










Other molecules are also affected by high tempera-
ture. Pro acts as a compatible solute in osmoprotection
and accumulates in response to different abiotic stresses
(Krasensky and Jonak, 2012). Pro is a key factor for
pollen viability (Lansac et al., 1996), and in several
species, levels decrease in pollen under high tempera-
ture regimes that disturb pollen development (Mutters
et al., 1989; Tang et al., 2008). Interestingly, the ex-
pression of Pro transporter 1mRNA was reduced under
these conditions. This might suggest that Pro is incor-
porated into pollen grains from the locular fluid rather
than being produced by pollen itself and may be

reduced at high temperature (Sato et al., 2006). Lipids
are also affected by heat. The type of lipids in cellular
membranes and their saturation level are important
determinants of membrane fluidity and functioning. In
barley (Hordeum vulgare), long-term growth at mildly
elevated temperature led to alterations in phospholipid
saturation in pollen (Prasad and Djanaguiraman, 2011).
This in turn might make the membranes more suscep-
tible to ROS damage. Finally, the levels of two phyto-
hormones important for pollen development seem to be
affected by high temperature. Auxin levels in anthers
are reduced by high temperature in Arabidopsis, rice,

Figure 1. Effects of heat related to acclimation or collapse of developing microspores. Genes involved are indicated between
brackets. Resource limitation is hypothesized to impose a trade-off between acclimation and development (see “Perspective”
section).
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and barley, in contrast to the response of vegetative
tissues (Tang et al., 2008; Sakata et al., 2010). Interest-
ingly, exogenous application of auxin improved toler-
ance of developing pollen to continuous mild heat
stress in barley (Sakata et al., 2010). Tang et al. (2008)
found that bioactive gibberellin (GA) content also de-
creased in mature anthers under heat stress in rice.
Furthermore, in an independent study of rice, the set of
tapetum-specific genes that were downregulated under
continuous mild heat stress was enriched for GA-
responsive genes (Endo et al., 2009). The GA deficiency/
insensitivity phenotype is notably similar to the heat
phenotype, sharing features such as abnormal tapetal
development, delayed or inhibited programmed cell
death, and developmental arrest at microspore stage
(Jacobsen and Olszewski, 1991; Aya et al., 2009).
Moreover, one class of GA target genes expressed in the
tapetum are the invertases described above (Proels
et al., 2006). Putatively related to changes in GA signal,
it was recently found that mild heat reduces the ex-
pression of B-class MADS box genes and that partial
down-regulation of these genes mimics the heat phe-
notype, including reduced pollen viability (Müller
et al., 2016).

PERSPECTIVE

It is clear that developing anthers and pollen have the
capacity for acclimation to high temperature, and fur-
ther research may reveal many more heat responses to
be adaptive than currently thought. Collectively, these
responses permit the production of viable pollen at

certain levels of heat stress (Fig. 1). What remains un-
clear is how mild heat stress results in defective pollen
development and why developing microspores and
pollen are heat sensitive compared to other plant tissues
(Box 1; Fig. 1). Does the latter response arise as the lesser
of two evils, i.e. does inherent energy or nutrient limi-
tation in the anther locule prevent microspores deviat-
ing from a fixed developmental path toward strong
acclimation?

Based on the fundamental influence of heat on all
molecules, it is likely that pollen failure is not the result
of a single primary effect, propagated as a linear series
of consequences, but of a combination of effects that
behave synergistically. The finding that heat tolerance
in vegetative tissues can be improved by targeting
different physiological processes supports this hy-
pothesis (Singh and Grover, 2008). But how can we
proceed to identify what injuries are causally linked to
the pollen phenotype? First, it will be essential to gen-
erate more specific hypotheses by applying analyses
with increased temporal and spatial resolution. The fact
that both tapetum and microspores/pollen constitute
only part of the anther reduces the resolving power
of many studies that sample whole anthers or even
flowers. Furthermore, the rapid and inherently asyn-
chronous development of cells of interest in the anther
restricts temporal resolution (Carrizo García et al.,
2017). Promising new expression profiling methods
include various types of immunopurification-based
transcript capturing in combination with a cell- or
stage-specific activation (Bailey-Serres, 2013). Simi-
larly, recently developed techniques allow for cell-
specific metabolome analyses (Fessenden, 2016). Further
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opportunities exist in examining the similarities between
the effects of heat and other abiotic stresses, such as
cold, drought, and high salinity on male gametophyte
development (De Storme and Geelen, 2014; Das et al.,
2015; Sharma and Nayyar, 2016). To test the (new)
hypotheses generated, the phenotypic effect of mim-
icking the injury could be suggestive, as applied to
invertases, B-classMADS box genes, andGA signaling.
However, complementation studies, where specific
defects are counteracted using pharmacological or ge-
netic approaches, are necessary to establish cause-and-
effect relationships. The auxin rescue experiment in
barley by Sakata et al. (2010) provides an instructive
example, and it will be interesting to see whether their
findings will extend to other species. Applying this

principle, it would be logical to determine whether, for
example, increased levels of invertases in the devel-
oping tapetum or pollen are beneficial for thermotol-
erance. Studies into the genetic basis of natural and
artificial variation have also been highly effective in
dissecting other plant-environment interactions, so this
strategy holds promise for identifying major determi-
nants of pollen thermotolerance. It has been suggested
that pollen heat sensitivity could be an adaptation
itself, preventing investment in reproduction under
adverse conditions (Müller and Rieu, 2016). If true, one
could expect less heat sensitivity in dioecious species
and, counterintuitively, higher pollen thermotolerance
in species or genotypes originating from moderate
temperature habitats.
Received October 24, 2016; accepted February 22, 2017; published February 28,
2017.
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