On the Cover: Plants are known to defend themselves from the onslaught of herbivore attack with an arsenal of defense compounds by recognizing chemical cues from insect oral secretions, oviposition materials and frass. Accumulation of herbivore frass in enclosed feeding sites such as the maize whorl constitutes one of the most copious cues of herbivory. Although, several insect-derived elicitors from oral secretions are known to induce herbivore-defenses in plants, frass-related chemical cues that alter plant defenses are generally unknown. In this issue, Ray et al. identified two maize chitinases, Pr4 and Endochitinase A, from fall armyworm frass that suppress herbivore-induced defenses in plants. These plant chitinases are induced in the host tissue in response to insect feeding, however, they do not affect the insect’s performance. Subsequently, the insect deposits these chitinases on the host with their frass, which in turn suppresses herbivore-induced defenses and increases herbivore performance. This co-option of host defenses ultimately benefits the insect and differs from the induction of herbivore defenses by insect oral secretions in many host-herbivore systems.

Cover Image Credit: Nick Sloff, Multimedia Specialist, Department of Entomology, The Pennsylvania State University, University Park, PA.

ON THE INSIDE

Peter V. Minorsky

BREAKTHROUGH TECHNOLOGIES

Shared metatranscriptomic responses to petroleum hydrocarbon contamination in ten cultivars of field-grown willow expose native and foreign organism gene expression of effective phytoremediation.

Novel Approach for High-Throughput Metabolic Screening of Whole Plants by Stable Isotopes. Lisa Maria Dersch, Veronique Beckers, Detlev Rasch, Guido Melzer, Christoph Bolten, Katina Kiep, Horst Becker, Oliver Ernst Bläsing, Regine Fuchs, Thomas Ehrhardt, and Christoph Wittmann

Stable isotopic labeling combined with combustion isotope ratio mass spectrometry elucidates metabolic properties of whole plants under strictly controlled physiological conditions.

Transcriptional profiles of spatially and temporally restricted cell populations from the Arabidopsis gynoecium reveals the meristematic nature of the gynoecial medial domain.

RESEARCH REPORTS

[OPEN] The Histone Deacetylase Complex 1 Protein of Arabidopsis Has the Capacity to Interact with Multiple Proteins Including Histone 3-Binding Proteins and Histone 1 Variants. Giorgio Perrella, Craig Carr, Maria A. Asensi-Fabado, Naomi A. Donald, Katalin Páldi, Matthew A. Hannah, and Anna Amtmann

A conserved ancestral domain of the intrinsically disordered protein Histone Deacetylase Complex 1 (HDC1) binds H3-binding proteins and H1 variants.

Continued on next page

Gatekeeper tyrosine phosphorylation of symbiosis receptor kinase is essential for guiding the infection threads through the epidermal-cortical barrier towards the nodule primordia during progress of root nodule symbiosis.

RESEARCH ARTICLES

BIOCHEMISTRY AND METABOLISM

[OPEN] Activation of the Stt7/STN7 Kinase through Dynamic Interactions with the Cytochrome b$_6$f Complex. Alexey Shapiguzov, Xin Chai, Geoffrey Fucile, Paolo Longoni, Lixin Zhang, and Jean-David Rochaix

The N-terminal domain of the Stt7/STN7 protein kinase is essential for its activity and interacts directly with the Rieske protein of the cytochrome b$_6$f complex.

Asparagus IRX9, IRX10, and IRX14A Are Components of an Active Xylan Backbone Synthase Complex that Forms in the Golgi Apparatus. Wei Zeng, Edwin R. Lampugnani, Kelsey L. Picard, Lili Song, Ai-Min Wu, Isabela M. Farion, Jia Zhao, Kris Ford, Monika S. Doblin, and Antony Bacic

Xylan biosynthesis in the Golgi apparatus is affected by IRX9, IRX10, and IRX14A in Asparagus.

Cellulose Deficiency Is Enhanced on Hyper Accumulation of Sucrose by a H$^+$-Coupled Sucrose Symporter. Trevor H. Yeats, Hagit Sorek, David E. Wemmer, and Chris R. Somerville

The cellulose deficiency of the shv3svl1 mutant is enhanced by the uptake of exogenous sucrose, which results in carbon redirection from cellulose to starch biosynthesis.

Evidence for a Role for NAD(P)H Dehydrogenase in Concentration of CO$_2$ in the Bundle Sheath Cell of Zea mays. Richard B. Peterson, Neil P. Schultes, Neil A. McHale, and Israel Želitch

Loss of a functional NAD(P)H dehydrogenase supercomplex impairs CO$_2$ concentration in bundle sheath cells.

Glucosylation of 4-Hydroxy-2,5-Dimethyl-3(2H)-Furanone, the Key Strawberry Flavor Compound in Strawberry Fruit. Chuankui Song, Xiaotong Hong, Shuai Zhao, Jingyi Liu, Katja Schulenburg, Fong-Chin Huang, Katrin Franz-Oberdorf, and Wilfried Schwab

UDP-glucose:4-hydroxy-2,5-dimethyl-3(2H)-furanone glucosyltransferases were identified in strawberry fruit, and the position and nature of the amino acid residues important for the catalytic properties of these proteins were determined.

Modularity of Conifer Diterpene Resin Acid Biosynthesis: P450 Enzymes of Different CYP720B Clades Use Alternative Substrates and Converge on the Same Products. Katrin Geisler, Niels Berg Jensen, Marco M.S. Yuen, Lina Madilao, and Jörg Bohlmann

Diterpene resin acids are major conifer defense compounds and important precursors for industrial bioproducts and are formed through a modular system of diterpene synthases and cytochrome P450s.

Xylans Provide the Structural Driving Force for Mucilage Adhesion to the Arabidopsis Seed Coat. Marie-Christine Ralet, Marie-Jeanne Crépeau, Jacqueline Vigouroux, Joseph Tran, Adeline Berger, Christine Sallé, Fabienne Granier, Lucy Botran, and Helen M. North

Arabidopsis seed mucilage contains a population of RG-I with xylan side branches that mediate the adsorption of mucilage to cellulose microfibrils in vitro.

Rescuing the feedback inhibition of fatty acid synthesis in castor hydroxylase-expressing Arabidopsis seeds increases ricinoleic acid accumulation.

CELL BIOLOGY

Oxidative pentose-phosphate pathway reactions are required for reproduction.

Development of Polyspermic Rice Zygotes. Erika Toda, Yukinosuke Ohnishi, and Takashi Okamoto

Polyspermic rice zygote, which is produced by fusion of an egg cell with two sperm cells, has the potential to develop into triploid embryos and plants through typical nuclear and cell divisions.

Differential Regulation of Clathrin and Its Adaptor Proteins during Membrane Recruitment for Endocytosis. Chao Wang, Tianwe Hu, Xu Yan, Tingting Meng, Yutong Wang, Qingmei Wang, Xiaoyue Zhang, Ying Gu, Clara Sánchez-Rodríguez, Astrid Gadeyne, Jinxing Lin, Staffan Persson, Daniel Van Damme, Chuanyou Li, Sebastian Y. Bednarek, and Jianwei Pan

Auxin and salicylic acid differentially affect clathrin recruitment to regulate endocytosis.

OsDMC1 Is Not Required for Homologous Pairing in Rice Meiosis. Hongjun Wang, Qing Hu, Ding Tang, Xiaofei Liu, Guijie Du, Yi Shen, Yafei Li, and Zhukuan Cheng

OsDMC1, a conserved recombinase, maintains the stability of the single-end invasion process but is not required for homologous pairing in rice, which is quite different from the DMC1 homologs identified so far in other organisms.

Anisotropic Cell Expansion Is Affected through the Bidirectional Mobility of Cellulose Synthase Complexes and Phosphorylation at Two Critical Residues on CESA3. Shaolin Chen, Honglei Jia, Heyu Zhao, Dan Liu, Yanmei Liu, Boyang Liu, Stefan Bauer, and Chris R. Somerville

Phosphorylation of a subunit of cellulose synthase differentially alters the rate at which cellulose synthase moves in both directions along microtubules, thereby impacting growth and development.

Role of SKD1 Regulators LIP5 and IST1-LIKE1 in Endosomal Sorting and Plant Development. Rafael Andrade Buono, Julio Paez-Valencia, Nathan D. Miller, Kaija Goodman, Christoph Spitzer, Edgar P. Spalding, and Marisa S. Otegui

Analysis of mutant plants points to a synergistic role of two regulators of the ESCRT components SKD1 during plant development.

ECOPHYSIOLOGY AND SUSTAINABILITY

Multispecies meta-analysis of metabolic profiles reveals conserved and species-specific relationships between metabolism, leaf conductances, and net photosynthesis.
The Cytoplasmic Carbonic Anhydrases \(\beta \text{CA2} \) and \(\beta \text{CA4} \) Are Required for Optimal Plant Growth at Low \(\text{CO}_2 \).

Robert J. DiMario, Jennifer C. Quebedeaux, David J. Longstreth, Maheshi Dassanayake, Monica M. Hartman, and James V. Moroney

The removal of two cytoplasmic carbonic anhydrases, \(\beta \text{CA2} \) and \(\beta \text{CA4} \), from Arabidopsis causes reduced growth in plants grown in a low-\(\text{CO}_2 \) environment.

A Formate Dehydrogenase Confers Tolerance to Aluminum and Low pH.

He Qiang Lou, Yu Long Gong, Wei Fan, Jia Meng Xu, Yu Liu, Meng Jie Cao, Ming-Hu Wang, Jian Li Yang, and Shao Jian Zheng

A Vigna umbellata formate dehydrogenase, VuFDH, confers tolerance to Al and low pH by regulating formate metabolism in plants.

Xylogenesis: Coniferous Trees of Temperate Forests Are Listening to the Climate Tale during the Growing Season But Only Remember the Last Words!.

Henri E. Cuny and Cyrille B.K. Rathgeber

In conifers, interactions between the rates and the durations of wood formation prevent the recording of climatic influences in tree-ring structure, except in the last formed cells.

GENES, DEVELOPMENT AND EVOLUTION

A DNA2 Homolog Is Required for DNA Damage Repair, Cell Cycle Regulation, and Meristem Maintenance in Plants.

Ning Jia, Xiaomin Liu, and Hongbo Gao

A DNA2 homolog plays an important role in DNA damage repair, cell cycle progression, and the development of the shoot apical meristem and root apical meristem in higher plants.

A Drought-Inducible Transcription Factor Delays Reproductive Timing in Rice.

Chunyu Zhang, Jun Liu, Tao Zhao, Adam Gomez, Cong Li, Chunsheng Yu, Hongyu Li, Jianzhong Lin, Yuanzhu Yang, Bin Liu, and Chentao Lin

OsABF1, which is a drought inducible transcription factor, may function redundantly with OsZIP40 to regulate rice heading date in response to the alteration of ambient water availability.

A JUMONJI Protein with E3 Ligase and Histone H3 Binding Activities Affects Transposon Silencing in Arabidopsis.

Tina Kabelitz, Krzysztof Brzezinka, Thomas Friedrich, Michał Górka, Alexander Graf, Christian Kappel, and Isabel Bäurle

A conserved JUMONJI protein with E3 ubiquitin ligase activity affects transposon silencing.

A Short Open Reading Frame Encompassing the MicroRNA173 Target Site Plays a Role in trans-Acting Small Interfering RNA Biogenesis.

Manabu Yoshikawa, Taichiro Iki, Hisataka Numa, Kyoko Miyashita, Tetsuo Meshi, and Masayuki Ishikawa

For efficient production of trans-acting siRNA, the third open reading frame on the primary precursor transcript that encompasses the microRNA173 target site needs to be translated.

Arabidopsis CALCINEURIN B-LIKE10 Functions Independently of the SOS Pathway during Reproductive Development in Saline Conditions.

Shea M. Monihan, Courtney A. Magness, Ramin Yadegari, Steven E. Smith, and Karen S. Schumaker

CBL10 is critical for reproductive development in the presence of salt and functions in different pathways during vegetative and reproductive development.

Continued on next page
Banana MaMADS Transcription Factors Are Necessary for Fruit Ripening and Molecular Tools to Promote Shelf-Life and Food Security. Tomer Elitzur, Esther Yakir, Lydia Quansah, Fei Zhangjun, Julia Vrebalov, Eli Khayat, James J. Giovannoni, and Haya Friedman

Repression of either MaMADS1 or MaMADS2 results in delayed ethylene synthesis and maturation, although the fruit ripen normally when treated with ethylene.

Seed Production Affects Maternal Growth and Senescence in Arabidopsis. Samuel Elias Wuest, Matthias Anton Philipp, Daniela Gathörl, Bernhard Schmid, and Ueli Grossniklaus

Seed production in the monocarpic plant Arabidopsis thaliana promotes shoot senescence and suppresses shoot growth, affecting similar processes as apical dominance does.

Critical Roles of Vacuolar Invertase in Floral Organ Development and Male and Female Fertilities Are Revealed through Characterization of GhVIN1-RNAi Cotton Plants. Lu Wang and Yong-Ling Ruan

Genetic, developmental, and gene expression analyses of GhVIN1-RNAi cotton plants reveal critical roles of vacuolar invertase in floral organ development and male and female fertilities.

CURLY LEAF Regulates Gene Sets Coordinating Seed Size and Lipid Biosynthesis. Jun Liu, Shulin Deng, Huan Wang, Jian Ye, Hui-Wen Wu, Hai-Xi Sun, and Nam-Hai Chua

A histone methyltransferase negatively regulates a set of genes coordinating seed size and lipid biosynthesis pathways in developing Arabidopsis embryos.

Habitat-Associated Life History and Stress-Tolerance Variation in Arabidopsis arenosa. Pierre Baduel, Brian Arnold, Cara M. Weisman, Ben Hunter, and Kirsten Bomblies

Plants of the usually perennial autotetraploid Arabidopsis arenosa that colonized railways became vernalization insensitive, early and perpetually flowering, and constitutively heat and cold stress tolerant.

Programming of Plant Leaf Senescence with Temporal and Inter-Organellar Coordination of Transcriptome in Arabidopsis. Hye Ryun Woo, Hee Jung Koo, Jeongsik Kim, Hyobin Jeong, Jin Ok Yang, Il Huwan Lee, Ji Hyung Jun, Seung Hee Choi, Su Jin Park, Byeongsoo Kang, You Wang Kim, Bong-Kwan Phee, Jin Hee Kim, Chaehwa Seo, Charny Park, Sang Cheol Kim, Seoungjin Park, Byungwook Lee, Sanghyuk Lee, Daheee Huang, Hong Gil Nam, and Pyung Ok Lim

RNA-seq analysis of total and small RNAs throughout the lifespan of Arabidopsis leaves revealed that leaf senescence proceeds with tight temporal and distinctive inter-organellar coordination of transcriptomes.

Sterol Methyl Oxidases Affect Embryo Development via Auxin-Associated Mechanisms. Xia Zhang, Shuangli Sun, Xiang Nie, Yohann Boutté, Magali Grison, Panpan Li, Susu Kuang, and Shuzhen Men

The sterol 4α-methyl oxidase2 family proteins SMO2-1 and SMO2-2 function partially through effects on auxin accumulation, auxin response and PIN1 expression to regulate Arabidopsis embryogenesis.

TOPOISOMERASE1α Acts through Two Distinct Mechanisms to Regulate Stele and Columella Stem Cell Maintenance. Yonghong Zhang, Lanlan Zheng, Jing Han Hong, Ximing Gong, Chun Zhou, José Manuel Pérez-Pérez, and Jian Xu

TOPOISOMERASE1α is required for survival of stele stem cells and maintenance of the undifferentiated state and number of columella stem cells in the Arabidopsis root.
A Cation-Chloride Cotransporter Gene Is Required for Cell Elongation and Osmoregulation in Rice. Zhi Chang Chen, Naoki Yamaji, Miho Fujii-Kashino, and Jian Feng Ma

OsCCC1 functions as a K⁺, Na⁺, and Cl⁻ cotransporter in rice to maintain osmotic potential for cell elongation through increasing internal solute concentrations.

Connecting Source with Sink: The Role of Arabidopsis AAP8 in Phloem Loading of Amino Acids. James P. Santiago and Mechthild Tegeder

Arabidopsis AAP8 is essential for amino acid phloem loading during the vegetative and reproductive growth phases, and its function affects source leaf physiology, sink development, and seed yield.

Heat Induction of Cyclic Electron Flow around Photosystem I in the Symbiotic Dinoflagellate Symbiodinium. Yusuke Aihara, Shunichi Takahashi, and Jun Minagawa

Cyclic electron flow is accelerated under heat stress in Symbiodinium to promote photoprotective thermal energy dissipation.

Light Modulates the Biosynthesis and Organization of Cyanobacterial Carbon Fixation Machinery through Photosynthetic Electron Flow. Yaqi Sun, Selene Casella, Yi Fang, Fang Huang, Matthew Faulkner, Steve Barrett, and Lu-Ning Liu

The biosynthesis and spatial positioning of β-carboxysomes, the carbon fixation machinery in cyanobacteria, are modulated by light intensity and redox state of photosynthetic electron transport chain.

Long-Distance Transport of Thiamine (Vitamin B₁) Is Concomitant with That of Polyamines. Jacopo Martinis, Elisabet Gas-Pascual, Nicolas Szydlowski, Michèle Crévecœur, Alexandra Gisler, Lukas Bärtlé, and Teresa B. Fitzpatrick

Long distance transport of thiamine is required for growth and development and is facilitated by PUT3, the polyamine transporter.

MtSWEET11, a Nodule-Specific Sucrose Transporter of Medicago truncatula. Igor S. Kryvoruchko, Senjuti Sinharoy, Ivone Torres-Jerez, Davide Sosso, Catalina I. Pislariu, Dian Guan, Jeremy Murray, Vagner A. Benedito, Wolf B. Frommer, and Michael K. Udvardi

SWEET11 is a nodule-specific sucrose transporter of Medicago truncatula.

Phosphate Treatment Strongly Inhibits New Arbuscule Development But Not the Maintenance of Arbuscule in Mycorrhizal Rice Roots. Yoshihiro Kobay, Yoshihiro Ohmori, Chieko Saito, Koji Yano, Ryo Ohtomo, and Toru Fujitowara

Intracellular colonization of arbuscular mycorrhizal fungi is rapidly and temporarily inhibited by P and is stabilized by plant symbiotic P transporter.

Photosynthesis activates the plasma membrane H⁺-ATPase in Arabidopsis mesophyll cells through C-terminal phosphorylation, and this activation is mediated by photosynthetic sugars, including sucrose.
Chloroplasts Are Central Players in Sugar-Induced Leaf Growth. Judith Van Dingenen, Liesbeth De Milde, Matthias Vermeersch, Katrien Maleux, Riet De Rycke, Michiel De Bruyne, Véronique Storme, Nathalie Gonzalez, Stijn Dhondt, and Dirk Inze

Sucrose promotes early leaf growth by stimulating cell proliferation and repressing chloroplast transcription through the induction of GPT2 expression.

Heat stress yields a unique MADS box transcription factor in determining seed size and thermal sensitivity. Chen Chen, Kevin Begcy, Kan Liu, Jing J. Folsom, Zhen Wang, Chi Zhang, and Harkamal Walia

Characterization of developing rice seeds under heat stress identifies OsMADS87 as a determinant of seed size sensitivity to increased temperature.

NO-Mediated $[Ca^{2+}]_{cyt}$ Increases Depend on ADP-Ribosyl Cyclase Activity in Arabidopsis. S.M. Abdul-Awal, Carlos T. Hotta, Matthew P. Davey, Antony N. Dodd, Alison G. Smith, and Alex A.R. Webb

ADP-ribosyl cyclase activity in Arabidopsis is up-regulated by nitric oxide to increase the cellular concentration of cyclic ADP ribose and free Ca$^{2+}$.

Phosphate Deficiency Induces the Jasmonate Pathway and Enhances Resistance to Insect Herbivory. Ghazanfar Abbas Khan, Evangelia Vogiatzaki, Gaëtan Glauser, and Yves Poirier

Phosphate deficiency induces the jasmonic acid biosynthesis and signaling pathways and increases resistance to insect herbivory.

Potato NPH3/RPT2-Like Protein StNRL1, Targeted by a Phytophthora infestans RXLR Effector, Is a Susceptibility Factor. Lina Yang, Hazel McLellan, Shaista Naqvi, Qin He, Petra C. Boevink, Miles Armstrong, Licida M. Giuliani, Wei Zhang, Zhendong Tian, Jiasui Zhan, Eleanor M. Gilroy, and Paul R.J. Birch

An effector from the potato late blight pathogen targets a host protein that negatively regulates immunity.

The Chloroplastic Protein THF1 Interacts with the Coiled-Coil Domain of the Disease Resistance Protein N' and Regulates Light-Dependent Cell Death. Louis-Philippe Hamel, Ken-Taro Sekine, Thérèse Wallon, Yuji Sugiwaka, Kappé Kobayashi, and Peter Moffett

A chloroplastic protein inhibits defense-induced cell death and is destabilized by activation of a disease resistance protein.

Pyoverdine, a high-affinity ferric iron chelator synthesized by Pseudomonas fluorescens, impacts the growth/defense trade-off of Arabidopsis thaliana under iron deficient conditions.
Turnabout Is Fair Play: Herbivory-Induced Plant Chitinases Excreted in Fall Armyworm Frass Suppress Herbivore Defenses in Maize.
Swayamjit Ray, Patrick C.M.S. Alves, Imtiaz Ahmad, Iffit Gaffoor, Flor E. Acevedo, Michelle Peiffer, Shan Jin, Yang Han, Samina Shakeel, Gary W. Felton, and Dawn S. Luthe

Maize chitinases, Pr4 and Endochitinase A, in fall armyworm frass suppress herbivore-induced defenses in maize.

Zinc-Finger Transcription Factor ZAT6 Positively Regulates Cadmium Tolerance through the Glutathione-Dependent Pathway in Arabidopsis.
Jian Chen, Libo Yang, Xingxing Yan, Yunlei Liu, Ren Wang, Tingting Fan, Yongbing Ren, Xiaofeng Tang, Fangming Xiao, Yongsheng Liu, and Shuqing Cao

The transcription factor ZAT6 coordinately activates phytochelatin synthesis-related gene expression and directly targets GSH1 to positively regulate Cd accumulation and tolerance in Arabidopsis.

Articles can be viewed without a subscription.