CORRECTION

Xiao J., Li J., Ouyang M., Yun T., He B., Ji D., Ma J., Chi W., Lu C., and Zhang L. DAC Is Involved in the Accumulation of the Cytochrome b_{6}/f Complex in Arabidopsis.

Figure 1D has been corrected to display the splice between wild-type and control samples by a black line on the same blot. The legend of the figure has been changed for clarity.

The mislabeling of panels viii and ix in the Nuc-GFP row of Figure 7A has been corrected. The DAC blot of Figure 7A (lanes 8 and 9) was inadvertently duplicated in the published Figure 7B (PsbO panel), and the correct one is shown in the new version. The legend of Figure 7 has not been changed.

For ease of comparison, the original and corrected versions of Figure 1 and Figure 7 affected by this mistake are presented below with the positions of the errors and corrections marked with red boxes. The original conclusions of this article are not affected by these corrections.

Figure 1. Original: Identification of the dac mutant. A, Identification and complementation of the dac mutant. The cDNA of the wild-type DAC gene was cloned into a binary plant transformation vector and used for complementation of the dac mutant (daccom). WT, Wild type. Four-week-old plants grown on Suc-supplemented medium are shown. B, Schematic diagram of the DAC gene. Exons are indicated by black boxes, introns by lines, and the T-DNA insertion by the triangle; ATG represents the initiation codon and TGA represents the stop codon. C, Reverse transcription-PCR analysis. Reverse transcription-PCR was performed using specific primers for AT3G17930 or ACTIN11. D, Thylakoid membranes (2 μg of chlorophyll) isolated from wild-type and dac mutant leaves were separated by Tricine/SDS-PAGE followed by immunoblot analysis with the anti-DAC, anti-PetD, and LTD antibodies. LTD and PetD are used here as molecular mass controls.

Figure 1. Corrected: Identification of the dac mutant. A, Identification and complementation of the dac mutant. The cDNA of the wild-type DAC gene was cloned into a binary plant transformation vector and used for complementation of the dac mutant (daccom). WT, Wild type. Four-week-old plants grown on Suc-supplemented medium are shown. B, Schematic diagram of the DAC gene. Exons are indicated by black boxes, introns by lines, and the T-DNA insertion by the triangle; ATG represents the initiation codon and TGA represents the stop codon. C, Reverse transcription-PCR analysis. Reverse transcription-PCR was performed using specific primers for AT3G17930 or ACTIN11. D, Thylakoid membranes (2 μg of chlorophyll) isolated from wild-type and dac mutant leaves were separated by Tricine/SDS-PAGE followed by immunoblot analysis. Samples were run side by side on the same gel for immunoblotting. The black line indicates noncontiguous lanes in the gel. LTD and PetD are used here as molecular mass markers.
Figure 7. Original: Subcellular localization and topology of the DAC protein. A, Subcellular localization of the DAC protein. The indicated sGFP fusion proteins were transiently expressed in Arabidopsis protoplasts under the control of the cauliflower mosaic virus 35S promoter, and the green GFP signals were monitored using confocal microscopy (panels i, iv, vii, and x). The chloroplasts were visualized by chlorophyll autofluorescence (panels ii, v, vii, and xi). The colocalization of GFP with the chloroplasts is indicated in the merged images (panels iii, vi, ix, and xii). The constructs used for transformation are indicated to the right: Nuc-GFP, control with the nuclear localization signal of fibrillarin; Mit-GFP, control with the mitochondrial localization signal of FRO1; Chl-GFP, the DAC-GFP fusion protein. B, Salt washing of the thylakoid membranes. Sonicated wild-type thylakoid membrane preparations were incubated with 1M NaCl, 1M CaCl₂, 200 mM Na₂CO₃, and 6M urea for 30 min at 4°C. After this treatment, the membrane fractions were separated by Tricine/SDS-PAGE, followed by immunoblot analysis using anti-DAC, anti-PsbO, and anti-CP47 antibodies. Untreated sonicated membrane preparations (Ck) were used as controls. C, Protease protection experiment. Thylakoid membranes from wild-type leaves were incubated with trypsin for 0, 5, 10, and 15 min at 20°C, followed by immunoblot analysis using anti-DAC and anti-PsbO antibodies. D and E, Schematic representations of the two possible topologies of DAC. In contrast to the N and C termini, the loop between the two TM helices lacks predicted trypsin cleavage sites (indicated by asterisks). The antibody was produced against the C-terminal fragments (amino acids 147–190) of the DAC protein.

Figure 7. Corrected: Subcellular localization and topology of the DAC protein. A, Subcellular localization of the DAC protein. The indicated sGFP fusion proteins were transiently expressed in Arabidopsis protoplasts under the control of the cauliflower mosaic virus 35S promoter, and the green GFP signals were monitored using confocal microscopy (panels i, iv, vii, and x). The chloroplasts were visualized by chlorophyll autofluorescence (panels ii, v, vii, and xi). The colocalization of GFP with the chloroplasts is indicated in the merged images (panels iii, vi, ix, and xii). The constructs used for transformation are indicated to the right: Nuc-GFP, control with the nuclear localization signal of fibrillarin; Mit-GFP, control with the mitochondrial localization signal of FRO1; Chl-GFP, control with the transit peptide of the ribulose bisphosphate carboxylase small subunit; DAC-GFP, the DAC-GFP fusion protein. B, Salt washing of the thylakoid membranes. Sonicated wild-type thylakoid membrane preparations were incubated with 1M NaCl, 1M CaCl₂, 200 mM Na₂CO₃, and 6M urea for 30 min at 4°C. After this treatment, the membrane fractions were separated by Tricine/SDS-PAGE, followed by immunoblot analysis using anti-DAC, anti-PsbO, and anti-CP47 antibodies. Untreated sonicated membrane preparations (Ck) were used as controls. C, Protease protection experiment. Thylakoid membranes from wild-type leaves were incubated with trypsin for 0, 5, 10, and 15 min at 20°C, followed by immunoblot analysis using anti-DAC and anti-PsbO antibodies. D and E, Schematic representations of the two possible topologies of DAC. In contrast to the N and C termini, the loop between the two TM helices lacks predicted trypsin cleavage sites (indicated by asterisks). The antibody was produced against the C-terminal fragments (amino acids 147–190) of the DAC protein.