Nonphotochemical Chlorophyll Fluorescence Quenching: Mechanism and Effectiveness in Protecting Plants from Photodamage

Alexander V. Ruban

School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom

ORCID ID: 0000-0001-8554-0249 (A.V.R.).

We review the mechanism underlying nonphotochemical chlorophyll fluorescence quenching (NPQ) and its role in protecting plants against photoinhibition. This review includes an introduction to this phenomenon, a brief history of major milestones in our understanding of NPQ, definitions, and a discussion of quantitative measurements of NPQ. We discuss the current knowledge and unknown aspects in the NPQ scenario, including the following: ΔpH, the proton gradient (trigger); light-harvesting complex II (LHCII), PSII light harvesting antenna (site); and changes in the antenna induced by ΔpH (change), which lead to the creation of the quencher. We conclude that the minimum requirements for NPQ in vivo are ΔpH, LHCII complexes, and the PsbS protein. We highlight the most important unknown in the NPQ scenario, the mechanism by which PsbS acts upon the LHCII antenna. Finally, we describe a novel, emerging technology for assessing the photoprotective “power” of NPQ and the important findings obtained through this technology.

"Real knowledge is to know the extent of one's ignorance." — Confucius

1 This work was supported by the Royal Society Wolfson Research Merit Award, The Leverhulme Trust grant RPG-2012-478, and a grant from Biotechnology and Biological Sciences Research Council BB/L019027/1.

* Address correspondence to a.ruban@qmul.ac.uk.

1

1903

www.plantphysiol.org © 2016 American Society of Plant Biologists. All Rights Reserved.

Copyright (c) 2020 American Society of Plant Biologists. All rights reserved.
reaction centers, electron transport, proton translocation across the membrane, ATPase activity, and carbon assimilation (Walker, 1987; Ruban, 2013; Demmig-Adams et al., 2014). At various times, NPQ research has led to the development of new methods to define and quantify this protective process (Papageorgiu and Govindjee, 1966; Murata and Sugahara, 1969; Schreiber, 1986; Oxborough and Horton, 1988; Weis and Berry, 1987), the structure of the photosynthetic antenna complexes (Nield and Barber, 2006; Liu et al., 2004) and their organization in the membrane (Dekker and Boekema, 2005; Ruban and Johnson, 2015), the dynamics of the antenna complexes (Garab et al., 1988; Ruban et al., 1994; Miloslavina et al., 2008; Krüger et al., 2012, Liguori et al., 2015), pigment compositions (Rees et al., 1989; Demmig-Adams, 1990) and dynamics in the membrane (Demmig-Adams and Adams III, 1992; Matsubara et al., 2001; Jahns et al., 2009), and excitation energy transfer and dissipation (Van Amerongen et al., 2000; Polivka and Sundström, 2004; Renger and Holzwarth, 2008; Cheng and Fleming, 2009; Scholes et al., 2011). A long and often convoluted pathway has led to the current understanding of the molecular mechanism underlying NPQ. Indeed, it took some time to define and separate NPQ processes, learn how to measure and quantify it, obtain molecular insights into antenna structure, reveal its dynamic nature, and understand its role in photoprotection. Recently, numerous review articles about various aspects of NPQ have emerged, a recent collection of which was published in the fortieth volume of the series Advances in Photosynthesis and Respiration, 2014 (Demmig-Adams et al., 2014). Hence, the aim of this review is to provide complementary information highlighting the most current known and unknown aspects of the most highly investigated mechanism of NPQ that takes place in plants. This article also discusses emerging work on quantitative approaches to assessing the effectiveness of NPQ in protecting plants against photoinhibition.

DEFINITION OF NPQ

NPQ was introduced as a reflection of the processes that arise in the photosynthetic membrane that are not photochemical in origin. Indeed, the activity of RCIIs causes a significant reduction, or quenching, of chlorophyll fluorescence, since it consumes light energy that otherwise could be released through fluorescence, interconversion, or intersystem crossing (Duyens and Sweers, 1963; Govindjee, 1971; Myers, 1974). However, fluorescence can also be quenched when all RCIIs are closed, hence not consuming any absorbed light energy (Papageorgiu, 1968; Murata and Sugahara, 1969; Wraight and Crofts, 1970). This closure was first achieved by treating chloroplasts that were constantly illuminated with actinic light with the PSI acceptor site inhibitor DCMU. The inhibitor caused the closure of RCIIs within the first second of illumination, quickly reversing the photochemically quenched fluorescence, while the remaining quenched fluorescence was reversed on a much slower time scale (Papageorgiu, 1968). This slowly relaxing quenching is called nonphotochemical quenching, or energy-dependent quenching (qE; Wraight and Crofts, 1970). The term qE remains popular and is considered to be the major component of NPQ (Fig. 1A).

In the 1980s, the introduction of the pulse amplitude modulated (PAM) fluorescence technique opened up new opportunities for detailed study of NPQ (Schreiber, 1986; Oxborough and Horton, 1988). Figure 1A depicts a typical PAM induction measurement assessing the state of PSI in the dark, the Fm fluorescence level, when all RCIIs are open, and the Fm level, when all RCIIs are closed in response to a high-intensity pulse (normally 0.5-1.0 s in duration). From this simple process, one can calculate the quantum efficiency of PSI as ΦPSI = (Fm − F0)/Fm. In fact, this value is actually the relative amount of fluorescence that is photochemically quenched due to the activity of the reaction centers. Interestingly, the fluorescence does not immediately return to the initial Fm level, because the acceptor site of PSII remains reduced for some time. This process can be accelerated by the use of far red light, which preferentially excites PSI, causing faster oxidation of the Cytb/f complex and producing a pool of oxidized mobile electron carriers, plastoquinones, which remove electrons from PSII (Hill and Bendall, 1960; Blankenship, 2002). Actinic light illumination is then applied for approximately 5 min. During this time, saturating light pulses are used every minute to determine the level of Fm. This level is progressively quenched and stabilizes at the end of the illumination period. The quenched Fm is termed Fm’. Hence, the level of NPQ can be calculated as (Fm − Fm’)/Fm’. Another parameter, qN, is used to calculate nonphotochemical quenching: qN = (Fm − Fm’)/Fm. This parameter describes the percentage of quenching in a similar manner to ΦPSI. The NPQ calculation reflects the ratio of the rate constant of NPQ to the sum of the remaining constants reflecting all other dissipation pathways in the membrane, such as fluorescence, internal, and interconversion (Krause and Weis, 1991). qE is defined in the context of this analysis as the rapidly reversing component of qN or NPQ (Fig. 1A). Normally, this component is considered to recover within 5 min of switching off the actinic light. Notably, the trigger of qE, ΔpH, usually collapses within 10 to 20 s (Ruban, 2013). Hence, it was proposed in the early days of NPQ research that the NPQ process involved some conformational changes within the photosynthetic membrane that respond to ΔpH. As shown in the figure, qE appears to be the major component of NPQ. The remainder was previously termed qI, i.e. the irreversible NPQ component related to photoinhibition/damage to RCIIs (Krause and Weis, 1991). It was later discovered that the formation of zeaxanthin is closely related to the NPQ mechanism (Demmig-Adams et al., 1989, 1990; Demmig-Adams and Adams III, 1992; for review see Demmig-Adams et al., 2014) and as such, a portion of qI is often termed qZ to reflect the long-term quenching.
effect that is correlated with the presence of this pigment (Nilkens et al., 2010). In addition, other sustained components of NPQ are triggered by low temperature acclimation (Verhoeven, 2013), prolonged illumination in the presence of zeaxanthin (Ruban and Horton, 1995), slow proton equilibration between different membrane compartments (Ruban and Horton, 1995; Joliot and Finazzi, 2010), or simply the formation of high levels of NPQ in some types of photosynthetic materials (Ruban et al., 1993, 2004; Ware et al., 2015b). Hence, qI appears to be a highly complex component of NPQ that remains difficult to interpret, and the temporal criterion for quantification of qE is rather ambiguous. Therefore, we will use the term protective NPQ (or simply NPQ) instead of qE; the former includes all moderately or slowly reversible components that are not related to photoinhibition (for details, see “Protective Effectiveness of NPQ”).

MECHANISM OF NPQ

NPQ resides in the antenna (Bassi and Caffarri, 2000; Fleming et al., 2012; Ruban et al., 2012; Wilk et al., 2013; site), which undergoes a change triggered by ΔpH (trigger; Horton et al., 1996; Strand and Kramer, 2014). As a result of this change, the quencher pigment(s) begins receiving the energy harvested by the light-harvesting complex (LHCII) antenna and dissipating it as heat. Hence, ΔpH provides feedback control over light harvesting efficiency in the photosynthetic membrane (Ruban et al., 2012; Strand and Kramer, 2014).

Trigger: Protons

NPQ is triggered by ΔpH either directly, by protonation of antenna components, or indirectly, by the activity of the xanthophyll cycle(s) (Ruban et al., 2012). It also makes sense to refer to the proton gradient as the trigger, since in some organisms such as diatom algae, high levels of NPQ can be induced and sustained in the dark or upon addition of uncouplers in the absence of ΔpH (Ruban et al., 2004; Lepetit et al., 2012). In addition, acidiﬁcation of the incubation buffer can induce a type of ﬂuorescence quenching that possesses features similar to NPQ (Rees et al., 1992). This ﬁnding provides justiﬁcation for the use of acidiﬁcation techniques to study ﬂuorescence quenching in isolated antenna complexes (Ruban et al., 1994; Bassi and Caffarri, 2000). Importantly, since ΔpH buildup is generated as a result of electron transport, a variety of pathways contribute to its amplitude (for a recent, comprehensive review, see Strand and Kramer, 2014). In addition, by consuming protons, ATPase exerts a modulatory effect.
upon ΔpH. Also, a recent report showed that not only ATPase, but also a specialized proton/potassium antipporter, can influence the rate of NPQ relaxation under low light by accelerating the collapse of ΔpH (Armbuster et al., 2014). In fact, the trigger is kept under control as well (Fig. 1B, regulatory points 1 and 2). It appears that cyclic electron transport around PSI is the major contributor to the component of ΔpH that triggers the largest portion of NPQ (Munekage et al., 2004). Recent work by Sato et al. (2014) revealed that cyclic electron transport-generated ΔpH contributes 60% to 80% to NPQ formation. Therefore, the ratio of PSII to PSI defined, for example, over the course of acclimation is likely to affect the trigger, and therefore the amplitude, of NPQ (Brestic et al., 2015). Remarkably, chloroplasts from plants grown on lincomycin, which had therefore lost almost all of PSII and 80% of PSI, had ΔpH values close to those of the control, as well as very high levels of NPQ (Belgio et al., 2012, 2015). Recently, modulating ΔpH with artificial proton shuttles such as dianisodurene has successfully been used to uncover vital mechanistic clues about the sensitivity of responses of antenna components to lumen acidification during the induction of NPQ (see below in “Site: LHCII Antenna and PsbS”). Lumen protons target three key components involved in NPQ: violaxanthin de-epoxidase, and the LHCII antenna (Fig. 1B, target point 5; Ruban et al., 1994, 1996; Walters et al., 1994; Liu et al., 2008; Belgio et al., 2013). The pK of the lumen-exposed side of the thylakoid membrane is as low as 4.1 (Åkerlund et al., 1979). In vivo lumen acidification resulting from ΔpH formation is estimated to lead to a pH of 5.5 (Noctor et al., 1991; Kramer et al., 1999). The pK for NPQ in chloroplasts devoid of zeaxanthin is 4.7, and the pK of quenching in the isolated major LHCII complex without zeaxanthin is approximately 4.5 (Wentworth et al., 2001) but is 1 to 2 pH units higher in the presence of zeaxanthin or the monomeric LHCII protein CP26 (Ruban and Horton, 1999; Wentworth et al., 2001). The pK for PsbS, according to Dominici et al. (2002), should be approximately 6.0 to 6.5. A similar pK for violaxanthin de-epoxidase was reported by Jahns et al. (2009). Hence, it appears that the most lumen pH-sensitive components of the thylakoid membrane are PsbS, violaxanthin de-epoxidase, monomeric antenna complexes, and LHCII that carries zeaxanthin produced by de-epoxidase (Ruban et al., 2012). Therefore, for the LHCII antenna to respond to lumen pH (Fig. 1B, target point 5) and become quenched, it is important to achieve activation of de-epoxidase (target point 3) to produce zeaxanthin and activation of PsbS (target point 4). Both LHCII and PsbS contain a number of lumen-exposed residues that can receive protons. Two of these residues in monomeric LHCII and two in PsbS have been identified using N,N′-dicyclohexylcarbodiimide (DCCD) labeling and site-directed mutagenesis (Walters et al., 1996; Li et al., 2004). However, tritium labeling of LHCII in vivo suggested that each monomer can sequester up to 17 protons (Zolotareva et al., 1999). It may well be possible that since monomeric antenna receive protons at lower levels of ΔpH, they are the primary sites for the quenching that eventually spreads to the bulk of LHCII trimers. The idea that the minor antenna is the site for NPQ is currently the most supported idea that has emerged from the work of Fleming and Bassi (Ahn et al., 2008; Avenson et al., 2009).

There has never been an easy way to measure the proton gradient. The use of 9-aminoacridine is the most common way to assess this gradient in thylakoids and chloroplasts (Ruban, 2013); however, this technique is difficult to perform in leaves. This task was previously accomplished through indirect measurements based on the light-induced change in absorption at 518 nm, which is believed to reflect the electrochromic shift of carotenoids (Kramer et al., 1999). However, this method was recently subjected to a critical reassessment, which claimed that the observed steady-state component of the 518-nm absorption change that was used as a measure of the proton gradient (Kramer et al., 1999) was due to interference from the NPQ-associated absorption at 535 nm (for a more detailed discussion, see Johnson and Ruban, 2014). This work also casts doubt that the electric field gradient Δφ makes a noticeable contribution to the proton motive force in photosynthesis. The 535-nm change is closely related to NPQ and, since the latter is triggered by ΔpH, measurements of absorption at 518 nm would, to a certain extent, reflect the amplitude of NPQ and therefore, indirectly, ΔpH. Therefore, developing accurate, direct, nondestructive ways to measure ΔpH in vivo would be a crucial step toward monitoring the dynamics of this important parameter during the course of light and metabolic alterations in order to identify the causes of altered NPQ levels.

Site: LHCII Antenna and PsbS

Some 25 years ago, a model of the relationship between NPQ and the PSIII yield pointed toward the involvement of the PSI antenna in NPQ (Genty et al., 1989). Indeed, the NPQ quencher was found to reduce not only Fm, but also Ft, fluorescence (Fig. 1A; Horton and Ruban, 1993). The quencher persists at 77 K and preferentially quenches major LHCII complex bands at 680 and 700 nm (Ruban et al., 1991). Results from early fluorescence lifetime analysis were consistent with quenching taking place in the PSIII antenna (Genty et al., 1992). Later, this type of spectroscopy revealed similarities between decay-associated spectral changes upon the transition into the quenching state in both isolated LHCII complexes and intact chloroplasts (Johnson and Ruban, 2009). Plants lacking a majority of LHCII antenna complexes display strongly reduced NPQ (Jahns and Krause, 1994; Havaux et al., 2007). The remaining quenching in the chlorina mutants or plants grown under intermittent light was attributed to the presence of some minor LHCII antenna complexes.
(Jahns and Krause, 1994; Havaux et al., 2007), as was previously proposed (Andrews et al., 1995). NPQ is modulated by cross-linkers, tertiary amines, antimycin A, DCCD, and magnesium in the same way as quenching in isolated LHCII antenna complexes (Ruban et al., 1992, 1994, 1996; Johnson and Ruban, 2009). The latter is induced at detergent concentrations below critical micelle concentration and leads to the aggregation of the complex. Hence, a hypothesis has been put forward that the in vivo aggregation of the LHCII antenna is a mechanism underlying NPQ (Horton et al., 1991; for further discussion, see “Change: LHCII Aggregation and Other”). Moreover, the discovery that xanthophyll cycle carotenoids are localized exclusively to LHCII antenna complexes (Thayer and Björkman, 1992; Bassi et al., 1993) and the subsequent discovery that NPQ is entirely dependent on the xanthophylls zeaxanthin and lutein (Pogson et al., 1998; Niyogi et al., 2001) leave little doubt that the NPQ site is the LHCII antenna (for more details, see Ruban et al., 2012).

The evolving knowledge of PSII antenna composition, structure, and organization in the photosynthetic membrane reveals its structural and functional heterogeneity (Boekema et al., 1995; Jansson, 1999; Dekker and Boekema, 2005; Caffarri et al., 2009; Kouril et al., 2011, 2012). The current model suggests that the LHCII antenna comprises three monomeric LHCII antenna complexes, CP24, CP26, and CP29, collectively known as the minor LHCII antenna, as well as several trimeric LHCIIIs known as the major LHCII antenna. The minor LHCII antenna comprises a structural and apparently functional (Dall‘Osto et al., 2014) bridge between the major trimeric LHCII complexes and the core antenna in the PSII supercomplex dimer (Fig. 2). Three types of LHCII trimers are distinguished based on their binding strength to the PSII supercomplex: S, M, and L, i.e. strongly, moderately, and loosely bound, respectively.

Only the localizations of S and M trimers have been identified. Loosely bound trimers are thought to diffuse relatively freely in the membrane, and therefore it is difficult to predict their localization. There can be two to four (and sometimes more) loosely bound trimeric LHCII complexes per PSII monomer (Melis and Anderson, 1983; Kouril et al., 2012; Wientjes et al., 2013). Studies of DCCD binding, in vitro quenching, and carotenoid binding on the monomeric LHCII complexes CP26 and CP29 have shown that both of these complexes can accept protons, can attain high levels of quenching, and are enriched in xanthophyll cycle carotenoids (Walters et al., 1994, 1996; Ruban et al., 1996, 1998; Bassi and Caffarri, 2000). These findings prompted researchers to propose that the site of NPQ is localized to the monomeric LHCII complexes (Bassi and Caffarri, 2000; Ahn et al., 2008; Avenson et al., 2009). This proposal was weakened by the observation that antisense and knockout mutants of Arabidopsis (Arabidopsis thaliana) lacking one or even two of the three monomeric LHCIIIs (CP24/29 double mutant) possess significant levels of NPQ (Andersson et al., 2001; de Bianchi et al., 2008). In addition, the efficiency of violaxanthin de-epoxidation located in the L2 site (Pan et al., 2011) is very low in the minor antenna complexes, particularly in CP29 due to strong binding at the site (Duffy and Ruban, 2012), implying that they cannot bind significant amounts of the postulated quencher zeaxanthin at this site. However, it may well be that quenching in the monomeric LHCII antenna complexes proceeds by the same mechanism (Mozzo et al., 2008) suggested for the major trimeric LHCII (Ruban et al., 2007). Further clarification of the role of monomeric LHCII complexes in NPQ is expected to come from investigations of the triple minor antenna knockout mutant (no-minor-antenna mutant, NOM; Dall‘Osto et al., 2014).

Another component that plays a crucial role in enabling the rapidly reversible component of NPQ, qE, is PsbS (Li et al., 2000). Structural work on the localization of this protein in the photosynthetic membrane suggested that it is not a part of the PSII supercomplex (Nield et al., 2000). Biochemical work convincingly showed that PsbS does not specifically bind pigments (Bonente et al., 2008). The atomic structure of PsbS has recently been solved (Fan et al., 2015). This protein is a dimer that is more stable at low pH. Acidification was suggested to cause a conformational change associated with alteration in lumenal intermolecular interactions. Hence, it appears that PsbS acts like a switch that is triggered by ΔpH and not like a quenching site. Therefore, this switch must be localized closer to the LHCII antenna to prompt it into the NPQ state or make it sensitive to protonation (Ruban et al., 2012). It is appropriate to use the term “sensitive” here, since qE can actually form without PsbS, provided ΔpH is high enough (Johnson and Ruban, 2011). Hence, in the model shown in Figure 1B, a straight line was drawn from the trigger to the site (LHCII antenna; action point 5), bypassing PsbS and zeaxanthin, which are presented

Figure 2. The structure of PSII antenna components. S, M, and L are the major LHCIIIs that are strongly, moderately, and loosely bound to the RCII core trimers, respectively. CP24, 26, and 29 are the minor monomeric antenna complexes. PSII core dimer is shown in red. PsbS dimer is shown with a dashed line pointing to the putative preferential interaction site in the dark.
as components of modulation. These components are actually important for physiological adjustment of NPQ (see “Change: LHCII Aggregation and Other”). Since PsbS was not detected in the structure of PSII supercomplex, it must be localized somewhere in the domains of the LHCII antenna (Fig. 2). In a recent study in which the site of PsbS binding in PSII in the moss Physcomitrella patens was probed biochemically, it was suggested that in the dark PsbS binds to several Lhcb proteins, with preferential binding to the periphery of the LHCII M trimer of the PSII supercomplex (Gerotto et al., 2015). The most recent report by Correa-Galvis et al. (2016) revealed that in higher plants in the dark, PsbS is localized around PSII supercomplexes, while in the NPQ state, PsbS begins to interact with various LHCII antenna components, with preferential binding to the major trimeric LHCII complex. Hence, the likely NPQ site could be trimeric rather than monomeric LHCII complexes. Interestingly, plants that grew on lincomycin (mentioned above) and possessed very few RCII (retaining trimeric and some reduced amounts of monomeric LHCII complexes) also contained PsbS (see above; Belgio et al., 2012, 2015). NPQ in these plants was modulated by PsbS (Ware et al., 2015b), suggesting that the site of NPQ is the LHCII antenna and PsbS together. However, this work did not prove that the monomeric LHCII is not involved in this process, but it provided a simpler model system for NPQ studies. It appears that only ΔpH, the LHCII antenna, and PsbS are required for NPQ in vivo. It is likely that PsbS is needed to make the LHCII antenna more rapidly responsive to natural levels of ΔpH. The structural arrangement of the LHCII antenna and PsbS around PSII does not appear to be required for the quenching to be observed, provided they are present in the membrane. However, the core complex may play a role in tuning NPQ kinetically by initiating the reassembly of the antenna around it in the dark (Dong et al., 2015; Ware et al., 2015b). The notion that the RCII core complex is not essential for quenching is consistent with the results of a recent work involving reconstitution of PsbS and the major LHCII complex into liposomes (Wilk et al., 2013). Interestingly, the liposomal system did not contain any minor antenna complexes, suggesting that LHCII trimers are sufficient partners for PsbS interaction and for the formation of the quencher.

Change: LHCII Rearrangements/Aggregation and the Formation of the NPQ quencher

The requirement for the ΔpH-triggered change in the LHCII antenna was first proposed by Horton’s group (Horton et al., 1991). They hypothesized that the proton gradient triggers LHCII antenna aggregation, which is required to establish the NPQ state. Indeed, isolated major LHCII complex aggregates under low detergent concentrations, which is greatly enhanced by acidification of the incubation buffer. This process is followed by fluorescence quenching that is strong enough to explain any levels of NPQ observed in nature (Ruban et al., 1994). Another attractive physiological implication of this hypothesis is that LHCII antenna aggregation is modulated by xanthophyll cycle carotenoids, which explains the occurrence of NPQ with or without zeaxanthin, as well as the concept of “plant illumination memory” and the effect of hysteresis (Horton et al., 1996; Ruban et al., 2012). Xanthophyll cycle carotenoids are localized to peripheral binding site V1 of the major LHCII complex (Ruban et al., 1999; Liu et al., 2004), although they also bind peripherally to the minor antenna complexes (Ruban et al., 1999; Xu et al., 2015b). This peripheral localization and the ability to regulate LHCII antenna aggregation have been explained by the differential hydrophobicity/polarity of violaxanthin and zeaxanthin (Ruban and Johnson, 2010; Ruban et al., 2012). The presence of zeaxanthin is thought to slow the reversibility of NPQ and promote the sustained component qZ due to the tuning of the aggregation of the LHCII antenna, a process that is slowly reversible (Noctor et al., 1991; Ruban and Horton, 1999). In addition, violaxanthin de-epoxidation alters the LHCII antenna aggregation state in vivo as well as energy transfer pathways within the LHCII antenna, bringing minor LHCII antenna complexes such as CP29 in closer contact with LHCII trimers (Ilioaia et al., 2013).

Although the LHCII antenna aggregation hypothesis for NPQ has prompted much research around LHCII complexes and many attempts to link it to NPQ using indirect biochemical and spectroscopic methods (for a recent review, see Ruban et al., 2012), there was a lack of crucial, direct proof of in vivo aggregation or rearrangements of the LHCII antenna triggered by ΔpH and of an explanation for the role of PsbS in the proposed rearrangements (Ruban et al., 2012). Several groups have undertaken a number of approaches to address these important points (Miloslavina et al., 2008; Holzwarth et al., 2009; Betterle et al., 2009; Johnson et al., 2011; Ware et al., 2015b). Indirect but novel spectroscopic in vivo evidence has emerged suggesting that upon formation of NPQ, a portion of the major LHCII complexes, undergoes both separation from the PSII supercomplex and aggregation (Miloslavina et al., 2008; Holzwarth et al., 2009). Furthermore, biochemical and structural evidence has been obtained suggesting that during NPQ, PsbS controls the dissociation of the portion of the PSII–LHCII supercomplex containing LHCII, CP24, and CP29 and that the average distances between PSII core complexes become shorter (Betterle et al., 2009). Subsequently, freeze-fracture electron microscopy studies revealed similar alterations in PSII distances and most importantly, clustering of LHCII antenna particles on the protoplasmic fracture face of the stacked thylakoid membrane (Johnson et al., 2011; Ruban et al., 2012). This clustering was found to be promoted by the presence of zeaxanthin and PsbS (Johnson et al., 2011; Goral et al., 2012). Furthermore, overexpression of PsbS caused massive LHCII antenna aggregation, even in the absence of RCII complexes (Ware et al., 2015b). It was also shown that the antenna

Change: LHCII Aggregation and Other
composition has a strong effect on NPQ and the dynamics of the related rearrangements triggered by ΔpH (Goral et al., 2012). These advances provide the first direct experimental confirmation of the LHCII antenna aggregation hypothesis of NPQ. Moreover, the data reveal the common nature of qE and zeaxanthin-dependent qZ. NPQ components as manifestations of the same LHCII aggregation phenomenon. Crucially, the observed structural alterations induced by illumination occurred on a timescale consistent with the formation and relaxation of qE (Johnson et al., 2011).

Despite all of this progress, many details of the change that leads to the establishment of the quenched state remain to be confirmed. Although there is no denial that the LHCII antenna undergoes reorganization into the NPQ state, recent data suggest that it does not uncouple energetically from RCI (Johnson and Ruban, 2009; Belgio et al., 2014), as was previously proposed (Holzwarth et al., 2009), which is in total agreement with the earlier established and experimentally confirmed relationship between the yield of PSII and NPQ (Genty et al., 1989). Moreover, it was shown that NPQ protects closed, not open, RCI, which makes this protective strategy economical, as it does not allow much competition between NPQ and RCI traps for energy under low or moderate light intensity (Belgio et al., 2014). Figure 3A shows a model of the fragment of the grana membrane showing the arrangement of PSII core and LHCII complexes. The part of the diagram showing the arrangement of cores and C2S2M2 supercomplexes (orientation and distances) containing core dimer, all monomeric LHCII, S, and M trimers, was reprinted from Kouril et al. (2011). The L trimers were added randomly (positions and orientations) to match the LHCII trimer/RCII ratio of 5. Figure 3B shows a schematic diagram of the clustering of PSII and LHCII complexes in the NPQ state (adapted from Johnson et al., 2011). Note that the major assumption here is that the structure of the C2S2 supercomplex is preserved. However, this remains to be verified (Dong et al., 2015), as does the localization of PsbS. This protein changes its conformation (Fan et al., 2015; Correa-Galvis et al., 2016), which can alter, for example, its binding affinity within the LHCII antenna, a process that could trigger the observed rearrangement. However, several important questions remain: What is the mechanism underlying this PsbS effect, its interaction with the LHCII antenna, and its specificity? Is the interaction promoted by altered hydrophobicity or potentiated by the promotion of N-terminal interactions? If the scheme in Figure 1B is correct, why does PsbS make the LHCII antenna more sensitive to lumen pH? Is it because it somehow enhances hydrophobicity of the environment of proton-receiving amino acids, which would certainly make their pK values higher (Mehler et al., 2002; Thurlkill et al., 2006)? Also, while both PsbS and zeaxanthin promote rapid formation of NPQ (Li et al., 2000; Demmig-Adams et al., 1989), why has the former an acceleratory and the latter an inhibitory effect on its recovery, as well as opposite effects on chlorophyll excited state relaxation dynamics (Sylak-Glassman et al., 2014)?

Another important issue is whether LHCII antenna clustering is a primary cause of the quenching or simply a thermodynamic consequence of the inner conformational change within each trimer or monomer that actually creates the quencher. Preliminary evidence that isolated LHCII complexes can be quenched without significant aggregation has been obtained using high hydrostatic pressure treatment of these complexes or by polymerizing them into a polyacrylamide gel and gradually removing the detergent (van Oort et al., 2007; Iliaia et al., 2008). The features of this quenching were similar to those of the aggregated low-pH-quenched LHCII. It has begun to emerge that the LHCII monomer/trimer undergoes some type of conformational change into the quenching state that involves specific changes in some of the xanthophyll (neoxanthin and lutein) and chlorophyll pigments, as was previously observed for LHCII aggregates (Robert et al., 2004; Iliaia et al., 2011). However, to date, only the structure of the quenched conformation of trimeric LHCII has been solved (Liu et al., 2004; Pascal et al., 2005). Recently, a few attempts have been made to understand the scale and possible specificity of the conformational transition into the quenched state. Exciton annihilation experiments along with high hydrostatic pressure work have revealed very small changes in the volume of quenched trimeric LHCII (van Oort et al., 2007; Rutkauskas et al., 2012). NMR studies and accompanying theoretical analysis revealed subtle alterations in some chlorophyll a pigments and their interactions with neoxanthin and lutein 1 and 2 (Pandit et al., 2013; Duffy et al., 2014). These observations are consistent with the discovered role of the luminal loop of trimeric LHCII, which is localized near the neoxanthin domain, in modulating quenching in vitro (Belgio et al., 2013). This notion was recently confirmed by the first molecular dynamics study revealing significant flexibility of trimeric LHCII, primarily in the neoxanthin and lutein 1 (terminal emitter) domains (Liguori et al., 2015).

In parallel with the structural work on the LHCII antenna, novel single molecule fluorescence spectroscopy on all types of LHCIIIs (both trimeric and monomeric) has been intensely performed in recent years (Krüger et al., 2012; 2013, 2014). The rapidly fluctuating levels of LHCII fluorescence, known as fluorescence intermittency or blinking, were found to be modulated by both the xanthophyll cycle composition and low pH treatments and are therefore closely related to NPQ. The blinking reflects local conformational fluctuations within the complex, which thermally access distinct conformational states that have strong quenching (lutein 1 and 2 domains) or red-shifted fluorescence properties (around 700 nm; Krüger et al., 2014).

All of these studies on the intrinsic dynamics of the LHCII complexes were absolutely essential in the search for the possible NPQ quencher(s). The quencher is simply “born” out of the change in conformation...
Figure 3. Schematic representation of putative PSII arrangements in the grana membrane in the dark (A) and NPQ (B) states. A, 18 PSII C2S2M2 complexes (outlined by yellow lines) with peripheral LHCII trimers (L trimers; after Kouil et al., 2011). The total LHCII trimer-to-RCII monomer ratio is approximately 5. B, 18 PSII core dimers rearranged/clustered into the NPQ state (following Johnson et al., 2011). C2S2 structure is shown (outlined with a dashed red line; see the inset) preserved in the three supercomplexes shown in the far left corner. A mix of unquenched (black contour) and quenched (red contour) S, M, and L trimers and monomers of the minor antenna (not specified here) is shown.

This review, the reader is referred to the most recent account of the state of our knowledge on the physics of the NPQ quencher (Duffy and Ruban, 2015). In brief, the pigments zeaxanthin, lutein, and chlorophyll a have triggered by protonation (Formaggio et al., 2001). Currently, there are several theories describing the possible identity and physical mechanism of the quenching process. Since this falls out of the scope of...
been proposed as possible NPQ quenchers. The suggestion that zeaxanthin is a quencher was proposed some time ago (Frank et al., 1996; for review, see Demmig-Adams, 1990) and has recently received strong, insightful support from Fleming, Niyogi, and Bassi, who proposed that the quencher is localized within the minor LHCII antenna complex CP29 (Holt et al., 2005; Ahn et al., 2008). Several groups have proposed that lutein bound to the major and minor LHCII serves as a quencher (Ruban et al., 2007; Avenson et al., 2009). While there is currently only a single theory about the role of zeaxanthin in quenching, i.e. radical cation formation with chlorophyll (Holt et al., 2005), there are several theories explaining how lutein (and other xanthophylls) can quench excess energy, which include coherent and incoherent energy transfer pathways from chlorophyll to xanthophyll (Duffy and Ruban, 2015). While there is some evidence showing how zeaxanthin becomes activated as a quencher (Holt et al., 2005; Ahn et al., 2008), there are numerous reports attempting to explain the changes in protein and lutein that point to this pigment as a quencher, as well as modeling work assessing the effectiveness of this quencher in taking excess excitation energy from chlorophyll (Ilioaia et al., 2013; Duffy et al., 2013a, 2013b, 2014; Chmeliov et al., 2015). The formation of quenching chlorophyll-chlorophyll dimers has also been recently advocated (Müller et al., 2010). Notably, the multiplicity of the possible identity and physics of the NPQ quencher(s) may well reflect the complex nature of the process involving the formation of a variety of pigment-pigment interactions. Therefore, the existence of multiple types of quenchers, which include xanthophylls as well as chlorophylls, was recently contemplated (Holzwarth et al., 2009; Liguori et al., 2015).

PROTECTIVE EFFECTIVENESS OF NPQ

The attention to the details of the mechanism underlying NPQ has been and remains enormous. By contrast, little is actually known about how (quantitatively) efficient NPQ is in protecting the photosynthetic membrane against photodamage and how to separate its protective components. In addition, some reports claim that NPQ plays little or no role in photoprotection of PSII against photodamage (Santabarbara et al., 2001). However, the majority of in vivo studies have clearly established a crucial role for NPQ in protection against photoindihetion, leading to early senescence and reduced plant growth and fitness (Niyogi et al., 1998; Havaux et al., 2000; Verhoeven et al., 2001; Kühlheim et al., 2002; Niyogi and Truong, 2013). Understanding the quantitative aspects of the protective effectiveness of NPQ and determining the light intensity plants can tolerate without showing signs of photoinhibition require the development of new approaches. As mentioned in the beginning of this review, qE is a rather inaccurate parameter, since there are some less readily reversible (but also protective) aspects of NPQ different from qP that also reflect photoinhibition. Existing and commonly used measures of photoinhibition include the dark-adapted F_v/F_m ratio or the yield of PSII, O_2 evolution, and D1 protein degradation. While these measures have been effective for assessing the threshold for damage, they have drawbacks when used for physiological analyses, especially where laboratory-based biochemical analysis is required (D1 turnover). In addition, these methods require disruption of the light treatment, either by destructive sampling or by imposing a sustained dark period. The length of the dark period used for F_v/F_m measurements itself can be ambiguous. Recently, we developed a novel principle of NPQ analysis that enables a better understanding and quantification of the effectiveness of the protective action of NPQ. In this approach, the extent of photochemical quenching (qP) measured in the dark is used to monitor the state of active RCIIs, enabling detection of the early signs of photoinhibition (Ruban and Murchie, 2012; Ruban and Belgio, 2014). Importantly, both NPQ/qE and photodamage to RCIIs diminish the quantum yield of PSII, which is illustrated by the following formula derived by Ruban and Murchie (2012):

$$\Phi_{PSII} = qP \times (F_v/F_m)/[1 + (1 - F_v/F_m) \times NPQ]$$ \(1\)

where qP is photochemical quenching and F_v/F_m is the yield of PSII before illumination. qP is defined as $(F_m' - F_o'_{act})/(F_m' - F_o'_{calc})$, where $F_o'_{act}$ is the measured dark fluorescence level and $F_o'_{calc}$ is the dark fluorescence level calculated using F_m' (Oxborough and Baker, 1997). When Equation (1) was applied to leaves that had been exposed to gradually increasing light intensity, like that used in light saturation curves but for longer periods of illumination with short periods of darkness in order to assess qP levels (Fig. 4A), the formula perfectly matched the experimental data (Fig. 4B) up to a certain high actinic light intensity, above which the experimentally determined yield started to decrease more steeply with NPQ than the theoretical value (Fig. 4B). This discrepancy between the measured and calculated yield came from the fact that qP started to show values <1 (Fig. 4B), which occurred because the measured values of F_o started to become higher than the values of F_o' predicted using F_m' amplitude (Oxborough and Baker, 1997; Fig. 4A). This discrepancy comes from the observation that when RCIIs become closed due to photoinhibition, they stay closed in the dark. Hence, they cannot photochemically quench fluorescence, causing an increase in F_o' in a similar way to the increase in F_o that would be caused by the addition of DCMU or illumination, making this level effectively F_o. Therefore, under this condition, F_o' becomes appreciably less quenched in relation to F_m', which is manifested in the observed deviation of the experimental F_o' levels from their predicted values and hence brings the qP level down from 1. This qP' was designated qP_{dark} to indicate that it is always measured in the dark under the regime of

Copyright (c) 2020 American Society of Plant Biologists. All rights reserved.
gradually increasing actinic light intensity (Ruban and Murchie, 2012; Ruban and Belgio, 2014). Critical work has been undertaken to ensure that this novel method is free from artifacts from the contribution of PSI to the novel PAM fluorescence measurements (Giovagnetti et al., 2015) and that the fluorescence parameter q\textsubscript{Pd} is in good correlation with the electron transport rates measured by oxygen evolution techniques (Giovagnetti and Ruban, 2015).

The application of this approach enabled a number of important parameters to be obtained without the use of the dark relaxation step: (1) the amplitude of all protective components of NPQ, pNPQ; (2) the maximum tolerated light intensity at which all RC\textsubscript{II}s remain functional; (3) the minimum pNPQ sufficient to protect against a unit of light intensity; (4) the amount of potentially wasteful pNPQ; and (5) the light tolerance curves for a particular type of plant (Ruban and Belgio, 2014; Ware et al., 2014). As a result of this development, the highest light intensity tolerated by 50% of various tested plants has been identified (Fig. 4C). One important conclusion of this work is that regardless of the type of mutation, the light tolerance was solely determined by the amplitude of pNPQ (Ruban and Belgio, 2014; Ware et al., 2014). Hence, pNPQ of approximately 1 in Arabidopsis could protect plants exposed to roughly 400 \(\mu \text{mol m}^{-2} \text{s}^{-1} \) PAR (Photosynthetically Active Radiation). This relationship is nearly linear, meaning that to tolerate 1600 \(\mu \text{mol m}^{-2} \text{s}^{-1} \) PAR of light intensity, almost the highest attainable level on the planet (total light intensity of approximately 3200 \(\mu \text{mol m}^{-2} \text{s}^{-1} \)), plants must develop pNPQ of approximately 4, which is probably the top value for this species. As expected, plants acclimated to low light exhibited lower light tolerance (Ware et al., 2015a). The formation of a larger antenna causes higher excitation pressure, hence changing the steepness in the relationship between NPQ and tolerated light intensity. Also, different plant species differ in their sensitivity to light, and therefore the requirement for pNPQ may vary significantly (Ruban, 2015). In addition, in low light-acclimated plants, part of the large LHC\textsubscript{II} antenna is uncoupled from RC\textsubscript{II}. Interestingly, this uncoupling is associated with increased levels of Fo quenching. However, this additional quenching does not contribute to light tolerance, implying that if uncoupled LHC\textsubscript{II} indeed participates in the NPQ process, as previously suggested (Holzwarth et al., 2009), it would contribute little to protection, a fact rendering the existence of two uncoupled sites for NPQ totally unnecessary. In addition, an interesting trend in light tolerance was observed during ontogenetic development (Carvalho et al., 2015): 1-week-old seedlings are almost 20 times less tolerant to light than established 8-week-old plants. This finding indicates that the most significant high-light damage occurs in young plants or developing leaves. Therefore, the major focus of plant physiologists, ecologists, and breeders should be directed toward monitoring and improving light tolerance, specifically at early stages of plant development.

Figure 4. A, Part of the gradually increasing illumination procedure used in PAM measurements of Arabidopsis leaves. The formula at the top shows how q\textsubscript{Pd} is calculated. \(F_{o, \text{act}} \) and \(F_{o, \text{calc}} \) are the measured and calculated (Oxborough and Baker, 1997) dark fluorescence levels, respectively; P1, 2, and 3 are saturating pulses, AL and FR are actinic and far red light, respectively, and 625 and 820 are the intensities of actinic light in \(\mu \text{mol m}^{-2} \text{s}^{-1} \). B, The relationships between the PSII yield, q\textsubscript{P}, and NPQ in the dark over the course of the gradually increasing actinic light intensity procedure (Ruban and Belgio, 2014). The formula shows the relationship between PSII yield, q\textsubscript{P}, and NPQ. C, Light intensity (in \(\mu \text{mol m}^{-2} \text{s}^{-1} \)) tolerated by 50% of the Arabidopsis mutant plants examined: –Zea (npq1); –PsbS (npq4); +PsbS (wt), and ++PsbS (PsbS overexpressor, L17).
The method described in this review should be very useful for evaluating the true effectiveness of NPQ in photoprotection in cyanobacteria, diatoms, and other classes of photosynthetic organisms. Knowing of the existence of NPQ is not enough. Modern times require that we obtain a complete understanding of its value in protecting plants by analyzing NPQ amplitude and the efficiency of photochemistry in parallel.

ACKNOWLEDGMENTS

The author acknowledges the contributions of his laboratory members to the various topics discussed in this review: Erica Belgio, Fabrizio Eulàlio Leite Carvalho, Vasco Giovagnetti, Petra Ungereger, and Maxwell Ware. The author is also grateful to Christopher Duffy for his critical reading of the manuscript.

REFERENCES

Plant Physiol. Vol. 170, 2016 1913

Downloaded on February 11, 2021. - Published by https://plantphysiol.org
Copyright (c) 2020 American Society of Plant Biologists. All rights reserved.

Havaux M, Dall’osto L, Bassi R (2007) Zeaxanthin has enhanced antioxidant capacity with respect to all other xanthophylls in Arabidopsis leaves and functions independent of binding to PSII antennae. Plant Physiol 145:1506–1520

Johnson MP, Ruban AV (2009) Photoprotective energy dissipation in higher plants involves alteration of the excited state energy of the emitting chlorophyll in LHCCI. J Biol Chem 284:23592–23601

