The NDH-1L-PSI Supercomplex Is Important for Efficient Cyclic Electron Transport in Cyanobacteria

Fudan Gao, Jiaohong Zhao, Liping Chen, Natalia Battchikova, Zhaoxing Ran, Eva-Mari Aro, Teruo Ogawa, and Weimin Ma*

College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China (F.G., J.Z., L.C., Z.R., W.M.); Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20520 Turku, Finland (N.B., E.-M.A.); and Bioscience Center, Nagoya University, Chikusa, Nagoya 464–8601, Japan (T.O.)

ORCID IDs: 0000-0002-8882-5968 (F.G.); 0000-0001-5176-3639 (N.B.); 0000-0002-2922-1435 (E.-M.A.); 0000-0001-6061-8273 (T.O.); 0000-0003-4964-415X (W.M.).

Two mutants isolated from a tagging library of Synechocystis sp. strain PCC 6803 were sensitive to high light and had a tag in slr1471 encoding CpcG2, a linker protein for photosystem I (PSI)-specific antenna. Both mutants demonstrated strongly impaired NDH-1-dependent cyclic electron transport. Blue native-polyacrylamide gel electrophoresis followed by immunoblotting and mass spectrometry analyses of the wild type and a mutant containing CpcG2 fused with yellow fluorescent protein-histidine6 indicated the presence of a novel NDH-1L-CpcG2-PSI supercomplex, which was absent in the cpcG2 deletion mutant, the PSI-less mutant, and several other strains deficient in NDH-1L and/or NDH-1M. Coimmunoprecipitation and pull-down analyses on CpcG2-yellow fluorescent protein-histidine6, using antibody against green fluorescent protein and nickel column chromatography, confirmed the association of CpcG2 with the supercomplex. Conversely, the use of antibodies against NdhH or NdhK after blue native-polyacrylamide gel electrophoresis and in coimmunoprecipitation experiments verified the necessity of CpcG2 in stabilizing the supercomplex. Furthermore, deletion of CpcG2 destabilized NDH-1L as well as its degradation product NDH-1M and significantly decreased the number of functional PSI centers, consistent with the involvement of CpcG2 in NDH-1-dependent cyclic electron transport. The CpcG2 deletion, however, had no effect on respiration. Thus, we propose that the formation of an NDH-1L-CpcG2-PSI supercomplex in cyanobacteria facilitates PSI cyclic electron transport via NDH-1L.

Cyclic electron transport (CET) around PSI is an important process for oxygenic photosynthetic organisms. In cooperation with linear electron transport, CET contributes to the formation of a proton gradient across the thylakoid membrane, which increases the production of ATP in relation to NADPH and consequently optimizes the ATP/NADPH ratio. In addition, CET plays an important role in protecting photosynthesis against various environmental stresses, such as high light (Battchikova et al., 2011a; Dai et al., 2013; Zhang et al., 2014; Zhao et al., 2014, 2015; Wang et al., 2016).

In cyanobacteria, the main route for CET involves NDH-1 complexes, which belong to the complex I family (for review, see Friedrich et al., 1995; Yagi et al., 1998; Friedrich and Scheide, 2000; Brandt et al., 2003). On the basis of sequence similarity analysis, the complex I family was suggested to originate from a common ancestor, a group 4 membrane-bound [NiFe] hydrogenase that possesses a proton-transporting hydrogen:ferredoxin (Fd) oxidoreductase activity (Böhm et al., 1990; Friedrich and Weiss, 1997; Friedrich and Scheide, 2000; Efremov and Sazanov, 2012). During evolution, however, respiratory NDH-1 and photosynthetic NDH-1 developed different catalytic activities (for review, see Peltier et al., 2016). The former has become equipped with a new NADH-oxidizing module consisting of three subunits and capable of oxidizing NADH (Efremov and Sazanov, 2012), and the latter, as was suggested recently, has retained an original electron input module that accepts electrons from Fd (Battchikova et al., 2011a; Yamamoto et al., 2011). Structurally, respiratory NDH-1 and photosynthetic NDH-1 contain a conserved L-shaped skeleton (Friedrich et al., 1995; Friedrich and Scheide, 2000; Arteni et al., 2006; Kouril et al., 2014), but numerous oxygenic photosynthesis-specific subunits were added

1 This work was supported by the National Natural Science Foundation of China (grant nos. 31370270 and 31570235 to W.M.), the Shanghai Natural Science Foundation (grant no. 14ZR1430000 to W.M.), the Academy of Finland (project no. 273870 and Center of Excellence project no. 271832 to E.-M.A.), and the People Program (Marie Curie Actions) of the European Union’s Seventh Framework Program FP7/2007–2013/ (Research Executive Agency grant no. 317184, PHOTO.COMM, to E.-M.A.).

2 These authors contributed equally to the article.

* Address correspondence to wma@shnu.edu.cn.

W.M. designed and supervised the experiments; F.G. performed the biochemical experiments; J.Z. performed the molecular and physiological experiments; L.C. performed the mutant isolation experiments; F.G. and Z.R. performed the protein-protein interaction experiments; F.G., J.Z., L.C., and Z.R. analyzed the data; N.B., E.-M.A., T.O., and W.M. analyzed and interpreted data; N.B., E.-M.A., T.O., and W.M. wrote the article.

www.plantphysiol.org/cgi/doi/10.1104/pp.16.00585

Copyright (c) 2020 American Society of Plant Biologists. All Rights Reserved.
to the photosynthetic NDH-1 (for review, see Battchikova et al., 2011b; Ituku et al., 2011; Peng et al., 2011a). Among them, the NdhS subunit can bind reduced Fd, which provides a functional link to the PSI complex that permits NDH-1-dependent cyclic electron transport (NDH-CET; Battchikova et al., 2011a; Yamamoto et al., 2011; Yamamoto and Shikanai, 2013; He et al., 2015).

In cyanobacteria, NDH-1 exists in multiple forms with multiple functions (for review, see Battchikova and Aro, 2007; Ogawa and Mi, 2007; Battchikova et al., 2011b). Among them, a large NDH-1 complex (NDH-1L) was shown to be involved in NDH-CET and respiration (Zhang et al., 2004; Bernát et al., 2011). Cyanobacterial NDH-1L was suggested to be an ancestor of chloroplast NDH-1 because they possess similarities in L-shaped skeleton and physiological function (for review, see Battchikova et al., 2004; Bernát et al., 2011). Cyanobacterial NDH-1L shows not to involve in NDH-CET; this protein was earlier characterized as an NDH-1L-PSI supercomplex still remains unidentified (Zhang et al., 2005; Yamamoto et al., 2011; Armbruster et al., 2013). In this method, the NDH-CET activity is manifested by a transient rise of Chl fluorescence after actinic light (AL) is turned off (the corresponding phase is shown by the red rectangle in Fig. 1B). The activity, assessed as the amplitude of the fluorescence rise, was markedly lower in both mutants than in the wild type (Fig. 1B).

To identify the genes inactivated by the transposon tagging, we analyzed the insertion sites of transposons in both mutants. Sequencing analysis of the kanamycin resistance marker (Kan*) insertion region revealed that both mutants were tagged in the same gene, sll1471 (cpcG2; Fig. 1C), at position 3,403,918 of the Synechocystis 6803 genome (National Center for Biotechnology Information gi: 16332194; Kaneko et al., 1996). Therefore, it seems likely that CpcG2, a linker protein for the PSI-specific peripheral antenna CpcG2-phycobilisome (PBS; Kondo et al., 2005, 2007, 2009), is involved in NDH-CET.

Inactivation of cpcG2 Impairs NDH-CET Activity

To elucidate the role of CpcG2 in NDH-CET, we constructed a cpcG2 deletion mutant (ΔcpcG2) by replacing the entire cpcG2 coding region with a KanR (Fig. 2A). PCR analysis of the cpcG2 locus confirmed complete segregation of the ΔcpcG2 mutant allele (Fig. 2B). Transcript analysis using a specific primer pair for the cpcG2-encoding gene (Supplemental Table S1) demonstrated the absence of gene product in the mutant (Fig. 2C). As expected, the activity of NDH-CET, as measured by the postillumination rise in Chl fluorescence, was lower in ΔcpcG2 than in the wild type (Fig. 2D). It is worthy of note that the NDH-CET activity was higher than that in the NdhB-deficient mutant (M59), which lacks all functional NDH-1 complexes. The significant decrease of the NDH-CET activity in the ΔcpcG2 mutant compared with the wild type was corroborated with two other methods. Cells were illuminated by AL (800 μmol photons m⁻² s⁻¹) supplemented with far-red light (FR) to store electrons in the stromal pool. After the termination of AL, P700* was reduced transiently under moderate light irradiation (Battchikova et al., 2011a; Dai et al., 2013; Zhang et al., 2014; Zhao et al., 2014, 2015; Wang et al., 2016). To screen for NDH-CET-defective mutants, we transformed wild-type cells with a transposon-bearing library, thus tagging and inactivating many genes randomly, and then cultured the mutant cells under high-light conditions. We isolated two mutants, which grew slowly on plates under high light but similarly to the wild type under growth light (Fig. 1A).

RESULTS

Isolation of NDH-CET-Defective Mutants

Under high-light conditions, the growth of NDH-CET-defective mutants, such as ΔndhS, is markedly slower in comparison with the wild type despite similar growth under moderate light irradiation (Battchikova et al., 2011a; Dai et al., 2013; Zhang et al., 2014; Zhao et al., 2014, 2015; Wang et al., 2016). To screen for NDH-CET-defective mutants, we transformed wild-type cells with a transposon-bearing library, thus tagging and inactivating many genes randomly, and then cultured the mutant cells under high-light conditions. We isolated two mutants, which grew slowly on plates under high light but similarly to the wild type under growth light (Fig. 1A).

To test whether the high-light-sensitive growth phenotype of the two mutants resulted from defective NDH-CET, we monitored the postillumination rise in chlorophyll (Chl) fluorescence, which has been used extensively to evaluate the NDH-CET activity in cyanobacteria (Mi et al., 1995; Deng et al., 2003a; Ma and Mi, 2005; Battchikova et al., 2011a; Dai et al., 2013; Zhang et al., 2014; Zhao et al., 2014, 2015; Wang et al., 2016) and higher plants (Burrows et al., 1998; Shikanai et al., 1998; Hashimoto et al., 2003; Wang et al., 2006; Peng et al., 2009, 2011b, 2012; Siripör et al., 2009; Yamamoto et al., 2011; Armbruster et al., 2013). In this method, the NDH-CET activity is manifested by a transient rise of Chl fluorescence after actinic light (AL) is turned off (the corresponding phase is shown by the red rectangle in Fig. 1B). The activity, assessed as the amplitude of the fluorescence rise, was markedly lower in both mutants than in the wild type (Fig. 1B).

To identify the genes inactivated by the transposon tagging, we analyzed the insertion sites of transposons in both mutants. Sequencing analysis of the kanamycin resistance marker (Kam*) insertion region revealed that both mutants were tagged in the same gene, sll1471 (cpcG2; Fig. 1C), at position 3,403,918 of the Synechocystis 6803 genome (National Center for Biotechnology Information gi: 16332194; Kaneko et al., 1996). Therefore, it seems likely that CpcG2, a linker protein for the PSI-specific peripheral antenna CpcG2-phycobilisome (PBS; Kondo et al., 2005, 2007, 2009), is involved in NDH-CET.

Inactivation of cpcG2 Impairs NDH-CET Activity

To elucidate the role of CpcG2 in NDH-CET, we constructed a cpcG2 deletion mutant (ΔcpcG2) by replacing the entire cpcG2 coding region with a KanR (Fig. 2A). PCR analysis of the cpcG2 locus confirmed complete segregation of the ΔcpcG2 mutant allele (Fig. 2B). Transcript analysis using a specific primer pair for the cpcG2-encoding gene (Supplemental Table S1) demonstrated the absence of gene product in the mutant (Fig. 2C). As expected, the activity of NDH-CET, as measured by the postillumination rise in Chl fluorescence, was lower in ΔcpcG2 than in the wild type (Fig. 2D). It is worthy of note that the NDH-CET activity was higher than that in the NdhB-deficient mutant (M59), which lacks all functional NDH-1 complexes. The significant decrease of the NDH-CET activity in the ΔcpcG2 mutant compared with the wild type was corroborated with two other methods. Cells were illuminated by AL (800 μmol photons m⁻² s⁻¹) supplemented with far-red light (FR) to store electrons in the stromal pool. After the termination of AL, P700* was reduced transiently under moderate light irradiation (Battchikova et al., 2011a; Dai et al., 2013; Zhang et al., 2014; Zhao et al., 2014, 2015; Wang et al., 2016). To screen for NDH-CET-defective mutants, we transformed wild-type cells with a transposon-bearing library, thus tagging and inactivating many genes randomly, and then cultured the mutant cells under high-light conditions. We isolated two mutants, which grew slowly on plates under high light but similarly to the wild type under growth light (Fig. 1A).
by electrons from the plastoquinone pool; P700 is reoxidized by the background FR. Operation of the NDH-1 complex, which transfers electrons from the reduced cytoplasmic pool to plastoquinone, hinders the reoxidation of P700 (Shikanai et al., 1998; Battchikova et al., 2011a; Dai et al., 2013; Zhang et al., 2014; Zhao et al., 2014, 2015; Wang et al., 2016). Figure 2E shows that the reoxidation of P700 was much faster in ΔcpcG2 than in the wild type. Furthermore, the reoxidation rate of P700 was monitored in darkness after the illumination of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)-treated cells with FR. The reoxidation of P700 was much slower in ΔcpcG2 than in the wild type (Fig. 2F), providing evidence of the scarcity of CET from reduced Fd via NDH-1 back to P700 in darkness. Therefore, the slow growth of ΔcpcG2 under high-light conditions (Supplemental Fig. S1) could be attributed to the low NDH-CET activity.

A Novel Supercomplex Involving CpcG2, NDH-1L, and PSI

The above results suggested the presence of a supercomplex composed of NDH-1, CpcG2, and PSI (NDH-1-CpcG2-PSI; hereafter referred to as the NDH-1-PSI supercomplex). To explore this possibility, we performed blue native (BN)-PAGE of thylakoid membranes isolated from the wild-type and ΔcpcG2 strains. The results revealed that one of the Chl-containing bands with a high molecular mass (above 1,000 kD) present in the wild type was absent in the ΔcpcG2 mutant (Fig. 3A, band I shown by the pink arrows). Band I also was absent in M55 and PSI-less mutants (Fig. 3B), which lack functional NDH-1 and PSI complexes, respectively. Thus, it seemed highly likely that band I is the NDH-1-PSI supercomplex dependent on the presence of CpcG2.

To verify the presence of the NDH-1-PSI supercomplex in Synechocystis 6803, we constructed a wild-type-CpcG2-yellow fluorescent protein (YFP)-His6 strain (hereafter referred to as WT-CpcG2-YH) by adding the YFP-His6 tag on the C terminus of CpcG2 in the wild-type background (Supplemental Fig. S2A). PCR analysis indicated complete segregation of the tagged gene (Supplemental Fig. S2B). Western-blot analysis of the thylakoid membrane from the tagged strain and confocal analysis of the tagged cells indicated the expression of CpcG2-YH (Supplemental Fig. S2, C and D). The tagging did not affect the NDH-CET activity (Supplemental Fig. S2, E–G).

Furthermore, we carried out BN-PAGE of thylakoid membranes isolated from the WT-CpcG2-YH strain. Band I and four other bands (II–V) were excised from the BN gel (Fig. 3B) and subjected to western-blot analysis using antibodies against NdhA, NdhH, NdhI, NdhK, and NdhM (NDH-1 complex), GFP and His (CpcG2-PSB antenna), PsaA and PsaD (PSI complex), D1 (PSII complex), and cytochrome (Cyt) f (Cyt b_{6}f complex). Immunoblots demonstrated that band I contained subunits of NDH-1 and PSI complexes together with YH-tagged CpcG2 (Fig. 3C), consistent with the absence of band I in the mutants lacking its subcomponents (Fig. 3, A and B). The presence of NDH-1, CpcG2, and PSI proteins in band I was confirmed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis (Table I; Supplemental Data Set S1). It is worthy of note that components of PSII and Cyt b_{6}f complex, D1 and Cyt f, respectively, were not detected.
in the band I. Bands II to V were PSI trimer, PSII dimer, NDH-1L, and NDH-1M (overlapped by PSI monomer) complexes, respectively, and immunoblots indicated that NDH-1L and its degradation product NDH-1M retained CpcG2, as deduced from the signal of its tagging (Fig. 3C).

Next, we observed on the BN-PAGE gel that the NDH-1-PSI supercomplex (band I) was absent in the thylakoid membrane of the ΔndhD1/ndhD2 mutant (Fig. 3D), where the NDH-1M complex is formed instead of NDH-1L due to the absence of NdhD1 (and NdhD2) subunits (Zhang et al., 2004, 2014). In accordance with this result, NDH-1L-specific subunits, NdhD1 and NdhF1, were detected in band I that originated from the wild type (Table I; Supplemental Data Set S1). Thus, we suggest that an NDH-1L-CpcG2-PBS-PSI supercomplex is present in Synechocystis 6803. Nevertheless, the supercomplex appeared to be rather unstable and mostly decomposed during isolation and n-dodecyl β-D-maltoside (DM) treatment of the thylakoid membrane (see “Discussion”).

Finally, we performed a coimmunoprecipitation of CpcG2 from the WT-CpcG2-YH strain using a protein A-Sepharose resin with polyclonal anti-GFP antibodies. Wild-type cells were used as a control to monitor the specificity of the assay. Immunoblot analysis demonstrated the presence of subunits of both the NDH-1 and PSI complexes in the preparation recovered from the WT-CpcG2-YH strain but not from the wild-type strain (Fig. 4A). The D1 protein of PSII was not recovered from either strain (Fig. 4A). A pull-down analysis using Ni²⁺ affinity chromatography gave a similar result (Fig. 4B). Taking all these results together, we conclude that an NDH-1L-PSI supercomplex is present in Synechocystis 6803.

Yet another experiment was performed to corroborate the dependence of the NDH-1-PSI supercomplex on the presence of CpcG2. Coimmunoprecipitation experiments of NDH-1, using anti-NdhH and anti-NdhK polyclonal antibodies, were performed with the wild-type and ΔcpcG2 strains using a protein A-Sepharose resin. Subsequent western-blot analysis showed the presence of the PsAD subunit of PSI in the preparation recovered from the wild-type strain but not from the ΔcpcG2 strain (Fig. 5, A and B). The D1 protein of PSII was not recovered from either strain (Fig. 5, A and B). In addition, immunoblot analysis of all the PSI green bands separated by BN-PAGE indicated that, in the wild-type strain, NDH-1 associated only with PSI in band I (red
arrow in the PSI supercomplex cluster; Fig. 5C), regardless of the presence of an overlap band of NDH-1M with PSI monomer in the strain (Fig. 5C). In contrast, such an association was absent in the ΔcpcG2 strain (Fig. 5D). Thus, CpcG2 is important in stabilization of the NDH-1-PSI supercomplex in *Synechocystis* 6803 and, thereby, is essential for the function of NDH-CET (Fig. 2).

Deletion of CpcG2 Has Consequences for the Function of PSI

To obtain insights into the effects of CpcG2 on the function of PSI, we compared the fractions of functional PSI between the wild type and ΔcpcG2. The results indicated that deletion of CpcG2 significantly reduced the fraction of functional PSI (40%–50% reduction) under growth conditions, as deduced from the maximal P700 change (Pm) levels in DCMU-treated intact cells (Fig. 6A). The remaining functional fraction of PSI in ΔcpcG2 was still higher than that in M55, with about 90% reduction in the Pm level (Fig. 6A). In comparison, the deletion of CpcG2 did not decrease the fraction of functional PSI but rather increased it slightly under growth conditions, as deduced from the maximal fluorescence yield (Fm) values in intact cells (Fig. 6A). Taken together, these results suggest that the CpcG2 protein has a profound and direct effect on the function of PSI as an intrinsic component of the NDH-1-PSI supercomplex.

Either impaired activity of PSI CET and/or an impairment of the functionality of PSI itself would explain the reduced fraction of functional PSI in DCMU-treated ΔcpcG2 intact cells. Deletion of CpcG2 impaired PSI CET (Fig. 2, D–F) and, consequently, in the presence of DCMU decreased the production of ATP and suppressed the Calvin-Benson cycle. Thus, it appears that the reduced fraction of functional PSI in ΔcpcG2 probably resulted from the charge recombination because of overreduction of PSI acceptor side. To test alternative possibilities, we purified the PSI complexes from the wild type and ΔcpcG2 and determined their fractions of functional PSI in the presence of exogenous PSI electron donor and acceptor (see “Materials and Methods”). In these circumstances, the Pm value reflects the functionality of PSI itself. As shown in Figure 6B, the deletion of CpcG2 did not alter the Pm value of isolated PSI complexes, consistent with the fact that the deletion did not affect the accumulation of the PSI complex in the thylakoid membrane (Fig. 3). Thus, it appears plausible that, in the absence of CpcG2, the impaired PSI CET but not the functionality of PSI as such decreases the fraction of functional PSI under growth conditions.

CpcG2 Is Essential to Stabilize NDH-1L and NDH-1M Complexes

To investigate the effects of CpcG2 on the stabilization of NDH-1, we compared the accumulation and assembly...
of NDH-1L and NDH-1M complexes in wild-type, ΔcpcG2, and M55 strains. Deletion of cpcG2 significantly decreased the amount of NDH-1 subunits in the thylakoid membrane (Fig. 7A). Immunoblotting with antibodies specific to the NdhH, NdhK, NdhI, and NdhM subunits showed that the abundance of NDH-1L in the ΔcpcG2 mutant was about one-third of that in the wild type and that its degradation product NDH-1M had disappeared (Fig. 7, B and C). This indicated that the CpcG2 protein is essential to stabilize the majority of the NDH-1L complex, another component of the NDH-1-PSI supercomplex, corroborating its effect on NDH-CET (Fig. 2). Based on the above results, we conclude that the formation of the NDH-1L-PSI supercomplex is very important for the performance of NDH-1L and PSI in NDH-CET.

Table 1. Summary of the NDH-1, CpcG2-PBS, and PSI components identified from Q-Exactive mass analysis of the NDH-1-PSI supercomplex (band I)

The complete list of proteins identified in band I can be found in Supplemental Data Set S1.

<table>
<thead>
<tr>
<th>Component</th>
<th>Open Reading Frame</th>
<th>Protein Name</th>
<th>Mascot Score</th>
<th>Protein Match</th>
<th>Coverage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDH-1 complex</td>
<td>sll0519</td>
<td>NdhA</td>
<td>40.5</td>
<td>4</td>
<td>13.2</td>
</tr>
<tr>
<td></td>
<td>sll0223</td>
<td>NdhB</td>
<td>24.8</td>
<td>1</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>slr0331</td>
<td>NdhD1</td>
<td>43.0</td>
<td>1</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>slr0844</td>
<td>NdhF1</td>
<td>41.4</td>
<td>1</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>slr0521</td>
<td>NdhG</td>
<td>31.0</td>
<td>1</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td>slr0261</td>
<td>NdhH</td>
<td>64.3</td>
<td>11</td>
<td>27.9</td>
</tr>
<tr>
<td></td>
<td>slr0520</td>
<td>NdhI</td>
<td>53.0</td>
<td>6</td>
<td>29.5</td>
</tr>
<tr>
<td></td>
<td>slr1281</td>
<td>NdhJ</td>
<td>51.1</td>
<td>5</td>
<td>30.7</td>
</tr>
<tr>
<td></td>
<td>slr1280</td>
<td>NdhK</td>
<td>69.3</td>
<td>7</td>
<td>27.4</td>
</tr>
<tr>
<td></td>
<td>slr1623</td>
<td>NdhM</td>
<td>41.4</td>
<td>3</td>
<td>36.4</td>
</tr>
<tr>
<td></td>
<td>sll1262</td>
<td>NdhN</td>
<td>74.7</td>
<td>2</td>
<td>18.6</td>
</tr>
<tr>
<td></td>
<td>ssl1690</td>
<td>NdhO</td>
<td>96.8</td>
<td>3</td>
<td>52.8</td>
</tr>
<tr>
<td>CpcG2-PBS antenna</td>
<td>sll1471</td>
<td>CpcG2</td>
<td>67.5</td>
<td>11</td>
<td>35.3</td>
</tr>
<tr>
<td></td>
<td>sll1578</td>
<td>CpcA</td>
<td>47.6</td>
<td>2</td>
<td>14.8</td>
</tr>
<tr>
<td></td>
<td>sll1577</td>
<td>CpcB</td>
<td>100.5</td>
<td>6</td>
<td>41.9</td>
</tr>
<tr>
<td></td>
<td>sll1580</td>
<td>CpcC1</td>
<td>98.0</td>
<td>9</td>
<td>40.6</td>
</tr>
<tr>
<td></td>
<td>sll1579</td>
<td>CpcC2</td>
<td>95.3</td>
<td>15</td>
<td>52.8</td>
</tr>
<tr>
<td>PSI complex</td>
<td>slr1834</td>
<td>PsaA</td>
<td>95.6</td>
<td>20</td>
<td>21.6</td>
</tr>
<tr>
<td></td>
<td>slr1835</td>
<td>PsaB</td>
<td>83.2</td>
<td>18</td>
<td>20.4</td>
</tr>
<tr>
<td></td>
<td>sss0563</td>
<td>PsaC</td>
<td>78.7</td>
<td>8</td>
<td>85.2</td>
</tr>
<tr>
<td></td>
<td>slr0737</td>
<td>PsaD</td>
<td>100.2</td>
<td>13</td>
<td>66.0</td>
</tr>
<tr>
<td></td>
<td>sss2833</td>
<td>PsaE</td>
<td>90.5</td>
<td>5</td>
<td>94.6</td>
</tr>
<tr>
<td></td>
<td>sll0819</td>
<td>PsaF</td>
<td>93.2</td>
<td>14</td>
<td>57.6</td>
</tr>
<tr>
<td></td>
<td>sml0008</td>
<td>PsaJ</td>
<td>20.3</td>
<td>1</td>
<td>22.5</td>
</tr>
<tr>
<td></td>
<td>sss0390</td>
<td>PsaK1</td>
<td>28.4</td>
<td>1</td>
<td>19.8</td>
</tr>
<tr>
<td></td>
<td>sll0629</td>
<td>PsaK2</td>
<td>40.4</td>
<td>3</td>
<td>14.4</td>
</tr>
<tr>
<td></td>
<td>slr1655</td>
<td>PsaL</td>
<td>87.6</td>
<td>6</td>
<td>45.2</td>
</tr>
<tr>
<td></td>
<td>smr0005</td>
<td>PsaM</td>
<td>37.4</td>
<td>1</td>
<td>22.6</td>
</tr>
</tbody>
</table>

Figure 4. Interaction of CpcG2 with NDH-1 and PSI complexes. A, Coimmunoprecipitation assay of the interaction of CpcG2 with NDH-1 and PSI complexes. Membrane proteins from the WT-CpcG2-YH and wild-type (WT) strains were incubated with protein A-Sepharose-coupled anti-GFP antiserum. The immunoprecipitates (IP) were probed with specific antibodies, as indicated on the left. B, Pull-down analysis of the interaction of CpcG2 with NDH-1 and PSI complexes. Membrane proteins isolated from the WT-CpcG2-YH and wild-type strains were purified using Ni2+ affinity chromatography. The purified samples were immunoblotted with antibodies against the subunits of the major photosynthetic membrane protein complexes. TM, Thylakoid membrane.
Respiration Was Unaffected in the ΔcpcG2 Mutant

In addition to NDH-CET, NDH-1L also is involved in respiration (Zhang et al., 2004; Bernát et al., 2011). Hence, we examined the effect of cpcG2 deletion on respiration. The results indicated that deletion of cpcG2 influenced neither the respiration activity (Fig. 8A) nor the growth on plates with or without Glc and DCMU (Fig. 8B). This indicated that the NDH-1L in the NDH-1-PSI supercomplex is involved mainly in NDH-CET and suggests that the NDH-1L unconnected to the supercomplex may be responsible for respiration.

DISCUSSION

The NDH-1L-PSI Supercomplex Is Formed in Synechocystis 6803

Recently, the NDH-1L-PSI supercomplex was identified and characterized in angiosperms (Peng et al., 2008, 2009).

Figure 5. The presence of CpcG2 is necessary for the stabilization of the NDH-1-PSI supercomplex. A and B, Coimmunoprecipitation assay of the interaction of NDH-1 with PSI. Membrane proteins from the wild-type (WT) and ΔcpcG2 strains were incubated with protein A-Sepharose-coupled antiserum of anti-NdhH (A) or anti-NdhK (B). The immunoprecipitates (IP) were probed with specific antibodies, as indicated on the left. TM, Thylakoid membrane. C and D, Freshly isolated thylakoid membranes from wild-type (C) and ΔcpcG2 (D) strains were solubilized in 1.5% DM at a Chl concentration of 0.25 μg μL−1, and the protein samples were separated by 12% SDS-PAGE, and the proteins were immunodetected with specific antibodies against NdhH and NdhK, respectively. Red arrows in the PSI (s) cluster represents band 1. PSI (s), PSI supercomplex; PSI (t), PSI trimer; PSI (d), PSI dimer; PSI (m), PSI monomer.

Figure 6. Functional fractions of PSI and PSII in the wild type (WT), ΔcpcG2, and M55. Cells were grown under 2% CO2 at 40 μmol photons m−2 s−1 and were collected during their logarithmic growth phase. The Chl a concentration of intact cells (A) or purified PSI samples (B) in the medium was adjusted to 20 μg mL−1. Prior to the Pm measurements, DCMU (10 μM final concentration; the same below) was added to the medium containing intact cells or to the medium containing purified PSI, 200 μM 2,6-dichlorophenol-indophenol, 5 mM sodium ascorbate, and 1 mM methyl viologen. The functionality of PSI and PSII reaction centers was determined by the Pm and Fm parameters, respectively, expressed as a percentage of the wild type (100%). Values are means ± sd (n = 5). PSs, Photosystems.
2009; Kouril et al., 2014). Stable formation of the supercomplex additionally needs two LHCl proteins, Lhca5 and Lhca6, which link the PSI complex to NDH-1 (Peng et al., 2009). Although cyanobacteria lack the homologs of Lhca5 and Lhca6 (Peng et al., 2009), we discovered an NDH-1L-PSI supercomplex in the thylakoid membrane of Synechocystis 6803 as a high-molecular-mass protein complex (more than 1,000 kD) by BN-PAGE (see band I in Fig. 3). Instead of the Lhca5 and Lhca6 proteins, the Synechocystis 6803 NDH-1L-PSI is shown to require the presence of the CpcG2 protein, which belongs to PBS, the main light-harvesting antenna in cyanobacteria. Synechocystis 6803 has two distinct types of PBS that are assembled with two different CpcG copies (Kondo et al., 2005; Watanabe and Ikeuchi, 2013). CpcG2-PBS was characterized recently as the PSI-specific antenna (Kondo et al., 2007) capable of forming a CpcG2-PBS-PSI complex in cyanobacteria (Watanabe et al., 2014). Here, we demonstrate that CpcG2-PBS-PSI forms a supercomplex with NDH-1L in Synechocystis 6803.

The identity of the NDH-1L-PSI supercomplex, represented by band I in Figure 3, was established by BN-PAGE of thylakoid membrane preparations obtained from wild-type and several mutant strains, followed by western blot (Fig. 3C) and LC-MS/MS (Table I; Supplemental Data Set S1). The NDH-1-PSI supercomplex was present in the wild type and WT-CpcG2-YH, while it was absent from the ΔcpcG2, and PSI-less mutants (Fig. 3, A and B), confirming the necessity of all three components, NDH-1, CpcG2, and PSI. Furthermore, NdhD1 and NdhF1, the specific subunits of NDH-1L, were present in the NDH-1L-PSI supercomplex of the wild-type strain (Table I; Supplemental Data Set S1). In line with this result, the ΔD1/D2 mutant lacked the band I corresponding to the NDH-1L-PSI supercomplex (Fig. 3D), providing evidence that the NDH-1L complex is capable of forming the supercomplex in Synechocystis 6803.

Attempts to purify an intact NDH-1L-PSI supercomplex by Suc density gradient centrifugation were not successful. The supercomplex could not be separated from PSI by this method (Supplemental Figs. S6 and S7). Furthermore, amounts of the diagnostic NdhH or NdhK subunit in the PSI-containing heavy fractions were at most 6% of total NDH-1 in the cells, indicating that the supercomplex was not stable and mostly decomposed during isolation and DM treatment of thylakoid membranes. Nonetheless, the existence of NDH-1L-PSI in Synechocystis 6803 was confirmed by coimmunoprecipitation (Fig. 4A) and pull-down assay (Fig. 4B).

Regardless of the different parts of the CpcG2-YH protein employed as anchors, these two approaches produced similar results: subunits of both NDH-1 and PSI complexes were recovered from the WT-CpcG2-YH strain but not from the wild-type strain. It is important to note that the D1 subunit of PSI was not recovered from either strain, in agreement with the earlier observation that CpcG2 is a component of the PSI-specific antenna (Kondo et al., 2007; Watanabe and Ikeuchi, 2013). The high specificity of these two methods corroborates the fact that the NDH-1L-PSI supercomplex is formed in Synechocystis 6803.

CpcG2-PBS Affects the Stabilization of NDH-1L and NDH-1M

The fragility of the NDH-1L-PSI supercomplex was evidently influenced by the instability of NDH-1L in the formation of the NDH-1L-PSI supercomplex, since deletion of CpcG1 and ApcD, its specific components, did not affect the intensity of band I (Supplemental Figs. S3–S5). Another type of PBS, comprising CpcG2, retains phycocyanin rods but is devoid of the typical allophycocyanin-containing central core (Kondo et al., 2005; Watanabe and Ikeuchi, 2013). CpcG2-PBS was characterized recently as the PSI-specific antenna (Kondo et al., 2007) capable of forming a CpcG2-PBS-PSI complex in cyanobacteria (Watanabe et al., 2014). Here, we demonstrate that CpcG2-PBS-PSI forms a supercomplex with NDH-1L in Synechocystis 6803.
supercomplex. Indeed, the majority of NDH-1L was detected in its free form (Fig. 5C). The results of this study further showed that deletion of the CpcG2 protein significantly reduced the amounts of both NDH-1L and NDH-1M compared with the wild type (Fig. 7). The amount of NDH-1L was diminished to about one-third of the wild-type level, and NDH-1M disappeared (Fig. 7, B and C). In the PSI-less strain, however, the amount of NDH-1 subunits was similar to that in the WT-CpcG2-tagged strain (Fig. 3C), which is in a good agreement with previously published data reporting that NDH-1L remains stable in the PSI-less strain, generating only a small amount of NDH-1M (Zhang et al., 2004). CpcG2-PBS, in turn, has been characterized as the PSI-specific antenna (Kondo et al., 2007), localized mostly at the surface of the PSI complex and being capable of forming a CpcG2-PBS-PSI complex in cyanobacteria (Watanabe et al., 2014). Thus, the drastic effect of CpcG2 deletion on NDH-1L and NDH-1M appears to be indirect (Fig. 9).

The reason for the instability of NDH-1L and NDH-1M in the absence of CpcG2 still remains unclear. It appears plausible that the CpcG2-PBS antenna interacts directly with a still unidentified linker between NDH-1L and PSI (question mark in Fig. 9), which is assumed to be necessary to stabilize the NDH-1L complex. Thus, we anticipate that, in the absence of CpcG2-PBS, an unknown linker would become exposed to an abnormal environment, resulting in the breakdown of the NDH-1L complex.

Model of the Cyanobacterial NDH-1L-PSI Supercomplex

The results described above, including patterns of NDH-1L-PSI degradation observed in various mutants, give some insights into the arrangement of components in the cyanobacterial NDH-1L-PSI supercomplex. At least three modules, NDH-1L, PSI, and the CpcG2-PBS antenna, form the supercomplex; the presence of proteins forming phycocyanin rods in the supercomplex

Figure 8. Respiration of wild-type (WT) and mutant cells. A, Rate of oxygen uptake in the dark at 30°C of wild-type, ΔcpcG2, and ΔndhQ cells grown under 2% (v/v) CO₂. The Chl a concentration was adjusted to 10 μg mL⁻¹ before measurement. Error bars indicate se (n = 5). B, Growth of wild-type, ΔcpcG2, and ΔndhQ cells on agar plates in the absence (left) and presence (right) of Glc (5 mM) and DCMU (10 μM). Three microliters of cell suspensions with densities corresponding to A₇₃₀ values of 0.1 (top rows), 0.01 (middle rows), and 0.001 (bottom rows) was spotted on agar plates and incubated under 2% (v/v) CO₂ in air for 6 d at 40 μmol photons m⁻² s⁻¹.

Figure 9. Schematic model of the NDH-1L-PSI supercomplex in cyanobacteria. CpcG2-PBS-PSI interacts with NDH-1L to form the NDH-1L-PSI supercomplex via an unidentified linker between NDH-1L and PSI. TM, Thylakoid membrane.
was confirmed by mass spectrometry analysis (Table 1; Supplemental Table S2; Supplemental Data Set S1), immunodetection (Supplemental Fig. S8A), and absorption spectrum (Supplemental Fig. S8B). Elimination of any of these three components abolished the supercomplex. Furthermore, the absence of the NDH-1L complex did not affect the stability of the PSI complex, and vice versa (Fig. 3, B and D). In contrast, the elimination of CpcG2 resulted in major losses of NDH-1L and NDH-1M complexes (Fig. 7, B and C). Taking all these results together, it appears that the NDH-1M domain interacts with the CpcG2-PSB antenna but not with PSI. However, the interaction may be mostly indirect, since the CpcG2-PSB antenna was recently assumed to be localized at the surface of the PSI complex to form a CpcG2-PSB-PSI complex (Watanabe et al., 2014). Based on the above analyses, we suggest that the CpcG2-PSB-PSI complex associates with NDH-1L to form an NDH-1L-PSI supercomplex, possibly via an unidentified linker between NDH-1L and PSI, as presented schematically in Figure 9.

Role of the NDH-1L-PSI Supercomplex in NDH-CET

In higher plants, the formation of the NDH-1-PSI supercomplex is not connected directly to NDH-1 activity, although its formation stabilizes the chloroplast NDH-1 complex, in particular under high-light conditions (Peng and Shikanai, 2011). We show here that, in *Synechocystis* 6803, in contrast to higher plant chloroplasts, the formation of the NDH-1L-PSI supercomplex is likely connected directly to the activity of NDH-CET (Figs. 1 and 2). This possibility is supported by the fact that the deletion of *ndhl* (M9 mutant) that impairs NDH-CET activity (Mi et al., 1992) abolishes the NDH-1L-PSI supercomplex but does not affect the assembly of NDH-1L and NDH-1M complexes even under high-light conditions (Supplemental Fig. S9).

The chloroplast NDH-1 complex was proposed to accept electrons from Fd, and NdhS was suggested to be the Fd-binding subunit based on the overall spatial homology of NdhS and its counterpart in chloroplasts, and the interaction of NdhS with Fd has been demonstrated in the cyanobacterium *Synechocystis* 6803. Following transformation, cells were spread on 1.5% BG-11 medium and kanamycin formants were spread on agar plates containing BG-11 medium and kanamycin. The exact position of the cassette in the mutant genome was determined by sequencing the PCR product. The exact position of the cassette in the mutant genome was determined by sequencing the PCR product. The exact position of the cassette in the mutant genome was determined by sequencing the PCR product. The exact position of the cassette in the mutant genome was determined by sequencing the PCR product.

MATERIALS AND METHODS

Culture Conditions

A Glc-tolerant strain of wild-type *Synechocystis* sp. strain PCC 6803 and its mutants, ΔcpcG1, ΔcpcG2, ΔndhD, ΔndhB (M55; Ogawa, 1991a), ΔndhD1/ΔndhD2 (ΔD1/D2; Ohkawa et al., 2000), ΔndhD3/ΔndhD4 (ΔD3/D4; Ohkawa et al., 2000), ΔndhL (M9; Ogawa, 1991b, 1992), and WT-CpcG2-YH, were cultured at 30°C in BG-11 medium (Allen, 1968) buffered with Tris-HCl (5 mM; pH 8) by bubbling with 2% (v/v) CO2 in air. Solid medium was BG-11 supplemented with 1.5% agar. Continuous illumination was provided by fluorescent lamps at 40 μmol photons m⁻² s⁻¹. The PSI-less mutant (Shen et al., 1993) was grown in BG-11 medium supplemented with 5 mM Glc at 30°C at 5 μmol photons m⁻² s⁻¹. The mutant strains were grown in the presence of appropriate antibiotics.

Isolation and Construction of Mutants

A cosmide library of the *Synechocystis* 6803 genome was constructed. The library, which contained 10⁶ clones with inserts of 35 to 38.5 kb, was subjected to in vitro transposon mutagenesis using the EZ-Tn5 < KAN-2 > Insertion Kit (Epicentre Biotechnologies) and then used to transform wild-type cells of *Synechocystis* 6803. Following transformation, cells were spread on 1.5% BG-11 agar plates supplemented with 5 μg ml⁻¹ kanamycin, and Kan² mutants that grew slowly under high light but normally under growth light were isolated. Genomic DNA isolated from each mutant was digested with HinfI and, after self-ligation, was used as a template for inverse PCR with primers (Supplemental Table S1) complementary to the N- and C-terminal regions of the Kam² cassette. The exact position of the cassette in the mutant genome was determined by sequencing the PCR product.

The ΔcpcG2 mutant was constructed as follows. The upstream and downstream regions of *cpcG2* were amplified by PCR, creating appropriate restriction sites. A DNA fragment encoding a Kan² cassette also was amplified by PCR, creating KpnI and XbaI sites using appropriate PCR primers, cpcG2-C and cpcG2-D (Supplemental Table S1). These three PCR products were ligated into the multiple cloning site of pUC19 (Fig. 2A) and used to transform the wild-type cells of *Synechocystis* 6803 to generate the ΔcpcG2 mutant. The transformants were spread on agar plates containing BG-11 medium and kanamycin (10 μg ml⁻¹) buffered at pH 8, and the plates were incubated in 2% (v/v) CO2 in air under illumination by fluorescent lamps at 40 μmol photons m⁻² s⁻¹. The mutated cpcG2 in the transformants was segregated to homogeneity (by successive streak purification) as determined by PCR amplification and reverse transcription (RT)-PCR analysis (Fig. 2, B and C).
The WT-CpcG2-YH mutant was constructed as follows. A DNA fragment containing cpcG2 and its upstream region was amplified by PCR, creating SaII and KpnI sites on both ends, and was ligated to the SaII and KpnI sites in the multiple cloning site of the pEYFP-His6-SpR plasmid (Birungi et al., 2010). A fragment containing the downstream region of cpcG2 also was amplified by PCR, creating EcoRI and Spel sites, and was ligated to the downstream region of the SpR gene (Supplemental Fig. S2A). The vector thus constructed was used to transform the wild-type cells of Synechocystis 6803 to generate the WT-CpcG2-YH mutant strain. The transformation was performed as described previously (Williams and Szalay, 1983; Long et al., 2011). The yfiI and his6I region in the transformants was segregated to homogeneity (by successive streak purification) as determined by PCR amplification (Supplemental Fig. S2B).

RNA Extraction and RT-PCR Analysis

Total RNA was isolated and analyzed as described previously (McGinn et al., 2003). RT-PCR was performed using the Access RT-PCR system (Promega) to generate products corresponding to cpcG1, cpcG2, apcD, and 16 S rRNA, with 0.5 μg of DNase-treated total RNA as starting material. RT-PCR conditions were 95°C for 5 min followed by cycles of 95°C, 62°C, and 72°C for 30 s each. The reactions were stopped after 25 cycles for 16 S rRNA and after 35 cycles for cpcG1, cpcG2, and apcD. The primers used are summarized in Supplemental Table S1.

Chl Fluorescence and P700 Analysis

The transient rise in Chl fluorescence after AL had been turned off was monitored as described (Ma and Mil, 2005). The redox kinetics of P700 was monitored as described (Ma and Mi, 2005; Zhao et al., 2014). The rereduction of P700+ in the medium or to the medium containing PSI, 200 μM 2,6-dichlorophenol-indophenol, 5 mM sodium ascorbate, and 1 mM methyl viologen. The P700+ values were determined using a saturation pulse (100 μs; 10,000 mol photons m−2 s−1) under an FR illumination. Survey scans were acquired at a resolution of 70,000 at m/z 200. The raw data were processed with Protein Discoverer software (Thermo Fisher Scientific) using default parameters to generate peptide sequences encoding amino acids 54 to 93 of NdhA and the entire NdhN are raised in our laboratory. Primer sequences used to amplify the nucleotide sequences encoding amino acids 54 to 93 of NdhA and the entire NdhN are listed in Supplemental Table S1. The PCR products were ligated into the pGEX-5X-1 and pET32a vectors, respectively, and the constructs were amplified in Escherichia coli DH-5α. The plasmids were used to transform E. coli strain BL21 (DE3) pLysS for protein expression. The expression products from E. coli were purified and used as antigens to immunize rabbits to produce polyclonal antibodies. Antibodies against NdhH, NdhI, NdhK, and NdhM were raised previously in our laboratory (Ma and Mi, 2005; Zhao et al., 2014). Antibody against His was purchased from Shanghai Immune Biotech, and antibodies against GFP, PSI subunits (Psaa, Psal, and PsalD), a PSI subunit (D1), and a Cyt b5 subunit (Cyt b5) were purchased from Agrisera.

Peptide Preparation for Tandem Mass Spectrometry Analysis

Thylakoid membrane complexes isolated from the wild-type strain were solubilized and subjected to BN-PAGE. Coomassie Brilliant Blue-stained band I from the wild type (pink arrows in Fig. 3A) was excised from the BN gel. Peptide preparation and liquid chromatography-electrospray ionization-tandem mass spectrometry analyses were performed as described previously (Battchikova et al., 2011a). The excised bands were treated twice with 50 mM ammonium bicarbonate in 30% (v/v) acetonitrile for 10 min and 100% (v/v) acetonitrile for 15 min. The collected supernatant was mixed with one-tenth volume of sample buffer, 5% Serva Blue G, 100 μl Bis-Tris, pH 7, 0% (v/v) Suc, 500 μl α-amino-n-capric acid, and 10 μl EDTA. Solubilized membranes were then applied to a 0.75-mm-thick, 5% to 12.5% acrylamide gradient gel (Hoefer Mighty Small mini-vertical unit). Samples were loaded on an equal Chl a basis per lane. Electrophoresis was performed at 4°C by increasing the voltage gradually from 50 up to 200 V during the 5.5-h run.

For electrophoresis, the proteins were visualized by Coomassie Brilliant Blue staining. For immunoblotting, the proteins were electrotransferred to a polyvinylidene difluoride membrane (immobilon-P; Millipore) and detected by protein-specific antibodies using an ECL assay kit (Amersham) according to the manufacturer’s protocol. Antibodies against NdhA and NdhN proteins of Synechocystis 6803 were raised in our laboratory. Primer sequences used to amplify the nucleotide sequences encoding amino acids 54 to 93 of NdhA and the entire NdhN are listed in Supplemental Table S1. The PCR products were ligated into the pGEX-5X-1 and pET32a vectors, respectively, and the constructs were amplified in Escherichia coli DH-5α. The plasmids were used to transform E. coli strain BL21 (DE3) pLysS for protein expression. The expression products from E. coli were purified and used as antigens to immunize rabbits to produce polyclonal antibodies. Antibodies against NdhH, NdhI, NdhK, and NdhM were raised previously in our laboratory (Ma and Mi, 2005; Zhao et al., 2014). Antibody against his was purchased from Shanghai Immune Biotech, and antibodies against GFP, PSI subunits (Psaa, Psal, and PsalD), a PSI subunit (D1), and a Cyt b5 subunit (Cyt b5) were purchased from Agrisera.

Mass Spectrometry Analysis and Database Searching

LC-MS/MS analyses were performed on a Q-Exactive mass spectrometer (Thermo Finnigan) coupled with an Easy-nLC1000 HPLC system (Thermo Fisher Scientific). Tryptic-digested peptides were dissolved in 12 μL of 2% formic acid, loaded onto a C18 reverse-phase column (10 cm × 50 μm i.d.) and eluted by gradient of buffer B (80% acetonitrile and 0.1% formic acid), and separated by a linear gradient of buffer B (80% acetonitrile and 0.1% formic acid) at a flow rate of 0.3 μl/min. The collected supernatant was mixed with one-tenth volume of sample buffer, 5% Serva Blue G, 100 μl Bis-Tris, pH 7, 0% (v/v) Suc, 500 μl α-amino-n-capric acid, and 10 μl EDTA. Solubilized membranes were then applied to a 0.75-mm-thick, 5% to 12.5% acrylamide gradient gel (Hoefer Mighty Small mini-vertical unit). Samples were loaded on an equal Chl a basis per lane. Electrophoresis was performed at 4°C by increasing the voltage gradually from 50 up to 200 V during the 5.5-h run.

For electrophoresis, the proteins were visualized by Coomassie Brilliant Blue staining. For immunoblotting, the proteins were electrotransferred to a polyvinylidene difluoride membrane (immobilon-P; Millipore) and detected by protein-specific antibodies using an ECL assay kit (Amersham) according to the manufacturer’s protocol. Antibodies against NdhA and NdhN proteins of Synechocystis 6803 were raised in our laboratory. Primer sequences used to amplify the nucleotide sequences encoding amino acids 54 to 93 of NdhA and the entire NdhN are listed in Supplemental Table S1. The PCR products were ligated into the pGEX-5X-1 and pET32a vectors, respectively, and the constructs were amplified in Escherichia coli DH-5α. The plasmids were used to transform E. coli strain BL21 (DE3) pLysS for protein expression. The expression products from E. coli were purified and used as antigens to immunize rabbits to produce polyclonal antibodies. Antibodies against NdhH, NdhI, NdhK, and NdhM were raised previously in our laboratory (Ma and Mi, 2005; Zhao et al., 2014). Antibody against his was purchased from Shanghai Immune Biotech, and antibodies against GFP, PSI subunits (Psaa, Psal, and PsalD), a PSI subunit (D1), and a Cyt b5 subunit (Cyt b5) were purchased from Agrisera.

NDH-1L-CpcG2-PBS-PSI Supercomplex

Plant Physiol. Vol. 172, 2016 1461
10 mM HEPES-NaOH (pH 7.5), and 10 mM NaCl supplemented with 10, 20, and 250 mM imidazole for binding, then suspended in 30 mM HEPES-NaOH (pH 7.5), and 1 mM PMSF and then solubilized in the same buffer containing 0.05% (w/w) DM and twice with TNE buffer. The beads were then suspended in 30 μL of 1× SDS (2%) loading buffer and then boiled for 5 min. After centrifugation, the supernatant was collected and subjected to immunoblot analysis.

Affinity Chromatography

Purification of protein complexes containing the His6 tag was performed using a nickel-nitrilotriacetic His-Bind resin column (Novagen). Chromatography buffers contained 20 mM HEPES-KOH, pH 7.5, 10% (w/v) glycerol, and 100 mM NaCl supplemented with 10, 20, and 250 mM imidazole for binding, washing, and elution of the protein complexes, respectively.

Growth Curve

The cell density of wild-type and ΔcpcG2 cells cultured at growth light and high light was determined every 12 and 6 h, respectively, and that of wild-type, ΔcpcG2, and ΔΔD3/D4 cells cultured under pH 6.5 and 2% (v/v) CO2 concentrations at pH 6.5.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Growth curve of wild-type and ΔcpcG2 cells under different light intensities.

Supplemental Figure S2. Construction and characterization of the WT-CpcG2-YH strain.

Supplemental Figure S3. Construction and analysis of the cpcG1 deletion mutant.

Supplemental Figure S4. Construction and analysis of the apcD deletion mutant.

Supplemental Figure S5. Analysis of band I in the wild-type, ΔcpcG1, and ΔΔapcD strains.

Supplemental Figure S6. Suc density gradient analysis of NDH-1 complexes isolated from the WT-CpcG2-YH strain.

Supplemental Figure S7. Suc density gradient analysis of thylakoid membrane protein complexes isolated from the WT-CpcG2-YH and ΔcpcG2 strains.

Supplemental Figure S8. Identification of phycobilisome components in the NDH-1L-PSI supercomplex.

Supplemental Figure S9. Analysis of NDH-1L-PSI, NDH-1L, and NDH-1M in wild-type and M9 strains.

Supplemental Figure S10. Growth curve of wild-type, ΔcpcG2, and ΔΔD3/D4 cells under different CO2 concentrations at pH 6.5.

Supplemental Table S1. Primers used in this study.

Supplemental Table S2. Summary of the CpcG2-PBS antenna components identified from Q-Exactive mass analysis of the NDH-1-PSI supercomplex (band I).

Supplemental Data Set S1. Total proteins identified from band I.

ACKNOWLEDGMENTS

We thank Toshiharu Shikanai (Kyoto University) for reading the article with critical comments and Wim Vermaas (Arizona State University) for the PSI-less mutant; mass spectrometry was carried out at Shanghai Applied Protein Technology; confocal microscopy was performed at the Shanghai Institute of Plant Physiology and Ecology, and Dr. Xiaoshu Gao of the Institute is thanked for help in cell imaging. Received April 8, 2016; accepted September 8, 2016; published September 12, 2016.

LITERATURE CITED

