine if these genes are also abundantly expression in the male organ of other plant species, we were able to identify the Arabidopsis and rice (Oryza sativa) homologs of GaMYB (MYB101/AT2G32460 and Os01g0812000) and found that the pMYB101::GUS is specifically expressed in the pollen grain and the Arabidopsis triple mutant myb101 myb97 myb120 exhibits defects in pollen function (Liang et al., 2013).
There is no detailed study of the ADIPOR-like homologs in Arabidopsis or rice, nor could we reliably identify a homolog of *F. vesca* CNG channel α3 in Arabidopsis or rice.

Identification of Temporal or Spatial Expression Trends across *F. vesca* Floral Transcriptomes

Thirty-five K-means clusters (containing 9,043 genes) with the most obvious tissue- and stage-specific expression trends were selected (see “Materials and Methods”). Of these, 19 clusters representing 3,931 genes are shown in Figure 3A and Supplemental Data S4. Carpel-specific gene clusters (C1 and C22) and anther-specific gene clusters (C2, C3, C4, C5, C7, and C25) were identified (Fig. 3A). Pollen has a highly unique transcriptome; almost 50% of the genes with tissue-specific expression were found in the pollen (C23, C28, C31, C32, C33, C34, and C35). Clusters C2, C3, and C7 are shared between microspore_10 and anthers in floral stages 9 to 11, as microspores are contained within these anthers. Similarly, six clusters (C25, C28, C30, C31, C34, and C35) are shared between mature pollen and stage 12 anthers, which house the pollen.

Clusters with similar expression trends were further combined into 10 superclusters (Fig. 3A). MapMan bins (Thimm et al., 2004) were used to identify specific categories of genes or pathways enriched in specific superclusters (Fig. 3C; Supplemental Data S4). The top enriched MapMan bin for the carpel-specific supercluster (supercluster 1) is DNA synthesis/chromatin structure. The top MapMan bin for stage 9 anthers (supercluster 4) is protein degradation, consistent with the up-regulation of a large number of FBX genes in anthers of stage 9 flowers. The top enriched MapMan bins for pollen (supercluster 9) are regulation of transcription and cell wall, including synthesis, degradation, and modification.

Among the 3,931 genes that make up the above 10 superclusters (Fig. 3A), 161 are transcription factors belonging to 29 families (Fig. 3B; Supplemental Data S4). These transcription factors show distinct stage- or tissue-specific expression patterns mirroring each of the 10 superclusters to which they belong. The dynamic and stage- or tissue-specific expression patterns of these transcription factors probably reflect the key functions they play. For example, the young carpel-specific (C1) cluster consists of five basic Helix-Loop-Helix genes, among which is *Fragaria vesca* HECATE1.
(FveHEC1; gene23830), a known regulator of carpel development in Arabidopsis (Gremski et al., 2007). Three WRKY genes and six Ethylene Response Factor genes with potential roles in stress responses are among the pollen-specific transcription factors (Supplemental Data S4).

The remaining 16 clusters of the 35 clusters representing 5,112 genes are interesting in that they show either LCM-specific or HD-specific expression (Supplemental Fig. S3, A and B; Supplemental Data S4). For LCM-specific clusters, MapMan bins of DNA replication, photosynthesis, and regulation of transcription are enriched (Supplemental Fig. S3C), suggesting actively dividing cells as well as green tissue (sepal) development. By contrast, metabolic processes are more enriched for HD-specific clusters, including amino acid metabolism, nucleotide metabolism, minor and major carbohydrate (CHO) metabolism, lipid metabolism, and redox (Supplemental Fig. S3C). Therefore, to certain degrees, the LCM- and HD-specific clusters reflect the younger versus older tissues and their respective activities.

Coexpression Network Analysis with WGCNA

An alternative analysis tool, WGCNA, was adopted (Langfelder and Horvath, 2008). WGCNA is a systems biology approach aimed at understanding networks instead of individual genes. In this study, coexpression networks are constructed on the basis of pairwise correlations between genes in their common expression trends across all sampled tissues. Modules are defined as clusters of highly interconnected genes; genes within the same cluster have high correlation coefficients among one another. This analysis resulted in 23 distinct modules (labeled by different colors) shown by the dendrogram (Fig. 4A), in which each tree branch constitutes a module and each leaf in the branch is one gene (Fig. 4A; Supplemental Data S5). The module eigengene is the first principal component of a given module and can be considered a representative of the module’s gene expression profile. The 23 module eigengenes for the 23 distinct modules were each correlated with distinct tissue types due to eigengenes’ tissue-specific expression profiles (Fig. 4B). Notably, 12 out of 23 coexpression modules are comprised of genes that are highly expressed in a single floral tissue type ($r > 0.8, P < 10^{-3}$; Fig. 4B; Supplemental Data S5). Therefore, each of these 12 modules identifies (or correlates with) a specific tissue or stage cluster of genes. For example, the blue module identifies 4,584 pollen-specific genes (Fig. 4, A and B), and the turquoise module identifies 5,791 LCM-specific genes (Fig. 4, A and B). This is consistent with earlier analysis using K-means clustering, where 1,954 pollen-specific genes (Fig. 3A) and 3,824 LCM-specific genes (Supplemental Fig. S3A) were found. Despite different algorithms, WGCNA and K-means clustering both identified pollen- and LCM-specific clusters as the two largest clusters/modules.

Of particular interest is the identification of a developing receptacle-specific module (light yellow, 123 genes) as well as a young floral (stages 1–4) module (dark red; 86 genes; Fig. 4, A and B). These two small modules were not detected by the earlier K-means clustering method (Fig. 3A). Figure 5, A and B, show the eigengene expression for the dark-red (flower_1-4) module and light-yellow (receptacle_6-7) module, respectively. A heat map showing the relative
NRPKM of each gene from the receptacle module and the stages 1 to 4 flower module revealed that many of the receptacle module genes are weakly expressed in flower stages 1 to 4 (Fig. 5C; Supplemental Data S6), indicating molecular similarities between the developing receptacle and young flowers. This close relationship between receptacle_6-7 and flower_1-4 was also revealed in earlier global analysis (Fig. 1D).

In addition, some genes are coexpressed in the carpel_7-8 and the receptacle_6-7 modules (Fig. 5, B and C). At floral stages 7 to 8, small carpel primordia cover the outer surface of the developing receptacle; HD of the carpel primordia off the receptacle surface may be imprecise and hence cross contamination between receptacle and carpel tissues may occur. The three highest coexpressed transcription factor genes in carpel_7-8 and receptacle_6-7 are knotted1-like (gene31590), zinc finger protein (gene20982), and basic Helix-Loop-Helix93 (gene05560; Supplemental Data S6), which are, however, also highly expressed in flower_1-4, making tissue contamination a less likely explanation. Alternatively, these coexpressed genes in carpel_7-8 and receptacle_6-7 are biologically relevant; they may underscore the developmental relationship between these two floral tissues.

WGCNA can also be employed to construct gene networks, in which each node represents a gene and the connecting lines (edges) between genes represent coexpression correlations. Hub genes are those that show most connections in the network. In the receptacle module network (Fig. 5D; Supplemental Data S6 and S7), 27 of the 111 genes encode transcription factors. Strikingly, many of the hub genes are meristem regulators (Fig. 5D), including three WUS/WUS-Related Homeobox (WOX) genes (FveWUS1/gene30464, FveWOX3/gene28935, and FveWOX4/gene14133), one Fragaria vesca AINTEGUMENTA-LIKE3 (FveAIL3)/gene20828, two GRAS (for GA-insensitive [GAI], Repressor of ga1-3 [RGA], and SCARECROW [SCR]; FveLOM3/gene31749 and Fragaria vesca SCARECROW-LIKE18 (FveSCL18)/gene01184), one Fragaria vesca LEAFY (FveLFY)/gene30750, three NAC (an acronym for NAM [No Apical Meristem], ATAF1/2, and CUC2 [Cup-Shaped Cotyledon]); Fragaria vesca CUP-SHAPED COTYLEDON3 (FveCUC3)/gene31474, FveCUC2/gene30749, and Fragaria vesca ANAC018 (Arabidopsis NAC domain containing protein18)/gene34006), and five Three Amino Acid Loop Extension (TALE)/BELL/Knotted1-like genes (such as Fragaria vesca SHOOT MERISTEMLESS/
Most of these transcription factor genes are up-regulated in both developing receptacle and stages 1 to 4 flowers (Supplemental Data S6) and may underlie meristematic activities operating in the developing receptacle as well as stages 1 to 4 flowers.

The hub gene with the highest edge number (81 edges) is FveLOM3 (gene31749), a member of the GRAS transcription factor family. In Arabidopsis, triple mutants of lom1 lom2 lom3 exhibited arrested shoot apical meristem, axillary meristem, and root meristem (Schulze et al., 2010; Engstrom et al., 2011), thus highlighting FveLOM3 as a possible key regulator of the developing receptacle. Other highly connected hub genes include a B3 domain transcription factor Fragaria vesca VERNALIZATION1 (gene29444), a Myb transcription factor Fragaria vesca ALTERED PHLOEM DEVELOPMENT (gene13545), and FveWUS1 (gene30464). Interestingly, a second WUS homolog in F. vesca, FveWUS2 (gene14621), was identified. While highly similar to FveWUS1 in amino acid sequence alignment (Supplemental Fig. S4, A and B), FveWUS2 is expressed in developing anthers between stages 7 to 8 and 11 (Supplemental Fig. S4C).

Anther Stage 9-Specific Module Transiently Expresses a Large Number of FBX Genes

Pairwise comparisons (Supplemental Fig. S2) revealed 1,453 up-regulated genes in stage 9 anthers when compared with stages 7 to 8 anthers. Among these 1,453 up-regulated genes, 211 (14%) encode FBX-containing genes (Fig. 6A; Supplemental Data S2 and S8). Because F. vesca genome has 820 FBX genes representing 2% of the genome, the much higher percentage (14%) of FBX genes among the stage 9 anther up-regulated genes suggests a heightened protein degradation activity in meiosis stage anthers. This also underlies the enriched MapMan category protein degradation in the anther_9 super-cluster (Fig. 3, A and C). Interestingly, as revealed by the heat map (Fig. 6B), this surge of FBX gene expression in stage 9 anthers is transient; many of them are subsequently down-regulated at stage 10 and 11 anthers. Specifically, 95 and 77 FBX genes are down-regulated in stage 10 and stage 11 anthers, respectively (Fig. 6, A and B).

In total, 296 FBX genes were differentially expressed (DE), either up or down, between successive anther stages (Fig. 6B; Supplemental Data S8). The top six most abundant FBX subfamilies among the 296 DE FBX genes were DOMAIN OF UNKNOWN FUNCTION295 (DUF295), plant-specific F-box associated protein domain (FBD), Kelch repeat, Leucine-Rich Repeat (LRR), F-box associated domain1 (FBA1), and gene from the dark-red (stages 1–4 flower) module and the light-yellow (stages 6–7 receptacle) module. One hundred eleven genes with the edge weight higher than 0.1 are visualized by Cytoscape. Twenty-seven transcription factors are shown by larger circles.

Figure 5. Developing receptacle-specific genes and networks. A, Eigengene expression profile for the dark-red (stages 1–4 flower) module in different tissues. The y axis indicates the value of the module eigengene; the x axis indicates sample type. The number of genes in the module is indicated in parenthesis. B, Eigengene expression profile for the light-yellow (stages 6–7 receptacle) module in different tissues. C, Heat map showing the relative NRPKM of each gene from the dark-red (stages 1–4 flower) module and the light-yellow (stages 6–7 receptacle) module. D, The correlation network of light-yellow (stages 6–7 receptacle) module. One hundred eleven genes with the edge weight higher than 0.1 are visualized by Cytoscape. Twenty-seven transcription factors are shown by larger circles.
Figure 6. Over 200 FBX genes are transiently induced in anthers of stage 9 flowers. A, Number of FBX genes that are up (red)- or down (blue)-regulated at each anther stage, when each is compared with the immediate earlier stage. Number of expected up (gray)- or down (patterned gray)-regulated genes is derived by multiplying number of up- or down-regulated genes at the respective stage by the percentage of FBX genes in the genome (2.35%). B, Hierarchical clustering of 296 DE FBX genes at the four anther stages. Log2 (fold change) compared with the immediate earlier stage is shown. C, Percentage of the specific classes of FBX genes among the anther_9 up- and anther_10 down-regulated genes. Percentage of the expected FBX class (gray) is derived by multiplying the number of anther_9 up- or anther_10 down-regulated genes with the percentage of the respective class of FBX genes in the genome. D, Eigengene expression profile for the pink (stage 9 anther) module. E, The correlation network of the pink (stage 9 anther) module with the edge weight higher than 0.6 visualized by Cytoscape. Thirty-seven FBX genes are indicated by larger circles among the 232 genes shown in the network. **, Statistically significant difference.
The DUF295 class is particularly enriched among the anther_9 up- and anther_10 down-regulated FBX genes (Fig. 6C). WGCNA analysis was carried out on the stage 9 anther (pink) module to identify hub genes with many connecting edges (Fig. 6, D and E; Supplemental Data S8 and S9). Five genes have an edge number higher than 200, and four of these five appear to have a function in protein degradation (Supplemental Data S8; Fig. 6E). Gene11150 codes for an F-box/Kelch-repeat protein, gene32754 encodes a WD repeat-containing protein 42A, which interacts with Cullin4-Damage-specific DNA-binding protein1 (Db1) E3 ligase and is a nucleocytoplasmic shuttling protein (Wu et al., 2012), gene07916 is a homolog of 26S protease regulatory subunit 4, gene01189 encodes histone 3.3, and gene20570 encodes an aspartic proteinase (precursor of nepenthesin1). The identity of these hub genes underscores active protein degradation activities during stage 9 anther development.

Has a similar phenomenon been observed in other plant species? Developmental transcriptomic profiling of anther development was previously reported in *Brassica rapa* (Dong et al., 2013), rice (Fujita et al., 2010), and maize (*Zea mays*; Ma et al., 2008), all of which employed microarrays. We applied the same statistical standard using one-way ANOVA analysis in Multi-Experiment Viewer (MeV; P value < 0.001) and detected only three up-regulated genes in the F2 stage of *B. rapa* whole flower bud collection, 87 up-regulated genes in the Q stage of maize anther collection, and 458 up-regulated probes in M2 and M3 stage rice anthers (see “Materials and Methods”). These equivalent comparisons at meiotic anther stages yielded a much lower number of DE genes than *F. vesca* stage 9 anthers, which have 1,453 up-regulated genes (Supplemental Fig. S2). Therefore, significant data variation could be contributed by different platforms and tissue collection/comparison methods.

We further analyzed the rice transcriptomic data because it gave the highest number of DE genes as described above. Z-score normalized values of the 458 up-regulated probes at M2 and/or M3 anther stages were used to generate the heat map in MeV (Supplemental Fig. S5A; Supplemental Data S10). An M2-specific cluster showed transient induction at the M2 stage. By contrast, most M3 stage-expressed genes are also expressed at the P1 stage, the stage immediately following the M3 stage. Among the 644 F-box genes in the rice genome, 356 are on the Affymetrix chip, representing 1.5% of the high-quality probes on the chip. Only six F-box genes are among the 338 M2 and M3 up-regulated genes (1.8%). Therefore, we did not observe an enrichment of F-box genes among up-regulated genes in rice M2 and M3 anthers. Loraine et al. (2013) compared gene expression profiling using microarray versus RNA-seq and showed that microarray could only detect highly expressed genes. Because the majority of our up-regulated F-box genes at stage 9 *F. vesca* anthers were not expressed at a high level (Supplemental Fig. S5C), they would not have been identified by earlier microarray studies, thus illustrating the power of RNA-seq over microarray in identifying gene expression trends.

Figure 7. Expression of A, B, C, and E class genes in strawberry flowers. Heat map showing gene expression levels of *F. vesca* A, B, C, and E class genes. Numbers are the NRPKM value for each gene in respective tissues. Left-most column indicates the A, B, C, and E classes. The right-most column indicates the name of each gene: *FveAP1* (gene04562), *FveAP2* (gene23876), *FveAP3* (gene14896), *FvePla* (gene11267), *FvePlb* (gene11268), *FveAG* (gene24852), *FveSEP1* (gene04229), *FveSEP3* (gene07201), *FveSEP4* (gene26118), and *FveSEPLIKE1* (gene04563).
as well as the receptacle, from which carpel primordia arise, consistent with our earlier in situ hybridization data (Hollender et al., 2012). Class E gene *Fragaria vesca* *SEPALLATA3* (*FveSEP3*) and *FveSEP4* are expressed in all floral tissues, including receptacle with *FveSEP3* at a much higher level than *FveSEP4*. *FveSEP1* and *FveSEPLIKE1* are expressed at low levels only in stages 1 to 4 flowers and stages 6 to 7 receptacle. None of the A, B, C, and E genes is expressed in leaves or seedlings except *FveAP2* (Fig. 7), which is expressed in all tissues and may have a broader function (Maes et al., 2001; Würschum et al., 2006).

DISCUSSION

Strawberry is an important specialty crop with unique floral structure and accessory fruit. *F. vesca*, a diploid strawberry, is an excellent model for the cultivated strawberry and other Rosaceae plants. Using LCM and HD, different *F. vesca* floral organs and tissues were isolated, and RNA-seq was performed. Two different bioinformatic methods were used to analyze the RNA-seq data, revealing several novel insights including the identification of a developing receptacle-specific module and hub transcription factors, the discovery of a large network of FBX genes at stage 9 anthers and hub genes, and the molecular similarity between the transcriptome of young floral meristem and that of developing receptacle. The systems approach in data mining via WGCNA was particularly fruitful in identifying tissue-specific modules and important hub genes for future biochemical and functional studies.

Developing Receptacle and Young Floral Bud Are Similar in Their Transcriptomes

By botanical definition, the receptacle of flowering plants is the area at the stem tip that bears flower organs or groups of flowers. Some examples of enlarged receptacles in economically important plants are those subtending sunflower (*Helianthus annuus*) head, the seed-containing chamber of a lotus flower, and the fleshy fruits of strawberry. Although most receptacles are not consumed as fruit, some are, as in the case of strawberry. However, almost nothing is known about the molecular underpinnings of this important plant organ, despite tremendous progress in understanding the molecular mechanism of standard floral organ development.

While the botanical definition of a receptacle describes a static structure subtending the flowers or floral organs, the developing receptacle, as analyzed here, is a dynamic and growing structure. The apex of the developing receptacle dome in the stages 6 to 7 *F. vesca* flower is still giving rise to carpel primordia (Hollender et al., 2012) and thus is the terminating floral meristem, but the basal part of the receptacle dome has finished giving rise to carpel primordia and has become the receptacle. Hence, the term developing receptacle is used to describe this dynamic structure at floral stages 6 to 7. During subsequent stages, the receptacle continues to enlarge in size even after the receptacle apex terminates its floral meristem activity (Hollender et al., 2012).

Our work reported here provided an initial molecular insight into the development of this important plant organ. We found that the transcriptome of a developing receptacle is most similar to that of young floral (stages 1–4) primordia with overlapping sets of genes specifically expressed in both tissues. Hub genes, such as *FveLOM* and *FveWUS*, were identified by their large numbers of connecting edges within the receptacle network. Future work such as in situ hybridization showing expression zones of these meristem regulators may further shed light on the unique aspects of the developing receptacle. Such knowledge should aid future manipulations of selected meristem regulators to prolong meristematic activities in the developing receptacle so as to achieve desirable fruit size and shape.

Anthers of Floral Stage 9 Transiently Express a Large Number of FBX Genes

During the course of analyzing transcriptomes of strawberry flowers, we noted a significant enrichment of MapMan bin Protein Degradation in the stage 9 anther supercluster (Fig. 3C). Further examination of the anther_9 up-regulated gene list (Supplemental Data S2) identified a large number of genes, including FBX genes, with predicted functions in protein degradation. Hence, we further analyzed these anther_9-expressed FBX genes (Fig. 6, A and B), which revealed a transient up-regulation at stage 9 anthers (Fig. 6, A and B). Our earlier work indicated that at early stage 9, microspore mother cells enter meiosis, and the resulting tetrads are tightly connected in locules. The middle layer has degenerated. At late stage 9, meiosis is completed and the tetrads of microspores become loose in each locule, but tapetum degeneration is not yet initiated (Hollender et al., 2012). Hence, the induction of FBX genes in anthers of stage 9 flowers is unlikely related to tapetum degeneration. Possibly, these FBX genes are required for meiosis or for middle layer degeneration.

FBX proteins were first characterized as a subunit of the S-Phase Kinase-Associated Protein1-Cullin-F-box ubiquitin-ligase complex (Bai et al., 1996; Kipreos and Pagano, 2000) and can be classified into 19 groups based on the presence of additional domains such as domain of unknown function (DUF), LRR, Kelch repeats, and Pentatricopeptide Repeat (PPR; Gagne et al., 2002; Kuroda et al., 2002). Many of the up-regulated anther_9 FBX proteins belong to the DUF295 family (Fig. 6C). DUF295 family FBX proteins play diverse functions from posttranslational regulation of the *Su(var)3-9, Enhancer-of-zeste*, and *Trithorax* (*SET*) domain polycomb group protein (Jeong et al., 2011) to regulating ascorbic acid...
biosynthesis (Zhang et al., 2009). While we do not yet know the function of these FBX genes in the stage 9 anther, this is an important observation that will form the basis of future functional studies.

We investigated if the phenomenon observed was also reported in other plant species. Transcriptomic studies have been conducted in pollen, sperm, and anthers in diverse plant species, including Arabidopsis, rice, B. rapa, maize, and cotton (Gossypium hirsutum; Honys and Twel, 2004; Ma et al., 2007, 2008, 2012; Chen et al., 2010; Fujita et al., 2010; Deveshwar et al., 2011; Yang et al., 2011; Dong et al., 2013; Wuest et al., 2013). While some studies were focused on tapetum and male gametophytes, others compared anthers of male sterile mutants with anthers of the wild type. One study noted enrichment of GO term protein metabolism in postmeiotic stage anthers and attributed it to tapetum degeneration (Deveshwar et al., 2011). Another study showed enriched FBX genes in pollen and unicellular microspores (Wuest et al., 2013). None reported enriched FBX gene expression at early stage anther development as observed in this study. Nevertheless, different FBX gene families may play important functions at different developmental stages.

We subsequently focused our analysis on microarray-based transcriptomic data from three prior studies that are most similar to our work (Ma et al., 2008; Fujita et al., 2010; Dong et al., 2013). We found that the rice transcriptome showed a reasonable number (338) of up-regulated genes at meiotic anthers, a stage similar to F. vesca stage 9 anthers, yet we could not detect an enrichment of FBX genes among up-regulated genes in rice meiotic anthers (Supplemental Fig. S5B). Because RNA-seq is significantly more sensitive than microarray in detecting genes expressed at low levels (Loraine et al., 2013), microarray-based transcriptomes may have missed the FBX genes. Alternatively, the observed surge of FBX genes in anther_9 could be specific to strawberry and less relevant to the general regulatory mechanisms of anther development. Further comparative genomic studies that employ identical gene expression profiling methods are required to distinguish these possibilities.

Optimization of the LCM Procedure and the Data Analyses

We adopted the LCM technique to isolate young floral tissues too difficult to access via HD. LCM posed several challenges due to extremely low RNA yields (in the range of 5–10 ng) and poorer RNA quality due to tissue fixation. Several improvements were made in tissue fixation and handling (Supplemental Fig. S7), including the adoption of acetone fixation (Ohtsu et al., 2007), the minimization of section ribbon expansion time (in water) on slides, and the use of only freshly dewaxed slides for laser capture.

The NuGEN Ovation RNA-Seq System V2 was employed to amplify LCM-derived RNA. This system employs the Ribo-SPRIA technology, so the cDNA amplification is initiated at the 3' end as well as randomly throughout the whole transcriptome, allowing amplification of poly(A⁺) as well as nonpolyadenylated transcripts and overcoming some of the challenges of poorer RNA quality. The RNA processing method described above for LCM samples may be more sensitive in detecting genes expressed at low levels as well as noncoding RNAs, thus contributing to the apparent increase in expressed genes found in the LCM samples (Fig. 1B). To normalize the variation in the number of expressed genes, mapped reads from HD and LCM were normalized by quantile method in CLC, resulting in NRPKM. This normalization appeared to work well when LCM samples are compared with HD samples.

CONCLUSION

The genome-scaled approach utilized here to investigate strawberry flower development is surprisingly informative in uncovering novel networks and hub genes. The work provides important insights into the molecular events underlying strawberries′ unique reproductive developmental process as well as valuable resources to the plant biology community in areas of flower development, gamete formation, and fruit development. Our work highlights the effectiveness of the WGCNA analysis tool in uncovering small clusters of genes and networks and calls for caution in comparative genomics when the data are generated by different methods or techniques.

MATERIALS AND METHODS

Floral Tissue Isolation

A 7th generation inbred line of wild strawberry (Fragaria vesca), Yellow Wonder SF7 (Slovic et al., 2009), was grown in a growth chamber with 12 h light at 25°C and 12 h dark at 20°C. Anthers and carpels were hand dissected from stage 7 to 12 flowers under a dissecting microscope. For pollen, mature anthers were placed in a petri dish containing drierite for a few hours to release pollen, which was washed in distilled water and collected by centrifugation. Each sample has two biological replicates, and each replicate contains tissues from two to 12 flowers.

Floral tissues (stages 1–7) were isolated by LCM (Supplemental Fig. S1B). Before LCM, tissues were fixed in ice-cold 100% (v/v) acetone (Ohtsu et al., 2007), exchanged for aceton: Hemo-De (50:50; Scientific Safety Solvents), and then exchanged for 100% (v/v) Hemo-De. Fixation vials were placed at 60°C, and paraplast Plus chips (Leica Microsystems) were added gradually to the Hemo-De to slowly infiltrate the tissue with wax. Subsequently, samples were incubated in 100% (v/v) molten wax for 2 to 3 d with several changes of fresh 100% wax. After solidifying the wax in boats at room temperature, 10- to 12-μm-thick sections were prepared using a rotary microtome, and sections were floated on drops of ribonuclease-free water on Leica PEN-Membrane 2.0-μm slides (catalog no. 11965188), which were placed on a slide warmer at 40°C for 15 to 30 min. Slides were dewaxed based on the Leica protocol, and tissues were laser captured on the same day. An average of approximately 106 to 8.73 × 105 m2 of tissue (ranging from 1 × 103 to 8.7 × 105 m2) were captured with a Leica Laser Microdissection Microscope-ASLMD, collected in the cap of a 0.2-ml PCR tube containing the extraction buffer from the Arcturus PicoPure RNA isolation kit (Life Technologies), and stored at ~80°C. Each LCM-derived sample contains pooled sections from two to six flowers.

RNA Isolation and Sequencing

Total RNA from LCM or HD samples (except anther and pollen) was extracted with the Arcturus PicoPure RNA isolation kit in conjunction with Turbo RNSase-Free DNase (Life Technologies). Total RNA from stage 9 to 12
andthers and from pollen was extracted using RNase Plant Mini Kit (Qiagen) in conjunction with RNase-Free DNase (Qiagen). For HD samples, a minimum of 150 ng of total RNA was sent to the Weill Cornell Medical College Genomics Resources Core, where poly(A) selection and Illumina Truseq RNA-seq library preparation were conducted. Four to six bar-coded libraries were pooled and sequenced in one lane with single read clustering and 51 cycles on the Illumina HiSeq2000.

For LCM-derived samples, approximately 2 × 10^6 mm^2 of LCM-collected tissues typically yielded 10 to 30 ng of total RNA. Between approximately 3.5 and 38 ng of total RNA was converted to cDNA and then amplified using Ovation RNA-Seq System V2 (NuGEN Technologies). Next, RNA-seq libraries were made using NuGEN’s Encore NGS Multiplex Library System I. Four barcoded LCM sample libraries were pooled in equal ratios for sequencing in one lane at Cornell Weill Medical College as described above.

Global Differential Gene Expression Analysis of RNA-Seq Data

Fifty-one-one pair single-end raw reads were mapped against the F. vesca CDS and genes (http://www.rosaceae.org/species/fragaria/fragaria_vesca_genome_v1.10; Shulaev et al., 2011) using CLC (http://www.clcbio.com/products/clc-genomics-workbench; Anders and Huber, 2010). Seven nucleotides from 5’ terminus were trimmed due to low-quality scores. The RNA-seq analysis tool in CLC was used for mapping, allowing three mismatches. Mapping statistics are shown in Supplemental Data S1. To compare LCM samples with HD samples, the original expression value was further normalized by quantile method within CLC. The resulting value is the NRPKM.

For Figure 1, C and D, the dendrograms were plotted using the variance-stabilizing transformed read counts (built in the DESeq package) by Euclidean distance measure. To identify DE genes (Supplemental Fig. S2; Fig. 2), pairwise comparisons between LCM samples or between LCM and HD samples were made by Baggerley’s test built in CLC, with NRPKM values as input. DESeq version 1.10.1 was used to compare between HD samples following DESeq’s vignette; mapped read counts without normalization were used as input. The cutoff for pairwise comparisons was set at a fold change greater than 2 (false discovery rate [FDR] P value < 0.01).

K-Means Clustering Analysis

Before identifying specific gene expression clusters (Fig. 3), 24,836 DE genes were identified by first comparing (1) all the anther samples, (2) all the carpel samples, (3) all the LCM samples, and (4) different tissues from the same stage, using DESeq by multiple-factor design with mapped read counts as input. The resulting DE genes (adjusted P value < 0.0001) from above comparisons were combined. Then, genes expressed at NRPKM less than 1 were removed, and genes whose NRPKM in leaf or seedling contributed to greater than 40% of total reads across all tissues and stages were also removed. After these filtering steps, 23,424 DE genes remain.

The relative NRPKM value (NRPKM_{genes} in tissues/averaged NRPKM_{genes} across all tissues) was calculated for each of these 23,424 DE genes to facilitate the identification of genes with low absolute NRPKM values (such as transcription factors) but with significant expression changes in specific tissues or stages. K-means clustering with Euclidean distance in MeV4.8 (Saeed et al., 2003) yielded 100 clusters based on inputs of log2, relative NRPKM values. Eleven thousand two hundred seventy-five genes that reside in those clusters with obvious tissue- or stage-specific expression trends were selected and then used to generate 50 K-means clusters in MeV4.8. Finally, 9,043 genes that reside in clusters with even more obvious tissue- or stage-specific expression trends were selected to make the final 35 K-means clusters. Only 19 out of the 35 clusters are shown in Figure 3, and the remaining 16 clusters are shown in Supplemental Figure S3. Transcription factors were extracted from the respective clusters (Fig. 3B; Supplemental Fig. S3B) based on the Fragaria vesca Transcription Factor (TF) table (Kang et al., 2013). The log2 relative NRPKM of each TF was used to yield heat maps in MeV4.8 (Fig. 3B; Supplemental Fig. S3B).

Assignment of MapMan Bins and GO Terms

MapMan bins of F. vesca genome were assigned by the Mercator pipeline for automated sequence annotation (http://mapman.gabipd.org/web/guest/app/mercator; Thimm et al., 2004). One hundred was used as the BLAST_CUTOFF. GO ontologies were assigned using Blast2GO (Conesa et al., 2005), and the GO annotation file for approximately 20,003 F. vesca genes was previously shown (Kang et al., 2013). GO enrichment was derived with Fisher’s exact test and a cutoff of false discovery rate less than 0.05; the genome annotation file described above was used as the reference. Only GO terms for Biological Process are shown.

Identification of F-Box Protein

One thousand one hundred eighty-five annotated F-box genes were obtained by word search from F. vesca genome (http://www.rosaceae.org/species/fragaria/fragaria_vesca_genome_v1.10.0). The gene sequences were batch searched in Pfam server (http://pfam.sanger.ac.uk/search) with default settings against only Pfam-A families (E value = 1.0). Any protein with a hit to a Pfam646-F-box, Pf12937-F-box-like, or Pf13013-F-box-like was defined as a putative F-box protein. Eight hundred fifteen out of 1,185 genes remained. These 815 F-box proteins were grouped into subfamilies based on their domain organization, including DU295s (PF03478), plant-specific F-box associated protein domain (PF08387), BFAQ1(PF07734), BFA3 (PF08268), and the Kelch-repeat subfamily (both Kelch_3 [PF13415] and Kelch_6 [PF13964]). LRR_4 (PF12799), LRR_6 (PF13516), and LRR_8 (PF13855) were combined as an LRR subfamily.

Analysis of the Rice Anther Microarray Data

Microarray data were downloaded from Gene Expression Omnibus in National Center for Biotechnology Information (NCBI; accession nos. GSE12579 for maize [Zea mays], GSE47665 for Brassica rapa, and GSE14304/ dataset GDS1957 for rice [Oryza sativa]). For the rice data set, DE genes were identified by one-way ANOVA between samples M1, M2, and M3 in MeV_4.8.1 (P value < 0.001). Rice version_7.0 annotation files were downloaded from the Michigan State University Rice Genome Annotation Project Web site. Identification of F-box proteins was based on the presence of interpro F-box domain. Gene names corresponding to probes in the microarray were obtained by blastn (match length > 50 bp, P value < 1.0E−15, and number of targets ≤ 3). Although 456 probes showed M2 and M3 up-regulated expression (Supplemental Fig. S5A), after removing low-quality probes (defined as those hybridizing to more than three target genes) and blastn searches, 338 genes were identified as the M2 and M3 up-regulated genes (Supplemental Fig. S3B). The normalized value shown in Supplemental Figure S5A was obtained in MeV based on the following formula: value = ([value] − mean[row])/σ(absolute[row]).

Phylogenetic Tree Construction of ABCE Genes

Protein sequences of Arabidopsis (Arabidopsis thaliana) ABCE genes were BLASTed against translated protein sequences of the strawberry genome (hybrid gene models version 1.0) at the Plant and Food Research Server (http://www.strawberrygenomes.org). Candidate strawberry homologs were BLASTed against the NCBI flowering plant protein database for verification. Additional validations included the identification of conserved protein domains (MADS and AP2 domains) and intron/exon structure. The protein sequence alignment was made using Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo). The unrooted phylogenetic tree (Supplemental Fig. S6) was constructed using MEGA 5.05 (http://www.megasoftware.net/) with the neighbor-joining statistical method and bootstrap analysis (1,000 replicates).

Gene Network Construction and Visualization

Coexpression networks were constructed using the WGCNA (v1.29) package in R (Langfelder and Horvath, 2008). Among the 23,424 genes used in K-means clustering analysis, 21,517 genes with averaged NRPKM from two replicates higher than 2 were used for the WGCNA undirected coexpression network analysis; the average NRPKM was imported into WGCNA. The modules were obtained using the automatic network construction function blockwiseModules with default settings, except that the power is 16, TOM-Type is signed, minModuleSize is 30, and mergeCutHeight is 0.25. The eigengene value was calculated for each module and used to test the association with each tissue type. The total connectivity and intramodular connectivity (function softConnectivity), KME (for modular membership, also known as eigengene-based connectivity), and KME-P value were calculated for the 20,954 genes, which were clustered into 23 tissue-specific modules. The other 563 genes were outliers (gray module) and not shown in Supplemental Data S5. The networks were visualized using Cytoscape _v.3.0.0._
Illumina reads of all 30 samples (two biological replicates of 15 different floral tissues or stages) have been submitted to the Sequence Read Archive at NCBI (http://www.ncbi.nlm.nih.gov/sra). The accession number is SRP033008.

Supplemental Data
The following materials are available in the online version of this article.

Supplemental Figure S1. Summary of tissues and stages profiled in this study.

Supplemental Figure S2. Venn diagrams of DE genes derived from pairwise comparisons.

Supplemental Figure S3. Gene clusters specifically expressed in LCN or HD samples.

Supplemental Figure S4. FreWUST-2 sequence alignment with Arabidopsis WU5 and their RNA-seq expression.

Supplemental Figure S5. Rice meiotic stage anthers did not show increased expression of large numbers of F-box genes.

Supplemental Figure S6. Phylogenetic tree of floral homeotic genes.

Supplemental Figure S7. Electrophoresis histograms of RNAs isolated from F. vesca floral tissues showing RNA quality after different treatments.

Supplemental Data S1. RNA-seq statistics and expressed gene number.

Supplemental Data S2. Pairwise comparisons between different tissues.

Supplemental Data S3. Male gametophyte and sporophyte abundant genes.

Supplemental Data S5. Data of WGCNA analysis.

Supplemental Data S6. Flower_1-4 and recepctacle_6-7 network analysis.

Supplemental Data S7. Light yellow module network file.

Supplemental Data S8. F-box genes in anther_9 network.

Supplemental Data S10. Results from analysis of rice anther microarray data.

Supplemental Data S11. F. vesca ABCE genes.

ACKNOWLEDGMENTS
We thank Dr. Chris Dardick for help with the initial data analysis. Received February 8, 2014; accepted May 10, 2014; published May 14, 2014.

LITERATURE CITED

