Plastids are multifunctional, pleomorphic organelles of purported endosymbiotic origin that in plants and green algae display a characteristic double membrane envelope (Wise, 2007). All plastids originate from colorless proplastids, and a simple pigmentation-based classification distinguishes chloroplasts from other plastids by the presence of chlorophyll, chromoplasts by the predominance of other pigments, and leucoplasts by the absence of all pigmentation (Schimper, 1883, 1885). Plastids are able to interconvert according to tissue and developmental requirements (Schimper, 1883, 1885).

In higher plants the majority of chloroplasts are found in the leaf mesophyll tissue. The presence of chloroplasts in the epidermis of some higher plant species, including tobacco (*Nicotiana tabacum*), is also generally accepted (Shaw and MacLachlan, 1954; Dupree et al., 1991; Brunkard et al., 2015). However, several modern textbooks and primary publications categorically state that the epidermis of higher plants contains chloroplasts only in the guard cells, while pavement and trichome cells have leucoplasts (MacDonald, 2003; Smith, 2005; Bowes and Mauseth, 2008; Solomon et al., 2010; Vaughan, 2013). In the model plant Arabidopsis (*Arabidopsis thaliana*), observations of leucoplasts in the unicellular trichomes are consistent, but there is considerable ambiguity regarding the presence or absence of chloroplasts in pavement cells (Table I).

Several publications clearly show chloroplasts in the pavement cells of Arabidopsis, and a precise, observation-based statement that contradicts the common textbook knowledge has been made by Pyke (2009): “In a leaf, the chloroplasts in the epidermal cells covering the leaf surface are significantly smaller and poorly developed compared with mesophyll chloroplasts, but do contain low levels of chlorophyll and should be considered as chloroplasts” (p. 15). Nevertheless, a degree of uncertainty has remained since other investigators who have observed chlorophyll fluorescence in pavement cells have either dismissed it as artifactual or have described such chloroplasts as not being fully developed (Haseloff et al., 1997; Chiang et al., 2012; Higa et al., 2014). Still others report an absence of chlorophyll fluorescence in the pavement cells (Table I). The significance of this issue is highlighted by a recent publication that uses the purported absence of chloroplasts in the pavement cells to explain differences in plastid behavior between cotyledon pavement and guard cells in response to chemically induced redox stress (Brunkard et al., 2015).

The plastid type identified in a tissue creates an association with specific attributes. The name influ-
places them very close to the mesophyll layer so that when imaged from above, as is the usual practice, they appear positioned alongside the mesophyll chloroplasts even when using confocal microscopy. Their location in the lower region of pavement cells also removes them from the focal plane for guard cell chloroplasts and conveys an impression of their absence from this plane. However, a comparison of chloroplast size and the use of a stroma-targeted probe clearly demonstrate their presence (Fig. 1B). As shown in Figure 1A, imaging a tissue from a lateral perspective in addition to the top-down view (Fig. 1B) allows all autofluorescent plastids to be detected and helps dispel the illusion of absence. We also note that a prevalent practice during multichannel confocal imaging is to minimize the fluorescence detection levels to obtain clear images of the strongly autofluorescent mesophyll chloroplasts. Since pavement cell chloroplasts display considerably lower autofluorescence, their fluorescent signal may fall below the detection range in this circumstance.

Another factor requiring consideration in the context of pavement cell chloroplasts is the intrinsic ability of plastids to interconvert from one kind to another. Chlorophyll, the distinguishing feature of a chloroplast, is lost quite rapidly in senescing as well as wounded tissue. This would allow a plastid to be classified as a leucoplast. As cotyledons of varying ages have been used in some studies (Chiang et al., 2012; Brunkard et al., 2015), we observed this tissue carefully and found that pavement cells in older cotyledons and senescing leaves do contain a mixture of chloroplasts and leucoplasts. Whether observations made on these tissues can be taken as representative of normally functioning leaves and be used to promote the view that pavement cells in Arabidopsis plants have only leucoplasts is questionable.

It appears that categorizing plastids in pavement cells in Arabidopsis as leucoplasts is largely due to limited information to the contrary rather than evidence in favor of this conclusion. While Arabidopsis becomes another lab plant like tobacco (Dupree et al., 1991), in which chloroplasts in pavement cells can be observed, it is noteworthy that independent surveys by Moore (1887) and Stohr (1879) had already indicated that between 85% and 95% of dicotyledonous species contain chlorophyll in the lower epidermis, while at least one-half of the 120 species investigated by Moore (1887) had chloroplasts in the upper epidermis. Perhaps the presence of chloroplasts in pavement cells occurs more widely than acknowledged hitherto. Recognition of a population of small chloroplasts with a high stroma to grana ratio in the pavement cells should open new avenues for research on their actual contribution to the general upkeep and functioning of the aerial plant epidermis.

Kiah A. Barton
Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 ORCID ID: 0000-0003-4838-6048

Martin H. Schattat
Institutbereich Pflanzen-physiologie, Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle (Saale), Germany

Torsten Jakob
Department of Plant Physiology, Institute of Biology, Faculty of Biosciences, Pharmacy, and Psychology, University of Leipzig, 04103 Leipzig, Germany

Gerd Hause
Microscopy Unit, Biocenter, Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle (Saale), Germany

Table I. Noncomprehensive list of publications reflecting on the status of chloroplasts in pavement cells in Arabidopsis

<table>
<thead>
<tr>
<th>Suggested</th>
<th>Basis</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absent</td>
<td>Chlorophyll autofluorescence in guard cells only</td>
<td>Brunkard et al. (2015)</td>
</tr>
<tr>
<td>Absent</td>
<td>Chlorophyll-containing plastids not observed</td>
<td>Haseloff et al. (1997)</td>
</tr>
<tr>
<td>Absent</td>
<td>Reported as being nongreen; chlorophyll signal not observed</td>
<td>Haswell and Meyerowitz (2006)</td>
</tr>
<tr>
<td>Absent</td>
<td>Chlorophyll autofluorescence in guard cells only</td>
<td>Chiang et al. (2012)</td>
</tr>
<tr>
<td>Absent</td>
<td>Reported; chlorophyll signal not shown</td>
<td>Bergmann et al. (2004)</td>
</tr>
<tr>
<td>Absent</td>
<td>Expression of 35S-PAC-GFP construct only in guard cells; chlorophyll signal not shown</td>
<td>Meurer et al. (1998)</td>
</tr>
<tr>
<td>Absent</td>
<td>Stated in discussion, no citation</td>
<td>Kagawa and Wada (2000)</td>
</tr>
<tr>
<td>Ambiguous</td>
<td>Chlorophyll fluorescence; typical chloroplast internal structure in embryo</td>
<td>Tejos et al. (2010)</td>
</tr>
<tr>
<td>Ambiguous</td>
<td>Chlorophyll autofluorescence in leaf primordia; indicate loss of chlorophyll later</td>
<td>Charuvu et al. (2012)</td>
</tr>
<tr>
<td>Ambiguous</td>
<td>Chlorophyll autofluorescence</td>
<td>Higa et al. (2014)</td>
</tr>
<tr>
<td>Present</td>
<td>Citation only</td>
<td>Pyke and Page (1998)</td>
</tr>
<tr>
<td>Present</td>
<td>Internal thylakoid ultrastructure observed</td>
<td>Robertson et al. (1996)</td>
</tr>
<tr>
<td>Present</td>
<td>Chlorophyll autofluorescence observed</td>
<td>Kojo et al. (2009)</td>
</tr>
<tr>
<td>Present</td>
<td>Chlorophyll autofluorescence observed</td>
<td>Fujiwara et al. (2015)</td>
</tr>
<tr>
<td>Present</td>
<td>Chlorophyll autofluorescence observed</td>
<td>Holzinger et al. (2008)</td>
</tr>
<tr>
<td>Present</td>
<td>Pale chloroplasts reported</td>
<td>Pyke and Leech (1994)</td>
</tr>
<tr>
<td>Present</td>
<td>Chlorophyll autofluorescence observed</td>
<td>Joo et al. (2005)</td>
</tr>
<tr>
<td>Present</td>
<td>Acknowledged as chloroplasts</td>
<td>Vitha et al. (2001)</td>
</tr>
</tbody>
</table>


Downloaded from on August 25, 2017 - Published by www.plantphysiol.org
Copyright © 2016 American Society of Plant Biologists. All rights reserved.
Figure 1. Representative images illustrating the presence of small chloroplasts in epidermal pavement cells of *Arabidopsis thaliana*. A, Lateral view of the upper epidermal surface of a soil grown Arabidopsis plant expressing tpFNR:GFP shows the clear fluorescence of chlorophyll (red; panel 1) and the stroma-targeted probe (green; panel 2) in guard cells (gc) and pavement cell (pc) plastids (arrowheads in panel 3 and 4). The bright field image (panel 3) provides the spatial relationship between the epidermis and the mesophyll layer (meso) with the latter displaying larger chloroplasts (square box in panel 1) as compared to guard cell and pavement cell chloroplasts (rectangle and and circle, respectively, in panel 1; also comparative size shown by double headed arrow in panel 4). Non-transgenic plants provide a similar image for chlorophyll fluorescence (collected 650–750 nm) upon illumination with the 488 nm laser. B, Top-down view of the adaxial surface of a leaf from an Arabidopsis plant expressing tpFNR:GFP highlights the chlorophyll (red) in guard cell chloroplasts (gc), pavement cell chloroplasts (e.g. small arrowheads) and the underlying layer of the relatively large mesophyll chloroplasts. Note that the size and fluorescence exhibited by plastids in pavement cells (e.g. arrowheads) is very similar to that of the guard cell chloroplasts. However, gc (panel 1) exhibit a typical arc-shaped arrangement while pc are scattered and often not detectable against the large, more fluorescent mesophyll (meso) chloroplasts. When targeted by a stromalocalized probe (e.g. panel 2) pc are brightly highlighted due to a high stroma to grana ratio. C, An overview showing plastids from an upper epidermis pavement (uep) cell and the subtending mesophyll (palisade parenchyma, pp) layer. Despite the difference in their size, plastids from both layers contain grana (arrow heads) and starch granules (*). D, General ultrastructure of a plastid in the pavement cell of the upper epidermis. Single thylakoids within grana are shown in a magnified view of the white outlined box. E, A plastid in a pavement cell of the lower epidermis exhibits clear grana (boxed region has been magnified). Scale bars: A and B = 10 μm; C, = 2 μm; D and E = 1 μm.

LITERATURE CITED

Barton et al.
Oxford Brookes University, Oxford OX3 0BP, United Kingdom ORCID ID: 0000-0001-6614-1226

Daniel Van Damme
VIB Department of Plant Systems Biology, Ghent University, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium ORCID ID: 0000-0002-9385-4851

Jaideep Mathur*
Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 ORCID ID: 0000-0002-8806-1486

John Runions
Oxford Brookes University, Oxford OX3 0BP, United Kingdom ORCID ID: 0000-0001-6614-1226


Schimper AFW (1883) Über die entwickelung der chlorophyllkoerner und farbkoerper. Bot Zeit 41: 105–113


