Rice TUTOU1 Encodes a Suppressor of cAMP Receptor-Like Protein That Is Important for Actin Organization and Panicle Development

Jiaoteng Bai*, Xudong Zhu, Qing Wang, Jian Zhang, Hongqi Chen, Guojun Dong, Lei Zhu, Huakun Zheng, Qingjun Xie, Jinqiang Nian, Fan Chen, Ying Fu, Qian Qian, and Jianru Zuo

State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.B., Q.W., J.Zh., H.Z., Q.X., J.N., J.Zu.) and State Key Laboratory of Molecular Developmental Biology and National Plant Gene Research Center (F.C.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China (J.B., Q.W., H.Z., Q.X.); State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (X.Z., H.C., G.D., Q.Q.); and State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China (L.Z., Y.F.)

ORCID IDs: 0000-0002-9612-5718 (J.B.); 0000-0003-2110-926X (Q.W.); 0000-0002-9639-4934 (J.Zh.); 0000-0002-7556-4404 (G.D.); 0000-0002-6056-2761 (L.Z.); 0000-0002-6372-3260 (Q.X.); 0000-0003-4482-3116 (F.C.); 0000-0002-0349-4937 (Q.Q.); 0000-0002-9605-3822 (J.Zu.).

Panicle development, a key event in rice (Oryza sativa) reproduction and a critical determinant of grain yield, forms a branched structure containing multiple spikelets. Genetic and environmental factors can perturb panicle development, causing panicles to degenerate and producing characteristic whitish, small spikelets with severely reduced fertility and yield; however, little is known about the molecular basis of the formation of degenerating panicles in rice. Here, we report the identification and characterization of the rice panicle degenerative mutant tut1 (tut1), which shows severe defects in panicle development. The tut1 also shows a pleiotropic phenotype, characterized by short roots, reduced plant height, and abnormal development of anthers and pollen grains. Molecular genetic studies revealed that TUT1 encodes a suppressor of cAMP receptor/Wiskott-Aldrich syndrome protein family verprolin-homologous (SCAR/WAVE)-like protein. We found that TUT1 contains conserved functional domains found in eukaryotic SCAR/WAVE proteins, and was able to activate Actin-related protein2/3 to promote actin nucleation and polymerization in vitro. Consistently, tut1 mutants show defects in the arrangement of actin filaments in trichome. These results indicate that TUT1 is a functional SCAR/WAVE protein and plays an important role in panicle development.

Rice (Oryza sativa) yield is closely associated with panicle development, including panicle structure and panicle number. The basic unit of the rice panicle is the spikelet, which consists of multiple florets (each having a lodicule, carpel, and six stamens) enclosed by glumes (Yoshida and Nagato, 2011). During rice growth and development, panicle degeneration may occur under various conditions (Komatsu et al., 2001; Ashikari et al., 2005; Ikeda et al., 2005). The abortion of spikelets usually causes degeneration of floral organs, leading to reduction of rice yield. Spikelet degeneration can occur from the basal or apical end of the panicle and lead to defective, whitish spikelets, and eventually fewer spikelets per panicle (Li et al., 2009; Cheng et al., 2011).

Various genetic and environmental factors cause panicle degeneration, but the underlying mechanisms remain poorly understood (Xing and Zhang, 2010). Several quantitative trait loci related to panicle apical spikelet abortion have been reported. One such quantitative trait locus, panicle apical abortion8, affects the formation of anther and pollen, and level of reactive oxygen species (ROS) in spikelets (Cheng et al., 2011). Several reports also indicate that cuticle deficiency can cause degenerated anthers and abnormal pollen grains (Jung et al., 2006; Li et al., 2010). Cuticles, the hydrophobic, waxy structures produced by the epidermal cells in most land
plants, play an important role in plant development and in the tolerance to environmental stresses. The constituents of the cuticle include fatty acids, esters, alcohols, aldehydes, ketones, and alkanes (Kunst and Samuels, 2003; Panikashvili et al., 2007). Defects in fatty acid metabolism or transport can also cause anther degeneration (Zhang et al., 2005, 2008). Mutations in the Arabidopsis SCAR/WAVE complex (Deeks et al., 2004; El-Din El-Assal et al., 2004b; Le et al., 2006; Jörgens et al., 2010). Among those, BRICK1 (BRK1) is involved in the stabilization of SCAR protein in vivo (Le et al., 2006), and mutations in the BRK genes result in defects of epidermal cell morphogenesis and cell division in maize (Frank et al., 2003, 2004). However, given the critical role of the Arp2/3 complex and SCAR/WAVE in the organization of the cytoskeleton, it is somewhat unexpected that none of these mutations substantially affects plant growth and development in Arabidopsis and maize.

In this study, we report the characterization of TUTOU1 (TUT1), which encodes a functional SCAR/WAVE protein and plays an important role in rice growth and development. The tut1 shows a pleiotropic phenotype with severe defects in panicle development. We show that TUT1 can activate the Arp2/3 complex to promote actin polymerization in vitro, and is involved in modulating actin organization in vivo. We demonstrate that TUT1 plays important roles in growth and development of rice plants.

RESULTS

Identification and Characterization of the Rice tut1 Mutant

To understand the cellular and molecular mechanisms that regulate panicle development, we performed a genetic screen for tut (which means bald head in Chinese) mutants that have a panicle apical degeneration phenotype from a gamma ray-mutagenized M2 population in the japonica variety ‘Zhonghua 11’ background. From this screen, we identified several tut mutants, and we report a detailed study of tut1. tut1 was backcrossed to wild-type plants (cv Zhonghua 11) three times, and progeny showing the tut1 phenotypes were collected for all studies described below, unless otherwise indicated.

During early seedling growth, the aerial part of tut1 seedlings showed a wild-type-like phenotype (Fig. 1A). However, the tut1 roots were shorter than wild-type roots (Fig. 1, A and B). Compared with wild-type plants, the mature tut1 plants were shorter and had fewer tillers (Fig. 1, C–E). During all growth stages, the tut1 leaves were smaller than wild-type leaves and showed degeneration that initiated from the leaf tips, accompanied by a reduction of the chlorophyll levels (Fig. 1, F–H). Young tut1 leaves were usually pale white and then turned green upon maturation (Fig. 1F). Consistent with the observation of degenerated leaf tips in tut1, massive cell death was detected by staining with Evans blue along the leaf tips of tut1, but was rarely detectable in wild-type leaves (Fig. 1I). Moreover, tut1 leaves had higher levels of superoxide than did the wild type (Fig. 1I), suggesting that
Degenerative cell death in \textit{tut1} leaves was related to the production of ROS.

Degenerated Panicles in \textit{tut1}

\textit{tut1} showed a delayed-heading phenotype, approximately 15 d later than the wild-type plants (Fig. 1C). The \textit{tut1} panicles were significantly shorter than wild-type panicles and showed severe degeneration of spikelets in the apical portion of the panicle (Fig. 2A). In the \textit{tut1} panicles, the degenerating spikelets occurred in the apical parts of all branches, including the primary and secondary branches (Fig. 2B; Supplemental Fig. S1). Similar to that in leaves, we also observed significantly increased ROS levels in the degenerated \textit{tut1} spikelets compared with that in the wild type (Fig. 2, C and D). \textit{tut1} had smaller flower filaments than the wild type, and the \textit{tut1} anthers were usually pale white and showed various degrees of degeneration (Fig. 2E; Supplemental Fig. S2).

To analyze the cellular basis of panicle degeneration in \textit{tut1}, we examined panicle development of the wild type and \textit{tut1} by SEM over the nine stages (Inflorescence development stage 1–9 [In1–In9]) of rice panicle development (the panicle development stages were followed as defined by Ikeda et al., 2004). In the early stages, the spikelets at the tip of wild-type and \textit{tut1} panicles showed no significant difference, and spikelets at the In7 stage are shown in Figure 2F. At stage In8, the difference between the wild type and \textit{tut1} became apparent, as the panicle apical spikelet of \textit{tut1} was smaller than the wild type (Fig. 2G). At stages In8 and In9, the \textit{tut1} spikelets were misshapen and disorganized compared with the wild type (Fig. 2H). A closer examination revealed that the surface of wild-type spikelets was well organized and smooth, whereas the surface of the \textit{tut1} spikelet contained shrunk and disorganized cell contents (Fig. 2I). During later developmental stages, the degenerative phenotype of \textit{tut1} panicles became more severe, resulting in the formation of small, aborted spikelets that lacked recognizable cell contents on the surface of the \textit{tut1} spikelets (Fig. 2, J and K). These results suggested that \textit{TUT1} plays an important role in panicle development and is likely involved in cell expansion.

Defective Anther and Pollen Development in \textit{tut1}

Anthers in \textit{tut1} also showed a degenerative phenotype, as mutant anthers lacked organized cell files on the epidermis and abortive or shrunk pollen grains (Figs. 2E and 3, A–C). We analyzed pollen development in \textit{tut1} in comparison with that of the wild type by light microscopy. The developing \textit{tut1} pollen showed no

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure1}
\caption{Phenotypes of \textit{tut1}. A, Seedling phenotype of the wild type (cv Zhonghua 11, left three seedlings) and \textit{tut1} (right three seedlings). Seeds were germinated at 30°C for 3 d and then transferred to a culture chamber with a 16-h/8-h photoperiod at 30°C. Bar = 1 cm. B, Statistical analysis of root length in the wild type (WT) and \textit{tut1} as shown in A. The data presented are mean values of two independent experiments (\(n > 45\)). Error bars indicate SD; ***, \(P < 0.01\) (Student’s t-test). C, Phenotypes of wild-type (left) and \textit{tut1} (right) mutants at the grain-filling stage. Bar = 5 cm. D and E, Statistical analysis of tiller number and plant height at maturity of the wild type and \textit{tut1}. The data presented are mean values (\(n > 50\)). Error bars indicate SD; ***, \(P < 0.01\) (Student’s t-test). F, Leaves of the wild type (left four leaves) and \textit{tut1} (right four leaves) at different growth stages. Bar = 5 cm. G, Leaves of the wild type (left) and \textit{tut1} (right) at 10 d after flowering. Bar = 2 cm. H, Analysis of chlorophyll (Chl) content of wild-type and \textit{tut1} leaves at different times after leafing. Blue line indicates the wild type, red line indicates \textit{tut1}. Leaves at 4, 8, 12, 16, and 20 d after leafing were used in the analysis. Fresh leaves were used for measurement of chlorophyll contents. Two technical repeats were made in the test. Error bars indicate SD. I, Cell death analysis of wild-type (left) and \textit{tut1} (right) seedling leaves using Evans blue staining. Bar = 0.5 cm. J, ROS observation of wild-type (left) and \textit{tut1} (right) mature leaves using nitroblue tetrazolium (NBT) staining. FW, Fresh weight. Bar = 2 cm.}
\end{figure}
abnormalities at the microspore mother cell stage (Fig. 3D). However, after entering the vacuolated pollen stage, the \textit{tut1} microspores became misshapen and disorganized (Fig. 3E), and eventually aborted (Fig. 3, F–H).

Notably, the degeneration of the epidermal cell layer usually occurred after the mature pollen stage in the wild type, whereas the premature degeneration of the epidermal cells in \textit{tut1} anthers was observed at the vacuolated pollen stage (Fig. 3E). Moreover, the \textit{tut1} pollen sac also had an irregular shape compared with the wild type at the first pollen mitosis stage (Fig. 3, F and G). At the mature pollen stage, \textit{tut1} had significantly fewer mature pollen grains compared with the wild type (Fig. 3H).

Due to these defects, \textit{tut1} showed poor fertility and produced smaller seeds (Fig. 3I; Supplemental Fig. S1).

Defective Cuticle Formation in \textit{tut1}

The epidermis of wild-type anthers was coated with epicuticular wax crystals, but these wax crystals were substantially fewer and disorganized on the surface of the \textit{tut1} anthers (Fig. 3, A and B). On the \textit{tut1} anthers, the formation of a wax cuticle was reduced in the basal panicle and completely absent in the apical panicle (Fig. 4, A–C). Consistent with this, transmission electron
microscopy revealed that the tut1 cuticle had significantly fewer wax structures compared with the wild type (Fig. 4D). Similarly, the tut1 mutation also caused abnormalities in pollen exine development (Fig. 4E) and formation of a cuticle on the surface of leaves and leaf stomata (Fig. 4F; Supplemental Fig. S3). These results suggested that TUT1 is involved in cuticle formation, which may explain the defective development of anthers and pollen in tut1.

We reasoned that the defective development of wax cuticles might be related to abnormal metabolism of fatty acids. To test this possibility, we analyzed the fatty acid levels in heading panicles by gas chromatography. We found that the levels of palmitic acid (C16:0), eicosenoic acid (C20:1), arachidonic acid (C20:4), and docosanoic acid (C22:0) were reduced in tut1 panicles compared with the wild type (Fig. 4G), suggesting that altered fatty acid metabolism may be related to the tut1 phenotype.

Molecular Cloning of TUT1

In a cross between the wild type (cv Zhonghua 11) and tut1, all F1 progenies displayed a wild-type phenotype. In the self-pollinated F2 population, the wild-type and tut1 mutant plants segregated in a ratio of approximately 3:1 (wild type:tut1 = 203:54; \(\chi^2 = 2.17, P < 0.05 \)), indicating that tut1 is a recessive mutation in a single nuclear gene. To genetically map TUT1, we generated an F2 population (approximately 10,000 plants) derived from the cross...
between tut1 and cv Zhenshan 97 (an indica cultivar). TUT1 was roughly mapped on the short arm of chromosome 1, between the simple sequence repeat (SSR) markers RM151 and RM272 (Fig. 5A). Using 2,600 F2- and F3-derived tut1 segregants, we mapped TUT1 to an interval of 196 kb between the SNP markers P18 and P22 (Fig. 5A). This region contained 28 annotated genes, and DNA sequencing analysis of tut1 revealed a C-to-G transition at nucleotide 1,556 of the coding sequence of LOC_Os01g11040. The mutation occurred in exon 6, which converted a Ser into a premature stop codon (TCA to TGA), resulting in the formation of a truncated polypeptide lacking 815 amino acid residues of the carboxyl region (Fig. 5, A and B). qRT-PCR revealed that the transcript levels of the putative TUT1 gene were slightly lower in tut1 than in the wild type (Fig. 5E). Also, the tut1 mutation occurred in the highly conserved EGC domain and caused the loss of the VCA domain at the carboxyl region (Fig. 5B), which is functionally important for the SCAR/WAVE proteins (Machesky et al., 1999; Basu et al., 2005; Zhang et al., 2008). Therefore, tut1 is likely a null mutant allele.

To verify the identity of the putative TUT1 gene, we conducted a complementation assay. To this end, we transformed a full-length wild-type complementary DNA (cDNA) fragment of LOC_Os01g11040 under the control of the maize ubiquitin promoter into the TUT1/tut1 heterozygous plants. The transgene fully rescued the tut1 phenotype, including the degenerated panicle phenotype (Fig. 5, C and D). Moreover, the transgenic plants carrying an RNAi transgene had a reduced expression level of LOC_Os01g11040 (Supplemental Fig. S4) and showed tut1-like phenotypes, including reduced plant height, degenerated panicles, cuticle defects, blunt trichomes, and increased ROS levels (Fig. 5, F–H; Supplemental Fig. S4). These results demonstrate that LOC_Os01g11040 represents the TUT1 gene.

Analysis of TUT1 Expression

To investigate the expression pattern of TUT1 in rice, we used qRT-PCR to measure the TUT1 mRNA levels...
in various organs or tissues of wild-type plants, including root, node, stem, immature leaf, mature leaf, immature panicle, and mature panicle (Fig. 6A). Consistent with the tut1 phenotype, the level of TUT1 mRNA was highest in the panicles, followed by leaves. We also detected TUT1 expression in roots, stems, and nodes, but at lower levels compared with that in panicles and leaves (Fig. 6A).

Figure 5. Map-based cloning of TUT1. A. TUT1 maps on chromosome 1. TUT1 was roughly mapped to a 440-kb interval between the SSR markers RM151 and RM272. The number of recombinants between the molecular markers and TUT1 are indicated. TUT1 was fine mapped to an interval of about 196 kb between the single nucleotide polymorphism (SNP) markers P18 and P22. This region contained 28 predicted genes. A one-nucleotide transversion mutation was found in a gene annotated as a SCAR-like protein2 (LOC_Os01g11040). The mutation site at nucleotide 1,556 (C–G) in the sixth exon is indicated by the asterisk. Ch 1, Chromosome 1. B. Conserved domain organization of TUT1, showing the SCAR/WAVE homolog domain (SHD), basic domain (B), envelope glycoprotein C (EGC) domain, pantetheine attachment site (PPAS), and VCA domain as black rectangles. The mutation alters the 519th codon (Ser) to a termination codon (shown as a white dot in the EGC domain). The asterisk indicates the termination codon. C. Phenotypes of the wild type (WT), complemented transgenic line (Com), and tut1 at the heading stage. Bar = 10 cm. D. Mature panicle phenotypes of the wild type, complemented line, and tut1. Bar = 2 cm. E. TUT1 expression analysis of the wild type and tut1 by quantitative reverse transcription (qRT)-PCR. F. Morphology of wild type, tut1, and RNA interference (RNAi) transgenic lines (R1 and R2) at the heading stage. Bar = 20 cm. G. Panicles of wild type, tut1, and RNAi transgenic lines (R1 and R2) at the flowering stage. Bar = 3 cm. H. Anther cuticle of wild type, tut1, and representative complemented line. Bars = 20 cm (F), 3 cm (G), and 5 μm (H).
To analyze the spatial expression pattern of TUT1, we generated transgenic plants harboring a TUT1:GUS reporter gene. Five independent TUT1:GUS transgenic lines were analyzed and gave similar results. We found GUS activity in mature glume, seed germ, root, coleoptile, node, and leaf (Fig. 6, B–E), consistent with the tut1 phenotype of short roots, small seeds, dwarf plants, and degenerating leaves. Close examination of TUT1:GUS expression in the panicle revealed TUT1 expression in glumes, anthers, and mature pollen grains (Fig. 6, F–I). In the anther, TUT1:GUS expression mainly occurred in the epidermis and endothecium, with a lower level in the tapetum and microspore (Fig. 6H). TUT1:GUS was also highly expressed in mature pollen grains (Fig. 6I). These results suggest that the expression pattern of TUT1 is consistent with its important role in panicle development, especially in anther development.

TUT1 Encodes a Functional SCAR/WAVE Protein

Sequence alignment suggested that TUT1 encodes a SCAR/WAVE-like protein (Supplemental Fig. S5; Supplemental Methods S1). The classic SCAR/WAVE family proteins contain a SHD, a short stretch of basic amino acids in the N-terminal region, and a VCA domain in the C-terminal region (Fig. 7A). A sequence comparison indicated that TUT1 contains all functionally important domains found in eukaryotic SCAR/WAVE proteins (Fig. 7A). TUT1 exists as a single-copy gene in the rice genome. In a previous study, TUT1 was also named OsSCAR1 (Zhang et al., 2008). Three additional rice genes encode proteins containing the SCAR homolog domain, annotated as OsSCAR2, OsSCAR3, and OsSCAR4, of which OsSCAR2 lacks the putative VCA domain (Fig. 7A; Supplemental Fig. S5). TUT1/OsSCAR1 shared the highest sequence similarity with SCAR-like proteins from Brachypodium distachyon (68% identity), Sorghum bicolor (63% identity), Setaria italica (62% identity), and Aegilops tauschii (62% identity), followed by those from S. bicolor and maize, Arabidopsis, and other plant species (Fig. 7B; Supplemental Fig. S5). Arabidopsis has one SCAR-like protein (AtSCAR5/SCAR1) and four SCAR proteins (AtSCAR1-4; Zhang et al., 2008), of which AtSCAR1 and AtSCAR3 show higher sequence similarity to TUT1 than do AtSCAR2 and AtSCAR4 (Fig. 7B; Supplemental Fig. S6).

Mutations in the SCAR/WAVE complex genes of Arabidopsis (atscar2) and maize (brk1) cause defective trichome development (Frank and Smith, 2002; Frank et al., 2003; Basu et al., 2005; Zhang et al., 2005). In the tut1 mutant, development of trichomes was also impaired, characterized by blunted tips of the trichomes (Fig. 7, C and D), suggesting that TUT1 plays an evolutionarily conserved role in trichome development. Moreover, similar to that in the maize brk mutants (Frank et al., 2003), the cell wall at the junction between two epidermal cell layers was affected in tut1. The tut1 cells were more rounded compared with the wild type (Supplemental Fig. S7).

The VCA domain of SCAR/WAVE proteins acts to activate the Arp2/3 complex, and consequently, increases the actin filament nucleation and branching activities of the complex (Stradal et al., 2004). Sequence
alignment analysis showed that the carboxyl-terminal region of the TUT1 protein contains a conserved Wiskott-Aldrich Homology2 region and acidic region (Supplemental Fig. S5). In an actin polymerization assay, the VCA domain of TUT1 significantly increased actin filament assembly in the presence of bovine Arp2/3 (Supplemental Fig. S8), indicating that the TUT1-VCA domain is capable of activating Arp2/3. Taken together, these results indicate that TUT1 is a functional SCAR/WAVE protein.

Impaired Actin Filament Organization in tut1

The data presented above indicate that TUT1 can activate Arp2/3. The SCAR/WAVE-activated Arp2/3 complex is involved in the regulation of the formation of actin filaments. This finding suggests that TUT1 may play a role in actin filament organization and dynamics. Further studies are needed to investigate the specific mechanisms by which TUT1 regulates actin filament formation and the implications of these findings for plant development.
of loosely aligned actin bundles at the earliest stages of trichome branch elongation (El-Din El-Assal et al., 2004b). To assess the possible regulatory role of TUT1, we examined the organization of F-actin in the trichomes of wild-type and tut1 leaves by Alexa Fluor 488-phalloidin staining (Life Technologies). In the trichomes of wild-type leaves, the F-actin filaments were well organized along the longitudinal axis (Fig. 8A). However, in tut1 leaves, we observed significantly fragmented F-actin filaments (Fig. 8B), consistent with the altered shape of these cells in tut1 (Fig. 7, C and D). Statistical analysis showed that the mean length of actin filaments in tut1 trichomes was significantly shorter compared with the wild type (Fig. 8C). The number of actin filaments increased in tut1 trichomes (Fig. 8D). Our results suggest that TUT1 is a SCAR/WAVE protein and is involved in F-actin organization in rice.

DISCUSSION

In this study, we functionally characterized rice TUT1 and presented multiple lines of evidence showing that TUT1 encodes a functional SCAR/WAVE protein that plays an important role in regulating F-actin organization. We also demonstrate TUT1 functioning in multiple aspects of rice growth and development, especially in panicle development.

Our present work shows that TUT1, a SCAR/WAVE-like protein in rice, can activate the Arp2/3 complex to modulate actin polymerization. The SCAR/WAVE complex plays an important role in regulating actin filament arrangement by activating the Arp2/3 complex to modify actin filament organization (Blanchon et al., 2000; Frank et al., 2004; Beltzner and Pollard, 2008). Mutations in key components of the SCAR/WAVE-Arp2/3 complex result in various defects in yeast and animals (Winter et al., 1999; Di Nardo et al., 2005). In many cases, these mutations cause embryonic arrest and zygotic lethality by impairing various cellular activities (Severson et al., 2002; Sawa et al., 2003; Vartiainen and Machensky, 2004). However, in Arabidopsis and maize, mutations in the SCAR/WAVE complex genes cause relatively weak phenotypes, affecting cell morphogenesis and development of the trichome and the hypocotyl (Frank and Smith, 2002; Uhrig et al., 2007). Notably, the rice tut1 mutant shows a pleiotropic phenotype during its entire life cycle, including shorter roots, reduced plant height, degenerating leaves, and degenerating panicles, suggesting that TUT1 functions as a housekeeping gene during rice growth and development. A recent study revealed that EARLY SENESCENCE1 (ES1), identical to TUT1, plays an important role in regulating water loss (Rao et al., 2015), suggesting that TUT1/ES1 is involved in various developmental and physiological processes.

The most severe defects in tut1 occur in panicles, consistent with the observation that the panicle has the highest level of TUT1 transcripts among the examined organs and tissues. In the panicle, we detected strong TUT1-GUS expression in glumes and anthers but not in the pistil. Consistent with the expression pattern of TUT1, whereas development of glumes, anthers, and pollen grains is severely affected in tut1, resulting in partial male sterility, the pistils and carpels remain relatively normal. Since TUT1 encodes a SCAR/WAVE-like protein, we presume that TUT1 is involved in panicle development by regulating F-actin organization. The biochemical analysis shows that activation of the TUT1-VCA domain is capable of activating the Arp2/3 complex in vitro. We noticed that the TUT1-VCA polypeptide shows a lower activity compared with SCAR/WAVE proteins of Arabidopsis and maize. We speculate that the reduced activity might be caused by the assay condition, which may not be optimized for the rice TUT1-VCA polypeptide, or by improper folding of TUT1-VCA recombinant polypeptide.

Panicle and spikelet development is controlled by multiple genes that function in different cellular processes, such as cuticle formation and cell differentiation (Komatsu et al., 2001; Ikeda et al., 2004; Zheng et al., 2005; Panikashvili et al., 2009). The cuticle plays an important role in rice flower morphogenesis, anther

Figure 8. F-actin organization in the wild type (WT) and tut1. A and B, F-actin organization in wild-type (A) and tut1 (B) mutant leaf trichomes visualized by staining with Alexa Fluor 488-phalloidin. Arrow indicates long actin filaments and arrowhead indicates fragmented F-actin. Bars = 20 μm. C, Analysis of average filament length in the wild type and tut1. ***, P < 0.01 (Student’s t test). D, Analysis of number of filaments in trichomes of the wild type and tut1. ***, P < 0.01 (Student’s t test). Over 20 trichomes were used in these analyses.
and pollen development, pathogen resistance, and salt tolerance (Bird et al., 2007; Qin et al., 2011, 2013). However, our understanding of cuticle function in panicle development remains limited. Considering that the panicle apical degeneration phenotype of tut1 is closely associated with cuticle disorganization and deficiency, it is reasonable to presume that the formation of the cuticle affects panicle development in rice. The complex regulation of cuticle formation includes vesicle trafficking, fatty acid metabolism, and transport processes (Yeats and Rose, 2013). Vesicle trafficking that can be regulated by F-actin is important for wax secretion from epidermal cells in Arabidopsis (McFarlane et al., 2014). Consistently, we found that fatty acid metabolism is impaired in tut1, suggesting that abnormal fatty acid metabolism may cause deficient cuticle formation and affect F-actin-regulated vesicle trafficking in tut1. A recent study revealed that Arp2/3 is involved in modulating the cell wall thickness gradient from tip to base of the trichome branch by regulating F-actin meshwork formation (Yanagisawa et al., 2015). Consistently, we also observed the abnormal arrangement of F-actin in the tut1 mutant, suggesting that the Arp2/3-SCAR/WAVE complex plays a conserved role in leaf trichome development in plants. Compared with mutants in Arabidopsis SCAR/WAVE proteins, the rice tut1 mutants show multiple phenotypes, especially in panicle development. Therefore, the diverse functions of SCAR/WAVE family proteins need to be studied in different varieties of plants to provide a comprehensive understanding of SCAR/WAVE functions.

Additionally, an important cause of rice yield reduction is defective panicle development (Xing and Zhang, 2010). Understanding the mechanism of panicle development should be helpful to mitigate the crop yield reduction caused by defective panicle development. However, agricultural applications to avoid panicle degeneration remain relatively limited, and additional research will be required to identify the molecular mechanisms that can be modified to confer fully developed panicles in rice and to understand the complicated regulation of panicle apical spikelet development, including the effects of temperature, nutrition, and genetic background (Cheng et al., 2011). The identification and characterization of genes that function in rice panicle development and production, such as TUT1, provide the first steps toward genetic manipulation to engineer or breed high-production rice.

MATERIALS AND METHODS

Plant Materials and Growth Conditions

TUT1 was screened from a gamma ray-induced M₂ population in the japonica cultivar (rice [Oryza sativa] ‘Zhonghua 11’). Plants were grown in an experimental field in Beijing (39° 54’ 20” N, 116° 23’ 29” E) from May to January under long-day conditions and in Lingshui (18° 30’ 00” N, 110° 01’ 20” E) from January to May under short-day conditions. When grown under the laboratory condition, seeds of the wild type and tut1 were germinated in darkness at 30°C for 3 d and then transferred to a SANYO culture chamber (MLR-351H) with a 16-h/8-h photoperiod at 30°C.

Histological Analysis

For light microscopy, samples were fixed at 4°C for 12 h in 3.2% (v/v) glutaraldehyde in 0.025 M phosphate buffer (pH 6.8) and dehydrated with ethanol. The samples were embedded overnight at room temperature in embedding medium (Leica Historesin) and then sectioned at 4-μm thickness using a Leica RM2265 rotary microtome. The sections were then stained with 0.05% (w/v) toluidine blue for 1 min and observed with a light microscope (Olympus BX51). To measure chlorophyll contents, chlorophyll was extracted from fresh leaves of wild-type and tut1 plants and analyzed using a spectrophotometer (Beckman Coulter DU800) as described (Lichtenthaler, 1987). For cell death staining, samples were treated with 1% (w/v) Evans blue for 6 h and then treated with ethanol for observation. For ROS staining, samples were treated with 0.05% (w/v) NBT at 28°C overnight and then treated with ethanol for observation.

Gene Expression Analysis

For qRT-PCR analysis, total RNA was extracted from root, node, stem, immature leaves, mature leaves, immature panicle, and mature panicle using the RNeasy Plant RNA Purification Kit (Qiagen Biotech). Total RNA (2 μg) was reverse transcribed into cDNA and then used as a template for qRT-PCR analysis with specific primers (TUT1_RT-PCR_F and TUT1_RT-PCR_R; Supplemental Table S1). qRT-PCR was performed using the UltraSYBR mixture (CWBio) according to the manufacturer’s instructions, and the reactions were run in a CFX96TM real-time PCR system (Bio-Rad). The rice glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene was used as an internal control with 40 PCR cycles using primers GAPDH_F and GAPDH_R (Supplemental Table S1).

SEM and Transmission Electron Microscopy

For SEM, samples were fixed overnight at 4°C with 2.5% (v/v) glutaraldehyde in 1 M phosphate buffer (pH 7.4). The samples were dehydrated in a graded ethanol series and substituted with a graded isoamyl acetate series. The samples were critical-point dried, sputter coated with gold, and observed using a Hitachi S-3000N scanning electron microscope at 10 kV. For transmission electron microscopy, samples were fixed overnight at 4°C with 2.5% (v/v) glutaraldehyde in 0.1 M phosphate buffer (pH 7.4). After three washes with phosphate buffer, samples were fixed overnight in 2% (v/v) O₂N₂ in phosphate buffer. After being stained and dehydrated in a graded ethanol series, the samples were submerged in LR White resin (Sigma-Aldrich) and polymerized for 2 d. Ultrathin cross sections were prepared using a Leica EM UC6 ultra-microtome. Ultrathin sections were observed under a FEI Tecnai Spirit (120 kV) transmission electron microscope.

Map-Based Cloning of TUT1

tut1 was crossed with cv Zhenshan 97 (indica) to generate the F₂ mapping population. TUT1 was mapped to a 196-kb region on chromosome 1 using SSR markers and SNP markers (Supplemental Table S1). Exons of candidate genes in this region were amplified from tut1 and wild-type plants. The sequences were compared using DNASTAR software and the National Center for Biotechnology Information Web site. The full-length open reading frame of TUT1 was amplified using reverse-transcribed DNA as a template. The primers used were TUT1_OE_F and TUT1_OE_R (Supplemental Table S1). The full-length open reading frame was then cloned into the SK vector using the Sall and Smal restriction sites and then cloned into the binary vector pTCK303 using the Km_R resistance marker and then transferred to a SANYO culture chamber (MLR-351H) with a 16-h/8-h photoperiod at 30°C.
and Spd restriction sites (Supplemental Table S1; Wang et al., 2004). A. tumefaciens-mediated transformation was used to transform the resulting construct, pTCK303-TUT1, into a compound callus pool containing wild-type, heterozygous, and homozygous callus generated from TUT1/tut1 heterozygous seeds. More than two independent transgenic lines were produced that complemented the tut1 phenotypes. A specific DNA fragment of TUT1 was amplified from the cv Zhonghua 11 cDNA using the PCR primers RNAi_F (KpnI and SpeI) and RNAi_R (BamHI and SacI; see Supplemental Table S1). The PCR products were then digested with Spel/Sacl and KpnI/BamHI, respectively. The two digested fragments were sequentially cloned into the vector pTCK303, which contains a maize (Zea mays) ubiquitin promoter, to make the final pTCK303/TUT1 RNAi plasmid as previously described (Wang et al., 2004). This final construct was introduced into the wild-type background plant by A. tumefaciens-mediated transformation (Hiei et al., 1994).

Fatty Acid Content Analysis

For fatty acid analysis, 50 mg of tissue was ground in liquid nitrogen and then added to 1.5 mL of extraction buffer (2.5% [v/v] sulfuric acid in methanol) and incubated at 80°C for 2 h. After the sample cooled to room temperature, 2 mL of 0.9% (w/v) NaCl and 1 mL of hexyl hydride were added to the extraction buffer, and the mixture was vortexed. The supernatant was centrifuged at 4,000 rpm for 10 min at room temperature, and the supernatant was transferred to a new microfuge tube, then dried to powder with a vacuum pump. The powder was dissolved in 50 μL of isoamyl acetate for analysis.

Fluorescence Microscopy of Actin Filaments

F-actin was stained using the previously described method (Olyslager and Veldhuijzen, 1998; Yang et al., 2011; Zhang et al., 2011). Mature spikelets were incubated in PEM buffer (100 mM PIPES, 10 mM EGTA, 0.3 mM mannitol, and 5 mM MgSO4, pH 6.9) and 0.66 mM Alexa Fluor 488-phalloidin (Life Technologies). After incubation at 4°C, samples were observed in 50% [v/v] glycerol with a confocal microscope (Olympus FLUOVIEW FX100).

Sequence data from this article can be found in the GenBank/EMBL databases and the Gramene Web site under the following accession numbers: TUT1/OsSCAR1 (NP_001172227.1), OsSCAR2 (NP_001049845), OsSCAR3 (NP_001049846), TUT1/OsSCAR1 (NP_001172227.1), OsSCAR2 (NP_001049845), OsSCAR3 (NP_001049846), HsWAVE1 (AAD33052), MmWAVE1 (AAL75574), CeWVE-1 (NP_493028), GmSCAR (XP_006585168), SlSCAR (XP_004233023), StSCAR (XP_006362414), ZmSCAR6 (AFW88660), AetSCAR (EMT14604), BdSCAR (XP_003565325), SiSCAR (XP_004968593), SiSCAR (Si00322200), CsSCAR (XP_000149068), GmSCAR (XP_000685168), SiSCAR (XP_004233023), SiSCAR (XP_003624141), HsWAVE1 (AADD30352), MmWAVE1 (AAJ75574), CeWVE-1 (NP_493028), DmSCAR (NP_694777), and DdSCAR1 (AAD29883).

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Quantitation of agronomic traits in the wild type and tut1.

Supplemental Figure S2. Quantitation of anther degeneration in the wild type and tut1.

Supplemental Figure S3. SEM and transmission electron microscopy examination of cuticle in wild-type and tut1 leaves.

Supplemental Figure S4. The phenotypes of TUT1 RNAi transgenic lines.

Supplemental Figure S5. Amino acid sequence alignment of TUT1 and other SCAR/WAVE family proteins.

Supplemental Figure S6. Phylogenetic tree of SHD of SCAR/WAVE proteins from Arabidopsis and rice.

Supplemental Figure S7. Analysis of mature leaves of the wild type and tut1 by light microscopy.

Supplemental Figure S8. Activation analysis of the TUT1-VCA domain in vitro.

Supplemental Table S1. Primers used in this study.

Supplemental Methods S1. Literature cited.

ACKNOWLEDGMENTS

We thank Dr. Kang Chong (Institute of Botany, Chinese Academy of Sciences) for providing the pTCK303 vector, and Shufeng Sun (Institute of Biophysics, Chinese Academy of Sciences) for technical assistance in transmission electron microscopy.

Received February 12, 2015; accepted July 27, 2015; published August 4, 2015.

LITERATURE CITED

Copyright © 2015 American Society of Plant Biologists. All rights reserved.
Rice TUT1 Regulates Panicle Development

