An Organelle RNA Recognition Motif Protein Is Required for Photosystem II Subunit \textit{psbF} Transcript Editing1[OPEN]

Justin B. Hackett2,3, Xiaowen Shi2,4, Amy T. Kobylarz, Meriah K. Lucas, Ryan L. Wessendorf, Kevin M. Hines, Stephane Bentolila, Maureen R. Hanson, and Yan Lu*

Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008-5410 (J.B.H., A.T.K., M.K.L., R.L.W., Y.L.); and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703 (X.S., K.M.H., S.B., M.R.H.)

ORCID IDs: 0000-0001-6408-5689 (K.M.H.); 0000-0003-2805-7298 (S.B.); 0000-0001-8141-3058 (M.R.H.); 0000-0002-3374-7376 (Y.L.).

Loss-of-function mutations in ORGANELLE RNA RECOGNITION MOTIF PROTEIN6 (ORRM6) result in the near absence of RNA editing of \textit{psbF}-C77 and the reduction in \textit{accD}-C794 editing in Arabidopsis (\textit{Arabidopsis thaliana}). The \textit{orrm6} mutants have decreased levels of photosystem II (PSII) proteins, especially PsbF, lower PSII activity, pale green pigmentation, smaller leaf and plant sizes, and retarded growth. Stable expression of ORRM6 rescues the \textit{orrm6} editing defects and mutant phenotype. Unlike ORRMI, the other known ORRM plastid editing factor, ORRM6, does not contain RNA editing interacting protein/multiple organellar RNA editing factor (RIP/MORF) boxes, which are required for ORRMI to interact with site-specific pentatricopeptide repeat protein editing factors. ORRM6 interacts with RIP1/MORF8, RIP2/MORF2, and RIP9/MORF9, known components of RNA editosomes. While some plastid RRM proteins are involved in other forms of RNA processing and translation, the primary function of ORRM6 is evidently to mediate \textit{psbF}-C77 editing, like the essential site-specific pentatricopeptide repeat protein \textit{LOW PSII ACCUMULATION}66. Stable expression in the \textit{orrm6} mutants of a nucleus-encoded, plastid-targeted PsbF protein from a \textit{psbF} gene carrying a T at nucleotide 77 significantly increases leaf and plant sizes, chlorophyll content, and PSII activity. These transformants demonstrate that plastid RNA editing can be bypassed through the expression of nucleus-encoded, edited forms of plastid genes.

The function of most plant RNA recognition motif (RRM)-containing proteins is unknown. In Arabidopsis (\textit{Arabidopsis thaliana}), 196 genes have been identified that contain sequences encoding RRMs (Lorkovič and Barta, 2002). Certain plastid RRM proteins are known to be involved in rRNA processing, mRNA splicing, RNA editing, RNA stability, and translation (Yohn et al., 1998; Bonen, 2011; Ruwe et al., 2011; Zoschke et al., 2011; Shi et al., 2016a; Wang et al., 2016).

Recently, Arabidopsis proteins that contain RRM motifs and are organelle targeted have been shown to be required for the efficient editing of different sets of C targets on organelle transcripts. RNA editing in the coding regions of mRNAs restores conserved codons and is thought to be a correction mechanism for defective genes at the transcript level (Lutz and Maliga, 2001; Schmitz-Linneweber and Barkan, 2007; Chateigner-Boutin and Small, 2010, 2011; Dalby and Bonen, 2013; Takenaka et al., 2013; Börner et al., 2014; Sun et al., 2016). Different plant species vary in their numbers of organelle RNA editing sites (Bock, 1998, 2000; Tillich et al., 2005; Li-Pook-Than et al., 2007; Robbins et al., 2009; Wang et al., 2015). To date, 43 plastid and more than 600 mitochondrial C-to-U RNA editing sites have been reported in Arabidopsis (Chateigner-Boutin and Small, 2007; Bentolila et al., 2013; Ruwe et al., 2013).

C-to-U RNA editing is carried out by editosomes, RNA/protein complexes that are between 200 and 400 kD in size (Bentolila et al., 2012; Shi et al., 2016a). Four types of proteins have been identified as C-to-U RNA editing factors in the plastid: PLS subfamily pentatricopeptide repeat (PPR) proteins, RNA editing factor interacting proteins/multiple organellar RNA editing factors (RIPs/MORFs), organelle RNA recognition...
motif-containing proteins (ORRMs), and organelle zinc finger proteins (OZs; Takenaka et al., 2012; Sun et al., 2013, 2015; Barkan and Small, 2014; Colas des Francs- Small and Small, 2014; Shi et al., 2016a). At least one PPR protein, RIP/MORF protein, and ORRM protein are likely to be present in each editosome, which differ in composition in chloroplasts versus mitochondria and between different transcripts in the same organelle (Sun et al., 2016).

PPR proteins involved in editing contain multiple PLS-type PRR repeats, an extension (E) domain, and sometimes a C-terminal DYW domain (OTeole et al., 2008; Schnitz-Linneweber and Small, 2008; Fujii and Small, 2011; Barkan and Small, 2014) and are site-specific recognition factors for cis-elements near C targets of editing, usually operating on a small number of editing sites (Chaudhuri and Maliga, 1996; Germain et al., 2013; Barkan and Small, 2014; Shikanai, 2015). For example, LOW PSII ACCUMULATION66 (LPA66), a plastid-targeted PPR and Small, 2014; Shi et al., 2016b). Extends at 35, 32, and 262 mitochondrial RNA editing sites, respectively (Shi et al., 2015, 2016b).

In this work, we describe the identification of a unique C-to-U RNA editing factor in the plastid, ORRM6. Unlike the other known ORRM editing factors, loss of ORRM6 primarily affects only two C targets of editing: nearly complete absence of editing at the psbF-C77 site and substantial reduction of editing at the accD-C794 site, with minor effects on two other sites. We observed that ORRM6 interacts with the plastid RNA editing factors RIP1/MORF8, RIP2/MORF2, RIP9/MORF9, OZ1, and itself, demonstrating that ORRM6 is a component of plastid RNA editosomes. The orrm6 mutants exhibited reduced photosynthetic efficiency, specifically defective PSI1 activity. Stable expression of a nuclear T77 psbF gene in the orrm6 mutants significantly enhanced PSI1 function and plant growth rate, allowing us to conclude that the psbF editing defect was responsible for the mutant phenotype.

RESULTS

Identification of T-DNA Insertion Mutants in a Gene Encoding a Chloroplast-Targeted Protein Carrying an RRM Domain

While examining a collection of mutants in genes encoding proteins carrying putative chloroplast transit sequences (Lu et al., 2008, 2011b; Ajawati et al., 2011; Yang et al., 2011), we identified two Arabidopsis T-DNA insertion mutants (SAIL_763_A05 and WiscDsLox485-488P23; Fig. 1A) with T-DNA insertions in the first intron of the At1g73530 gene (Fig. 1B), which encodes a 181-amino acid protein (Fig. 1C) with a putative cTP (amino acids 1–44) and an RRM (amino acids 79–148) that is homologous to the RRM of proteins in the ORRM clade of Arabidopsis RRM proteins (Supplemental Fig. S1; Sun et al., 2013). The At1g73530 gene was named ORRM6 and the two Arabidopsis T-DNA insertion mutants (SAIL_763_A05 and WiscDsLox485-488P23) were named orrm6-1 and orrm6-2, respectively (Fig. 1B). Quantitative reverse transcription (RT)-PCR showed
that the presence of the ORRM6 transcript is completely abolished in orrm6-1 and orrm6-2 (Fig. 1D), indicating that these are loss-of-function mutants. Compared with wild-type plants, the orrm6 mutants are smaller and their leaves are smaller and pale green (Fig. 1E), indicative of growth retardation.

In order to determine the subcellular localization of ORRM6, its full-length coding region was fused with the coding region of a cerulean fluorescent protein (CFP). The transgene was transiently expressed in Nicotiana benthamiana leaf cells under the control of the cauliflower mosaic virus (CaMV) 35S promoter (Sparkes et al., 2006; Withers et al., 2012). As shown in Figure 2, the ORRM6-CFP fusion protein colocalizes with chlorophyll autofluorescence, indicating that it is targeted to chloroplasts.

Editing of accD and psbF Transcripts Is Impaired in the orrm6 Mutants

The function of only a few of the proteins in the ORRM clade has been identified. ORRM1 is known to be a chloroplast RNA editing trans-factor (Sun et al., 2013), while ORRM2, ORRM3, and ORRM4 are known to be required for the editing of mitochondrial RNA editing sites (Shi et al., 2015, 2016b).

Because the RRM of the ORRM6 protein is the most similar to the RRM found in ORRM1 (Fig. 3 in Sun et al., 2013), we performed strand- and transcript-specific PCR sequencing (ST-PCR-seq) to measure RNA editing extents in chloroplast and mitochondrial transcripts. This method combines multiplex RT-PCR amplification of transcripts carrying organellar RNA editing sites with Illumina sequencing, allowing economical and sensitive determination of plastid and mitochondrial RNA editing extents (Bentolila et al., 2013). We analyzed only the orrm6-2 mutant plants by STS-PCR-seq. Two biological replicates were assayed for each sample, orrm6-2 mutant plants and wild-type plants. We observed significant decreases only in four plastid RNA editing sites \[P_{1.6e-6}, D_{0.1}; \text{Fig. 3; Supplemental Data Set S1} \], while none of the mitochondrial sites is affected in the mutant (Supplemental Data Set S1). Two of the affected sites are weakly edited in the wild type and none of the affected sites is in an intron; thus, the small decreases at those two sites in the orrm6-2 mutant are unlikely to have phenotypic consequences. The two sites that are highly edited in the wild type and significantly decreased in the mutant are accD-C794 and psbF-C77 (Fig. 3A).

To determine whether these two sites also are affected in orrm6-1, we performed Sanger sequencing, which indicates reduced editing at both accD-C794 levels of ACTIN2 (At3g18780). E, Images of 3-week-old plants. Plants used for chlorophyll fluorescence analysis, quantitative RT-PCR, and photography were grown on a 12-h-light/12-h-dark photoperiod with an irradiance of 150 \(\mu \text{mol photons m}^{-2} \text{s}^{-1} \) during the light period.
Interactions of ORRM6 with Known Editing Factors

We examined pairwise interactions of ORRM6 with other plastid RNA editing factors that are known to be required for efficient editing of either accD-C794 or psbF-C77. Loss of RIP1/MORF8, RIP9/MORF9, OZ1, and the PPR protein RARE1 in mutants results in reduced or absent editing of accD-C794 (Robbins et al., 2009; Sun et al., 2013, 2015). Absence of the PPR protein OZ1 and LPA66 reduces or eliminates the editing of psbF-C77 (Cai et al., 2009; Sun et al., 2015). The coding sequences of ORRM1, ORRM6, RIP1/MORF8, RIP2/MORF2, RIP9/MORF9, OZ1, and LPA66 were cloned into XNGW and XCGW Gateway-compatible bimolecular fluorescence complementation (BiFC) vectors, which encode the N- and C-terminal fragments of GFP, respectively (Ohashi-Ito and Bergmann, 2006). Reciprocal BiFC assays showed that ORRM6 interacts with RIP1/MORF8, RIP2/MORF2, RIP9/MORF9, OZ1, and itself when transiently coexpressed in N. benthamiana leaves (Fig. 5). No interaction was detected between ORRM6 and the PRR proteins LPA66 and RARE1, or with ORRM1, the other ORRM protein in the plastid (Fig. 5, E–G). In order to verify that LPA66, RARE1, and ORRM1 were expressed properly from the N- and C-terminal BiFC vectors in N. benthamiana leaves, we examined their interactions with RIP/MORF and OZ1 proteins. LPA66 interacted with RIP2/MORF2 and RIP9/MORF9, RARE1 interacted with RIP1/MORF8, and ORRM1 interacted with OZ1 (Supplemental Fig. S2).

Photosynthetic Phenotype of the orrm6 Mutants

In wild-type Arabidopsis, nucleoside C794 is edited to U794 in the accD transcript, which introduces a conserved Leu-265 (encoded by UUG; 265 is the amino acid number of the corresponding Leu relative to the first amino acid) instead of Ser-265 (encoded by UCG) in the AccD protein. In wild-type Arabidopsis, editing of C77 in the psbF transcript introduces a conserved Phe-26 (encoded by UUU) instead of Ser-26 (encoded by UCU) in the PsbF protein. In the orrm6 mutants, there are a reduced number of transcripts edited at accD-C794 and very few edited psbF transcripts, suggesting that PSII function could be affected (Fig. 3; Supplemental Data Set S1). Because the orrm6 leaves are pale green, we measured the chlorophyll contents in wild-type and mutant plants grown under standard growth conditions. The content of chlorophyll a is 14% and 7% lower in orrm6-1 and orrm6-2, respectively, and the content of chlorophyll b is 8% lower in orrm6-1 and is not reduced significantly in orrm6-2 (Table 1). Consequently, the amount of total chlorophyll is 13% and 6% lower, and the ratio of chlorophyll a and b is 6% and 4% lower, in orrm6-1 and orrm6-2, respectively.

To further characterize photosynthetic defects in orrm6-1 and orrm6-2, a number of chlorophyll fluorescence parameters were quantified in wild-type and

Recombinant ORRM6 Protein Binds to the accD-C794 and psbF-C77 Editing Sites in Vitro

ORRM6 contains an RRM; therefore, we performed RNA electrophoretic mobility-shift assay (REMSA) with affinity-purified 6xHis-tagged ORRM6 protein and fluorescently labeled synthetic accD-C794 and psbF-C77 as well as psbE-C214 RNAs. The synthetic RNAs span 40 nucleotides upstream and 19 nucleotides downstream of the accD-C794, psbF-C77, and psbE-C214 RNA editing sites (Fig. 4). The synthetic psbE-C214 RNA was used as a control because psbE and psbF are on the same polycistronic mRNA. As shown in Figure 4, the proportions of bound RNAs increase as the concentration of 6xHis-tagged ORRM6 increases, and 6xHis-tagged ORRM6 preferentially binds to the accD-C794 and psbF-C77 RNAs in comparison with the psbE-C214 RNA.

and psbF-C77, with undetectable editing extent in the latter site (Fig. 3B). We confirmed this result by performing poisoned primer extension (PPE), a more sensitive assay for editing extent (Hayes and Hanson, 2007). The PPE assay demonstrates loss of the band corresponding to edited transcripts and an increase in the unedited band corresponding to the accD-C794 site (Fig. 3C).
mutant plants grown under standard growth conditions. As an indicator of maximum photochemical efficiency of PSII, \(F_v/F_m \) is 28% and 35% lower in orrm6-1 and orrm6-2, respectively (Table I), consistent with the initial phenotype of the two mutants (Fig. 1A), indicating that the orrm6 mutants are unable to utilize the absorbed light energy in photochemistry as efficiently as the wild type.

As an indicator of a plant’s ability to dissipate excess excitation energy as heat, nonphotochemical quenching (NPQ) is reduced by 51% and 41% in orrm6-1 and orrm6-2, respectively (Table I). NPQ can be split into energy-dependent quenching (qE), state-transition quenching, and photoinhibitory quenching (qI), according to relaxation kinetics (Müller et al., 2001; Baker et al., 2007). Consistent with the reductions in NPQ, qE is reduced by 64% and 51% in orrm6-1 and orrm6-2, respectively (Table I). The NPQ and qE data indicate that the orrm6 mutants, in comparison with the wild type, dissipate a smaller amount of energy as heat via NPQ. Unlike NPQ or qE, qI in the orrm6 mutants is not statistically different from that in the wild type (Table I), demonstrating that the orrm6 mutants experience the same amount of photoinhibition as the wild type under standard growth conditions.

The orrm6 Mutants Have Reduced Amounts of Nonantenna PSII Proteins

To understand why the orrm6 mutants have reduced PSII activity, we determined the relative abundances of select PSII proteins in wild-type and mutant plants grown under standard growth conditions. The PSII proteins tested in this study include reaction center core proteins D1 and D2 (i.e. PsbA and PsbD), core antenna proteins CP43 and CP47 (i.e. PSII chlorophyll proteins of 43 and 47 kD, also known as PsbC and PsbB, respectively), cytochrome \(b_559 \) subunits \(\alpha \) and \(\beta \) (i.e. PsbE and PsbF), low-molecular-mass proteins PsbH, PsbI, PsbW, and PsbX, oxygen-evolving complex protein PsbO, PSII light-harvesting chlorophyll \(a/b \)-binding protein LHCB1, and Psb5, a chlorophyll-binding protein involved in dissipating excess excitation energy via the regulation of NPQ (Lu, 2016). In line with the decreases in \(F_v/F_m \) (Table I), the abundances of the 11 nonantenna PSII proteins analyzed in this work, including plastid-encoded PsbA, PsbB, PsbC, PsbD, PsbE, PsbF, PsbH, and PsbI and nucleus-encoded PsbO, PsbW, and PsbX, are reduced significantly in the orrm6
mutants (Fig. 6; Supplemental Table S1). The average percentage reduction of the 11 nonantenna PSII proteins in the \textit{orrm6} mutants is 50\% (calculated from Supplemental Table S1). Among these proteins, the reduction of the plastid-encoded PsbF protein content in the \textit{orrm6} mutants is most substantial, approximately 80\% (Fig. 6; Supplemental Table S1). A PsbF protein with a Ser instead of a Phe at amino acid 26 due to absent editing may be less stable than the wild-type PsbF protein and also may be less functional than the wild-type form. Nevertheless, it is evident that translation of the unedited \textit{psbF} transcripts does occur in the mutants and some protein does accumulate. The PsbS protein level is reduced by 42\% in \textit{orrm6-1} and by 30\% in \textit{orrm6-2} (Fig. 6; Supplemental Table S1), consistent with the significant decreases of NPQ and qE in the two mutants (Table I). Unlike nonantenna PSII proteins, the LHCB1 protein amount in the \textit{orrm6} mutants is not significantly different from that in the wild type (Fig. 6; Supplemental Table S1).

The Transcript Levels of the Corresponding PSII Genes Are either Unchanged or Increased Significantly in the \textit{orrm6} Mutants

To test whether the reduced amounts of nonantenna PSII proteins in the \textit{orrm6} mutants are due to reduced transcript levels of the corresponding PSII genes, we determined the relative transcript levels of these genes with quantitative RT-PCR. The \textit{psbA} transcript level is 38\% and 115\% higher in \textit{orrm6-1} and \textit{orrm6-2}, respectively, than in the wild type; the \textit{psbB} transcript level is 106\% higher in \textit{orrm6-2} than in the wild type; and the \textit{psbI} transcript level is 83\% higher in \textit{orrm6-2} than in the wild type (Supplemental Fig. S3). The transcript levels of the other PSII or PSII-related genes, including plastid-encoded \textit{psbC}, \textit{psbD}, \textit{psbE}, \textit{psbF}, and \textit{psbH} and nucleus-encoded \textit{PsbO1}, \textit{PsbO2}, \textit{PsbS}, \textit{PsbW}, \textit{PsbX}, and \textit{LHCB1} are not significantly different between the wild type and the \textit{orrm6} mutants (Supplemental Fig. S3). Taken together, the transcript levels of the 13 PSII or PSII-related genes analyzed in this study are either unchanged or increased significantly in the \textit{orrm6} mutants, indicating that the reduced amounts of nonantenna PSII proteins in the \textit{orrm6} mutants are not due to reduced transcript levels of the corresponding PSII genes.

Stable Expression of ORRM6 Increases Editing and Restores Photosynthetic Efficiency in the \textit{orrm6} Mutants

We examined whether the stable expression of ORRM6 could complement the T-DNA insertion mutation in this gene. The coding sequence of ORRM6 was cloned into the pPH5ADEST-CFP Gateway binary vector, which is under the control of a CaMV 35S promoter. The pPH5ADEST-ORRM6-CFP construct was introduced into wild-type, \textit{orrm6-1}, and \textit{orrm6-2} mutant plants via an \textit{Agrobacterium tumefaciens}-mediated floral dip method (Clough and Bent, 1998). Hygromycin-resistant plants were selected at the T1 generation, genotyped to verify transformation, and used for SDS-PAGE and immunodetection of the fusion protein with the anti-CFP antibody. Hygromycin-resistant T2 plants of transformants expressing the fusion protein were used for downstream characterization.

The \textit{orrm6-1}/ORRM6 and \textit{orrm6-2}/ORRM6 plants (i.e., \textit{orrm6-1} and \textit{orrm6-2} mutants expressing ORRM6) are substantially larger than \textit{orrm6} empty-vector control
plants, nearly indistinguishable in size from wild-type empty-vector control plants (Fig. 7). F_v/F_m of the orrm6-1/ORM6 and orrm6-2/ORM6 plants is almost at the same level as in wild-type control plants, significantly higher than in orrm6 empty-vector control mutants (Fig. 7, B and C). The chlorophyll content in the orrm6-1/ORM6 and orrm6-2/ORM6 plants increases to the wild-type level (Table II). Sanger sequencing of RT-PCR products showed that the editing extents at the accD-C794 and psbF-C77 RNA editing sites are increased substantially in the orrm6-1/ORM6 and orrm6-2/ORM6 plants (Fig. 7D).

Figure 5. Reciprocal BiFC assays of interactions of ORRM6 and other editing factors fused to either the N-terminal or C-terminal portion of GFP. A to G, Reciprocal BiFC assays between ORRM6 and RIP1/MORF8, RIP2/MORF2, RIP9/MORF9, OZ1, LPA66, RARE1, and ORRM1, respectively. H, BiFC assay of ORRM6 with itself. Each confocal image shows the merge of GFP signal (green) and chlorophyll autofluorescence (red). For simplicity, only one name is shown for proteins with multiple names (e.g. RIP1 for RIP1/MORF8). ORRM6 interacted with RIP1/MORF8, RIP2/MORF2, RIP9/MORF9, OZ1, and itself when transiently coexpressed in N. benthamiana leaves but not with ORRM1, LPA66, or RARE1. Positive controls for transient expression of ORRM1, LPA66, and RARE1 in N. benthamiana leaves are shown in Supplemental Figure S2. Bars = 10 μm.
Table 1. Pigment contents and chlorophyll fluorescence parameters in wild-type and orrm6 mutant plants

Chlorophyll was extracted and determined as described by Wellburn (1994). Measurements of chlorophyll fluorescence parameters were performed with the IMAGING-PAM M-Series chlorophyll fluorescence system (Heinz Waltz) on dark-adapted plants. For NPQ, qE, and qL measurements, an actinic light treatment (531 μmol photons m⁻² s⁻¹) was performed for 715 s. After termination of actinic light, recovery of Fm' was monitored for 14 min. Data are presented as means ± se (n = 5 for pigment contents and n = 4 for chlorophyll fluorescence parameters). Asterisks indicate significant differences between the mutant and the wild type (Student’s t test: *, P < 0.05; **, P < 0.01; and ***, P < 0.001). Plants used for pigment extraction and chlorophyll fluorescence analysis were grown on a 12-h-light/12-h-dark photoperiod with an irradiance of 150 μmol photons m⁻² s⁻¹ during the light period.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wild Type</th>
<th>orrm6-1</th>
<th>orrm6-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll a (mg g⁻¹ fresh weight)</td>
<td>1.097 ± 0.016</td>
<td>0.944 ± 0.024***</td>
<td>1.022 ± 0.010**</td>
</tr>
<tr>
<td>Chlorophyll b (mg g⁻¹ fresh weight)</td>
<td>0.263 ± 0.004</td>
<td>0.241 ± 0.007*</td>
<td>0.255 ± 0.004</td>
</tr>
<tr>
<td>Total chlorophyll (mg g⁻¹ fresh weight)</td>
<td>1.360 ± 0.020</td>
<td>1.184 ± 0.031**</td>
<td>1.277 ± 0.014*</td>
</tr>
<tr>
<td>Chlorophyll a/b</td>
<td>4.179 ± 0.031</td>
<td>3.922 ± 0.029***</td>
<td>4.004 ± 0.026**</td>
</tr>
<tr>
<td>Fv/Fm</td>
<td>0.827 ± 0.004</td>
<td>0.598 ± 0.013***</td>
<td>0.538 ± 0.003***</td>
</tr>
<tr>
<td>NPQ</td>
<td>2.263 ± 0.117</td>
<td>1.099 ± 0.043***</td>
<td>1.325 ± 0.085***</td>
</tr>
<tr>
<td>qE</td>
<td>1.861 ± 0.090</td>
<td>0.676 ± 0.055***</td>
<td>0.920 ± 0.092***</td>
</tr>
<tr>
<td>qL</td>
<td>0.402 ± 0.029</td>
<td>0.423 ± 0.022</td>
<td>0.405 ± 0.014</td>
</tr>
</tbody>
</table>

Stable Expression of a Nucleus-Encoded, Plastid-Targeted, T-Containing psbF Gene Partially Rescues the orrm6 Mutant Phenotype

Among the RNA editing sites that are affected in the orrm6 mutants, psbF-C77 is most substantially impaired (Fig. 3; Supplemental Data Set S1). Therefore, we tested whether stable expression of nucleus-encoded psbF transcripts with a T at position 77 could rescue the orrm6 mutant phenotype. We designed a plastid-targeted T77 NEpsbF (where NE refers to nucleus-encoded) construct that contains the 72-bp 5' UTR and the 180-bp cTP of the PsbS (At1g44575) gene (Kiss et al., 2008; Levey et al., 2014), the coding sequence of T77 NEpsbF without the stop codon, the coding sequence for the triple human influenza hemagglutinin (3xHA) tag, and a stop codon (Fig. 8). The 5' UTR and cTP of PsbS were used to target the transgenic NEpsbF protein into the chloroplast. This construct was custom synthesized and subcloned into the DF264 binary vector, which contains a CaMV 35S promoter and a nopaline synthase polyadenylation signal (Fang and Fernandez, 2002; Lu et al., 2006). The DF264-PsbS(cTP)-T77 NEpsbF-3xHA construct (Fig. 8A) was transformed into wild-type, orrm6-1, and orrm6-2 Arabidopsis plants with the A. tumefaciens-mediated floral dip method (Clough and Bent, 1998). Gentamycin-resistant plants were selected at the T1 generation, genotyped to verify transformation, and used for SDS-PAGE and immunodetection of the NEpsbF-3xHA fusion protein with the anti-HA antibody. Gentamycin-resistant T2 plants of transformants expressing the NEpsbF-3xHA fusion protein were used for downstream characterization.

SDS-PAGE and immunoblot analysis confirmed the expression of the NEpsbF-3xHA fusion protein in wild-type and orrm6 mutant plants transformed with the T77 NEpsbF construct (Fig. 8B). The expression of the NEpsbF protein in the orrm6 mutants resulted in increased levels of other PSII core proteins, such as PsbA, PsbB, and PsbC (Fig. 8B). The orrm6-1/NEpsbF and orrm6-2/NEpsbF plants (i.e. orrm6-1 and orrm6-2 mutants expressing T77 NEpsbF) are larger than the orrm6 mutant plants but smaller than the wild-type plants (compare Figs. 7A and 8C). Fv/Fm of the orrm6-1/ORM6 and orrm6-2/ORM6 plants is significantly higher than that of orrm6 empty-vector control plants but still lower than that of wild-type
empty-vector control plants (compare Figs. 7, B and C, and 8, D and E). Bulk sequencing of cDNA from accD and psbF indicates that unedited psbF transcripts can still be detected in the plants containing the nucleus-encoded psbF (Fig. 8F). Thus, these plants may contain a mixture of the proper PsbF and PsbF encoded by unedited transcripts, potentially impairing PsbF function. These data demonstrate that stable expression of a nucleus-encoded, plastid-targeted psbF gene with the edited nucleotide genomically encoded could partially rescue the photosynthetic phenotype in mutants unable to edit psbF-C77 in plastid-encoded transcripts.

DISCUSSION

Loss of Editing at psbF-C77 Causes the Observed orrm6 Mutant Phenotype

Editing assays consistently demonstrate that ORRM6 results in a nearly complete complementation of the orrm6 editing defects and mutant phenotype (Fig. 7; Table II). The orrm6 mutants are phenotypically similar to a tobacco (Nicotiana tabacum) plastome mutant in which the spinach (Spinacia oleracea) psbF-C77 editing site was heterologously introduced (Bock et al., 1994; Bock and Koop, 1997; Bondarava et al., 2003). In wild-type tobacco, codon 26 (UUU) encodes Phe and, therefore, does not require C-to-U RNA editing to produce the conserved amino acid in PsbF. In the tobacco plastome mutant with the spinach psbF-C77 editing site, codon 26 (UCU) encodes Ser rather than Phe (Bock et al., 1994; Bondarava et al., 2003). However, because tobacco plants do not have one or more proteins required to mediate RNA editing at this heterologous site, the unedited version of PsbF is produced, resulting in pale green leaves, reduced photosynthetic efficiency, and delayed growth and development (Bock et al., 1994; Bondarava et al., 2003). The plastid RNA editing defects in the tobacco plastome mutant could be partially restored transiently by combining the tobacco plastome mutant chloroplast with the nucleocytoplasm from a
ORRM6 Is a New and Unusual Component of Particular Arabidopsis Chloroplast Editosomes

Only one other member of the ORRM clade, ORRM1, has been shown previously to be required for the editing of plastid C targets. Unlike ORRM6, ORRM1 has two RIP/MORF boxes in addition to the cTP and the RRM (Sun et al., 2013). The orrm1 mutant shows nearly complete loss of editing at 12 plastid sites: ndhG, rpoB, rps12, and three sites on ndhB (Sun et al., 2013). Each of the mitochondrial editing factors ORRM2, ORRM3, and ORRM4 is required for efficient editing of a large number of mitochondrial C targets (Shi et al., 2016a). In contrast, only two editing targets exhibit substantial decreases in the orrm6 mutants: nearly complete loss of editing at the psbF-C77 site in the orrm6 mutants. The cTP we used to target the NEpsbF protein into chloroplasts is the cytosolically synthesized NEpsbF protein, which encodes a PPR protein required for RNA editing at the accD-C794 site (Robbins et al., 2009). The rarel mutant shows a phenotype at accD-C794 but is phenotypically indistinguishable from the wild type under laboratory growth conditions (Robbins et al., 2009).

Expressing a nucleus-encoded, plastid-targeted psbF gene (NEpsbF) encoding the edited form of the PsbF protein partially rescued the orrm6 mutant phenotype. The nuclear transformants exhibited larger leaf and plant sizes, chlorophyll content, and PSII activity (Fig. 8; Table II). These data indicate that, in the presence of a suitable cTP, the cytosolically synthesized NEpsbF protein could be imported into chloroplasts, assemble into PSII complexes, and thus overcome the RNA editing defect at the psbF-C77 site in the orrm6 mutants.

ORRM6, psbF Editing, and PSII Function

Table II. Pigment contents in wild-type and orrm6 mutant plants complemented with ORRM6 or NEpsbF.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wild Type/Empty Vector</th>
<th>orrm6-Empty Vector</th>
<th>Wild Type/NEpsbF</th>
<th>orrm6-NEpsbF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll a (mg g^-1 fresh weight)</td>
<td>0.096 ± 0.0055a</td>
<td>0.863 ± 0.0115c</td>
<td>0.089 ± 0.0039b</td>
<td>0.058 ± 0.0045c</td>
</tr>
<tr>
<td>Chlorophyll b (mg g^-1 fresh weight)</td>
<td>0.258 ± 0.0131a</td>
<td>1.120 ± 0.0071b</td>
<td>0.242 ± 0.0049c</td>
<td>0.260 ± 0.0060e</td>
</tr>
<tr>
<td>Total chlorophyll (mg g^-1 fresh weight)</td>
<td>1.354 ± 0.066a</td>
<td>3.617 ± 0.0070b</td>
<td>1.377 ± 0.021c</td>
<td>1.510 ± 0.022e</td>
</tr>
<tr>
<td>Chlorophyll a/b</td>
<td>3.856 ± 0.0047c</td>
<td>3.449 ± 0.022f</td>
<td>3.460 ± 0.0049a</td>
<td>3.460 ± 0.0050a</td>
</tr>
</tbody>
</table>

Copyright © 2017 American Society of Plant Biologists. All rights reserved.

planted species with the RNA editing machinery required for the RNA editing site (Bock and Koop, 1997).

The orrm6 mutant phenotype also resembles loss-of-function mutants of LPA66, which encodes a PPR protein required for RNA editing at the psbF-C77 site (Cai et al., 2009). Both orrm6 and lpa66 mutants display nearly complete loss of editing at the psbF-C77 site, reduced levels of PSII nonantenna proteins, decreased PSII activity, pale green coloration, and retarded growth. The phenotype of orrm6 and lpa66 mutants is in direct contrast to loss-of-function mutants of RARE1, which encodes a PPR protein required for RNA editing at the accD-C794 site (Robbins et al., 2009). The rarel mutant shows no editing at accD-C794 but is phenotypically indistinguishable from the wild type under laboratory growth conditions (Robbins et al., 2009).

Expressing a nucleus-encoded, plastid-targeted psbF gene (NEpsbF) encoding the edited form of the PsbF protein partially rescued the orrm6 mutant phenotype. The nuclear transformants exhibited larger leaf and plant sizes, chlorophyll content, and PSII activity (Fig. 8; Table II). These data indicate that, in the presence of a suitable cTP, the cytosolically synthesized NEpsbF protein could be imported into chloroplasts, assemble into PSII complexes, and thus overcome the RNA editing defect at the psbF-C77 site in the orrm6 mutants. The cTP used to target the NEpsbF protein into chloroplasts is the cytosolically synthesized NEpsbF protein, which encodes a PPR protein required for RNA editing at the accD-C794 site (Robbins et al., 2009). The rarel mutant shows a phenotype at accD-C794 but is phenotypically indistinguishable from the wild type under laboratory growth conditions (Robbins et al., 2009).

ORRM6 Is a New and Unusual Component of Particular Arabidopsis Chloroplast Editosomes

Only one other member of the ORRM clade, ORRM1, has been shown previously to be required for the editing of plastid C targets. Unlike ORRM6, ORRM1 has two RIP/MORF boxes in addition to the cTP and the RRM (Sun et al., 2013). The orrm1 mutant shows nearly complete loss of editing at 12 plastid sites: accD-C1568, matK-640, ndhG-50, rpoB-2432, rps12-58, four sites on ndhB, and three sites on ndhD (Sun et al., 2013). Each of the mitochondrial editing factors ORRM2, ORRM3, and ORRM4 is required for efficient editing of a large number of mitochondrial C targets (Shi et al., 2016a). In contrast, only two editing targets exhibit substantial decreases in the orrm6 mutants: nearly complete loss of editing at psbF-C77 and substantial reduction of editing at accD-C794 (Fig. 3; Supplemental Data Set S1). Unlike the other ORRM editing factors, ORRM6 is similar to PPR proteins in its site specificity. The PPR motifs in PPR proteins have been shown to bind single-stranded
RNAs in a sequence-dependent manner (Sakamoto et al., 2008; Barkan and Small, 2014). Both ORRM1 and ORRM6 exhibit preferential binding toward RNA editing sites that are affected in loss-of-function mutants (Fig. 4; Sun et al., 2013). PPR and ORRM proteins may both be responsible for recognizing cis-elements near C targets of editing. LPA66 and ORRM6 together may recognize cis-elements near the $psbF$-C77 site, and RARE1 and ORRM6 together may recognize sequences near the $accD$-C794 site. Both ORRM6 and the PPR protein LPA66 have evolved to ensure the editing of $psbF$-C77, indicating the importance of the resultant Phe codon for photosynthetic efficiency and growth.

Interactions of ORRM6 with RIP/MORF editing factors are likely to be essential for the formation of editosomes operating on $psbF$ transcripts. ORRM6 interacts with RIP1/MORF8, RIP2/MORF2, and RIP9/MORF9 in BIFC assays (Fig. 5). The lack of interaction of ORRM6 with the PPR protein LPA66, which also is required for $psbF$ editing, is not surprising because ORRM6 lacks RIP/MORF domains. ORRM1 interacts with the PPR protein RARE1 via the two RIP/MORF boxes (Sun et al., 2013). RIP/MORF proteins interact with both LPA66 and RARE1. Therefore, it is likely that ORRM6 associates with RIP/MORF proteins, which in turn interact with LPA66 and RARE1 in editosomes operating on $psbF$ and $accD$ transcripts, respectively. Only weak interaction of ORRM6 with $psbF$ RNA could be detected. It is possible that ORRM6 must be complexed with one or more RIP/MORF proteins in order for its RRM domain to be properly configured for RNA-protein interaction. Perhaps ORRM6 enhances binding of the editing complex to the editing site on the $psbF$ transcript, working together with the PPR protein LPA66.

Figure 8. Phenotypes of 4-week-old orrm6 mutant plants transformed with the T77 NEpsbF construct. A, Schematic diagram of the T77 NEpsbF construct. The construct contains an XbaI restriction digestion site, the 72-bp 5’ UTR, the 180-bp cTP of the PsbS (At1g44575) gene, an NcoI restriction digestion site, the coding sequence of T77 NEpsbF without the stop codon (TAA), and a BamH1 restriction digestion site, the coding sequence for the triple human influenza hemagglutinin (3xHA) tag, a stop codon (TAA), and the Smal restriction digestion site. This construct is followed by a 260-bp nopaline synthase (NOS) polyadenylation signal. Expression of this fusion gene is under the control of an 800-bp CaMV 35S promoter. B, SDS-PAGE and immunoblot analysis of NEPsbf-3xHA, PsbA, PsbB, and PsbC proteins from 4-week-old representative plants. Total proteins were extracted from leaves, loaded on an equal total protein basis, separated by SDS-PAGE, and detected with the anti-HA antibody. Thylakoid membrane proteins were extracted from leaves, loaded on an equal chlorophyll basis, and detected with the anti-PsbA, anti-PsbB, and anti-PsbC antibodies. Relative abundances of these proteins are indicated below the immunoblot images as ratios to the protein abundances in wild type (WT)/NEpsbF. EV, Empty vector. C, Images of 4-week-old representative plants. Plants used for pigment contents, chlorophyll fluorescence analysis, and photography were grown on a 12-h-light/12-h-dark photoperiod with an irradiance of 150 μmol photons m$^{-2}$ s$^{-1}$ during the light period. D, False-color F_{v}/F_{m} images of 4-week-old representative plants. E, F_{v}/F_{m} of 4-week-old representative plants. Data are presented as means ± s.e. ($n = 14$). Values not connected by the same letter are significantly different (Student’s t test, $P < 0.05$). F, Analysis of cDNA sequences at $accD$-C794 and $psbF$-C77. The seven-nucleotide sequences encompassing $accD$-C794 and $psbF$-C77 are shown. The C nucleotide being edited is underlined. Primers accD_1_F and accD_1_R were used to amplify the $accD$ transcript and to sequence $accD$-C794. Primers psbF_AtCg00570L and psbF_AtCg00570R were used to amplify the $psbF$ transcript, and primer psbF_AtCg00570L was used to sequence $psbF$-C77 RNA.
ORRM6 interacts with OZ1 (Fig. 5), which is required for many plastid RNA editing sites (Sun et al., 2015). In the loss-of-function oZ1 mutant, 14 plastid RNA editing sites (e.g. accD-C794) have major loss of editing, and 16 other plastid sites (e.g. psbF-C77) are altered significantly (Sun et al., 2015). Similar to mutants in other editing factors involved in editing at the psbF-C77 site, the oZ1 mutant has pale green leaves and retarded growth. Yeast two-hybrid assays showed that OZ1 interacts with ORRM1, RIP1/MORF8, and the PPR proteins CRR28 and OTP82. ORRM6 also was found to interact with itself in BiFC assays (Fig. 5), suggesting that ORRM6 may form oligomers. While the stoichiometry of editing factors present in editosomes is not yet known (Sun et al., 2016), our evidence indicates that the RNA editosomes acting on accD-C77 and accD-C794 contain one or more RIP/MORF proteins, OZ1, ORRM6, and either PPR protein LPA66 or RARE1, respectively.

CONCLUSION

Four types of proteins have been found to be required in C-to-U RNA editing in the plastid: PPRs, RIPs/MORFs, ORRMs, and OZs. This work establishes that ORRM6 is necessary for editing psbF and accD transcripts in the plastid. Loss-of-function mutations in the ORRM6 gene result in nearly complete loss of editing at psbF-C77 and substantial reduction of editing at accD-C794. The nearly complete loss of editing at psbF-C77 caused significant growth and developmental retardation in the plant. Stable expression of a nucleus-encoded, plastid-targeted T77 psbF gene partially rescues the mutant phenotype, demonstrating that plastid RNA editing can be bypassed by the expression of nucleus-encoded, edited forms of plastid genes. ORRM6 interacts with RIP1/MORF8, RIP2/MORF2, and RIP9/MORF9; RIPs/MORFs have been found to interact with PPR proteins. ORRM6 does not interact with the PPR proteins LPA66 and RARE1, which are site-specific recognition factors for the psbF-C77 and accD-C794 RNA editing sites, respectively. The lack of interaction of ORRM6 with the two PPR proteins is consistent with the absence of the RIP/MORF domain in ORRM6. ORRM1, the other plastid-targeted ORRM protein, interacts with PPR proteins via its two RIP/MORF domains. Taken together, our results suggest that the editosomes operating on psbF-C77 and accD-C794 contain ORRM6, one or more RIP/MORF proteins, OZ1, and either PPR protein LPA66 or RARE1.

MATERIALS AND METHODS

Plant Materials and Growth Conditions

Arabidopsis (Arabidopsis thaliana) T-DNA insertion lines orrm6-1 (SAIL_763_A05) and orrm6-2 (WiscDsLox485-488F23) are in the Columbia ecotype and were obtained from the Arabidopsis Biological Resource Center (Sessions et al., 2002; Woody et al., 2007). Homozygosity was confirmed by PCR, using the genotyping primers listed in Supplemental Data Set S2. Plants were grown in a growth chamber on a 12-h-light/12-h-dark photoperiod. The light intensity was 150 μmol photons m⁻² s⁻¹, the temperature was 22°C, and the relative humidity was 50%. Unless stated otherwise, plants used for pigment measurements, chlorophyll fluorescence, leaf total RNA extraction and subsequent qualitative RT-PCR, Sanger sequencing, as well as thylakoid membrane protein extraction and subsequent immunoblot analysis were 4 weeks old.

Measurement of Chlorophyll Content

Chlorophyll was extracted from rosette leaves with 80% acetone in 2.5 mM HEPES-KOH, pH 7.5, and the amount (mg) of chlorophyll per gram of fresh tissues was measured on a spectrophotometer (Wellburn, 1994).

Chlorophyll Fluorescence Measurements

Chlorophyll fluorescence parameters (Fp/Fm, NPQ, qE, and qL) were measured on dark-adapted plants at room temperature with the MAXI version of the IMAGING-PAM M-Series chlorophyll fluorescence system (Heinz Walz), as described previously (Lu, 2011; Nath et al., 2016, 2017).

Transient Expression of ORRM6-CFP in Nicotiana benthamiana

Transient expression of the ORRM6-CFP fusion protein in N. benthamiana was performed as described previously (Sparkes et al., 2006; Withers et al., 2012). The full-length ORRM6 coding region without the stop codon (ORRM6-1547 bp, corresponding to ORRM6-1314 aa) was amplified using the mRNACDNA hybrid, Phusion High-Fidelity DNA Polymerase (New England Biolabs), forward primer ORRM6_F, and reverse primer ORRM6_R (Supplemental Data Set S2). The resulting PCR products were Gateway cloned into the pENTR/D-TOPO vector (Thermo Fisher; Karamoko et al., 2011) and sequenced to confirm the absence of PCR errors. The confirmed ORRM6-1547 bp fragment was subcloned into the pPHSADEST-CFP vector (provided by Jian Yao, Department of Biological Sciences, Western Michigan University) using the Gateway LR Clonase II enzyme mix (Thermo Fisher). The resulting pPHSADEST-ORRM6-CFP construct, which is under the control of a CaMV 33S RNA promoter, was introduced into Agrobacterium tumefaciens strain C58C1. Transformed A. tumefaciens was cultured overnight at 30°C in Luria-Bertani medium containing appropriate antibiotics, harvested by centrifugation at 3,500 rpm at room temperature for 10 min, washed once in infiltration buffer (10 mM MES, pH 5.8, 10 mM MgCl2, and 0.2% Suc), and resuspended to OD600 = 0.2 in infiltration buffer containing 300 μM acetosyringone. The A. tumefaciens cultures were syringe infiltrated into mature leaves of N. benthamiana, and transient expression of the ORRM6-CFP fusion protein was analyzed by confocal microscopy at 36 to 48 h after inoculation.

Extraction of Leaf Total Proteins

Leaf samples were harvested, frozen in liquid nitrogen, and ground into fine power with stainless steel beads and TissueLyser II (Qiagen). Freshly made plant protein extraction buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1% Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS, 1 mM EDTA, 1 mM DTT, and 1% plant protease inhibitor cocktail) was added to the frozen power (5 μg mL⁻¹ tissues), and the sample was further homogenized with TissueLyser II. The resulting homogenate was centrifuged at more than 10,000g for 3 min at 4°C. The supernatant was transferred to a new microfuge tube and centrifuged again at more than 10,000g for 3 min at 4°C to remove residual tissue debris. The protein concentration was determined using the DC (detergent-compatible) protein assay (Bio-Rad) with 0 to 1.4 mg mL⁻¹ bovine serum albumin as a standard.

Isolation of Thylakoid Membranes

Thylakoid membranes were isolated as described previously (Lu, 2011; Nath et al., 2016) with minor modifications. The entire aerial portion of plants (~2 g) was excised and ground into fine power in liquid nitrogen with a mortar and pestle. Freshly made grinding buffer (50 mM HEPES-KOH, pH 7.5, containing 330 mM sorbitol, 2 mM EDTA, 1 mM MgCl2, 5 mM ascorbate, 0.05% bovine serum albumin, 10 mM NaF, and 0.25 mg mL⁻¹ 1 Pepabloc SC protease inhibitor) was
added to the frozen powder (~10 mL g⁻¹ tissues), and the sample was further homogenized by repeated swirling of the pestle. The resulting homogenate was filtered through a layer of Miracloth (EMD Millipore) and centrifuged at 2,500g for 4 min at 4°C using a swing-bucket rotor. The pellet was resuspended and centrifuged in resuspension buffer I (50 mM HEPES-KOH, pH 7.5, containing 5 mM sorbitol, 10 mM NaF, and 0.25 mM MgCl₂, 10 mM NaF, and 0.25 mg mL⁻¹ Pefabloc SC). The resulting thylakoid pellet was resuspended and centrifuged in resuspension buffer II (50 mM HEPES-KOH, pH 7.5, containing 100 mM sorbitol, 10 mM MgCl₂, 10 mM NaF, and 0.25 mg mL⁻¹ Pefabloc SC). The final pellet was resuspended in a small volume of resuspension buffer II (~1 mL per 2 g of starting tissues). The chlorophyll in 20 μL of resuspended thylakoid membranes was extracted with 0.98 mL of 80% acetone in 2.5 mM HEPES-KOH, pH 7.5, and the amount of chlorophyll was determined on a spectrophotometer (Wellburn, 1994). The remaining suspension was frozen in liquid nitrogen and stored at −80°C for further use.

SDS-PAGE and Immunoblot Analysis

SDS-PAGE and immunoblot analysis of thylakoid membrane proteins were carried out as described previously (Lu et al., 2011a; Nathan et al., 2016) with minor modifications. Proteins loaded on an equal fresh tissue weight basis were separated by SDS-PAGE (15% polyacrylamide and 6 μL urea) using a Mini PROTEAN Tetra Cell vertical gel electrophoresis system (Bio-Rad). After electrophoresis, the proteins were transferred to a polyvinylidene difluoride membrane (EMD Millipore) using the Trans-Blot electrophoresis transfer cell (Bio-Rad). The membrane was incubated in the blocking solution (5% nonfat dry milk and 0.1% Tween 20 in 1× Tris-buffered saline) and then in a diluted primary antibody solution. Except for the anti-NFU3 antibody, which was custom made, all other antibodies were purchased from Agrisera. Immunodetection of proteins on the polyvinylidene difluoride membrane was performed using the SuperSignal West Pico rabbit IgG detecting kit (Thermo Fisher) and analyzed with the Gel Logic 1500 Imaging System (Kodak).

Quantitative RT-PCR

Quantitative RT-PCR was performed as described previously (Clark and Lu, 2015). Total RNA was extracted from Arabidopsis rosette leaves using the RNeasy Plant Mini Kit (Qiagen), digested with RNase-Free DNase I (Qiagen), and reverse transcribed with random primers (Promega) and Moloney murine leukemia virus reverse transcriptase (Promega) to generate the mRNA:cDNA hybrids. Quantitative PCR was performed on the StepOnePlus Real-Time PCR System (Thermo Fisher) with the Power SYBR Green PCR master mix (Thermo Fisher) and analyzed with the Gel Logic 1500 Imaging System (Kodak).

Analysis of Plastid RNA Editing by Sanger Sequencing

The transcript regions encompassing the Arabidopsis plastid RNA editing sites were amplified using Phusion High-Fidelity DNA Polymerase (New England Biolabs), forward primers ORRM6_H1_ATG and reverse primers mixes specific to the wild-type plant was greater than 0.1 for each biological replicate. The reduction in editing extent is calculated as Δ (editing): (% editing in the wild type − % editing in orrm6-2) / % editing in the wild type.

Expression and Purification of the Recombinant ORRM6 Protein in Escherichia coli

Expression and purification of the recombinant ORRM6 protein in E. coli were performed as described by Lu et al. (2006) with minor modifications. Total Arabidopsis leaf RNA was extracted, digested with RNase-free DNase I, and reverse transcribed with oligo(dT)₁₅ primers and Moloney murine leukemia virus reverse transcriptase (Promega) to generate the mRNA:cDNA hybrids. Quantitative PCR was performed on the StepOnePlus Real-Time PCR System (Thermo Fisher) with the Power SYBR Green PCR master mix (Thermo Fisher) and the quantitative RT-PCR primers listed in Supplemental Data Set S2.

Analysis of Editing Extents by PPE

RNA editing at the accD-C794 and psbF-C77 editing sites were analyzed with fluorescent PPE assays, using PuF DNA polymerase (Stratagene), dATP, dCTP, acetoxy-GTP (New England Biolabs), dITP, fluorescently labeled primers (Integrated DNA Technologies), and cDNAs from the wild type and the orrm6 mutant, as described previously (Roberson and Rosenthal, 2006). The PCR_accD1_1_R and PCR_psbf1_1_R primers (Supplemental Data Set S2) were synthesized, labeled with the fluorescent dye ATTO 633 at the 5’ end, and purified with the ion-exchange HPLC method, and used in the PPE assay of the accD-C794 and psbF-C77 editing sites, respectively. The fluorescent PPE products of edited and unedited transcripts were separated on denaturing gels (12% polyacrylamide and 7 μL urea) with the model S2 Sequencing Gel Electrophoresis Apparatus (Apogee Electrophoresis) and imaged on the Storm 860 Molecular Imager (Molecular Dynamics).

Analysis of RNA Editing by STS-PCR-Seq

Leaf tissues from 5-week-old wild-type and orrm6-2 plants were used for STS-PCR-seq analysis of organelle (plastid and mitochondrion) RNA editing extents as described previously (Bentolila et al., 2013). Total leaf RNAs were extracted and reverse transcribed with reverse primer mixes specific for plastid and mitochondrion RNA editing sites (Supplemental Data Set S2). The RT products were subsequently amplified via multiplex PCR, purified, quantified, mixed in equimolar ratio, sheared by sonication, and used for the preparation of TruSeq DNA PCR-Free libraries (illumina). Analysis of STS-PCR-seq data was performed as described by Bentolila et al. (2013). The statistical analysis to determine which editing site is significantly affected in the orrm6-2 mutant compared with the wild type is very similar to the one performed previously (Shi et al., 2015, 2016b). Briefly, we performed a χ² test with 1 degree of freedom for each mutant biological replicate and each wild-type replicate to test for a significant difference in editing extent. Because of repetitive testing, we chose a nominal error rate of P < 1.6e-6 to achieve the desired family error rate of P < 1e-3 when analyzing 612 sites (63 plastid sites + 576 mitochondrial sites). For a site to be declared significantly affected in the orrm6-2 mutant, the first condition had to be P < 1.6e-6 for the four χ² tests between each biological replicate (orrm6-2-1 versus WT-1, orrm6-2-1 versus WT-2, orrm6-2-2 versus WT-1, and orrm6-2-2 versus WT-2). In addition to this χ² test requirement, a site will be declared significantly affected in its editing extent if the reduction compared with the wild-type plant was greater than 0.1 for each biological replicate. The reduction in editing extent is calculated as Δ (editing): (% editing in the wild type − % editing in orrm6-2) / % editing in the wild type.

Expression and Purification of the Recombinant ORRM6 Protein in Escherichia coli

Expression and purification of the recombinant ORRM6 protein in E. coli were performed as described by Lu et al. (2006) with minor modifications. Total Arabidopsis leaf RNA was extracted, digested with RNase-free DNase I, and reverse transcribed with oligo(dT)₁₅ primers and Moloney murine leukemia virus reverse transcriptase (Promega) to generate the mRNA:cDNA hybrids. Phusion High-Fidelity DNA Polymerase (New England Biolabs), forward primers ORRM6_BamH1_ATG and ORRM6_BamH1_NdIT, and reverse primer ORRM6_Xhol_1_TAG (Supplemental Data Set S2). The resulting PCR products were ligated into pET28a-GEM-T Easy Vector (Promega) and sequenced to confirm the absence of PCR errors. BamH1/Xhol-digested ORRM6 fragments were cloned into the pET28a expression vector (Novagen) and expressed in E. coli strain Rosetta 2 (DE3) (Novagen). An overnight culture of Rosetta 2 (DE3) harboring the ORRM6_BamH1_NdIT gene was diluted 1:20 and grown at 37°C for 1 h. Expression of the recombinant ORRM6_BamH1_NdIT protein was induced with 1 mM isopropyl β-D-thiogalactoside, and cells were grown at 28°C overnight. The recombinant protein was affinity purified with nickel-nitrilotriacetic acid agarose under native purification conditions according to the QIAexpressionist protocol (Qiagen).

REMSA

REMSA was performed as described previously (Schallenberg-Rüdinger et al., 2013) with notable exceptions. The 60-nucleotide RNA probes (Fig. 4) were synthesized, labeled with the fluorescent dye ATTO 633 at the 5’ end, purified with ion-exchange HPLC, and diluted to working concentrations in 10× Tris-HCl, pH 7.5, and used as a REMSA buffer. The RNA probes were denatured at 94°C for 2 min and then on ice for 4 min in 1× REMSA buffer (20 mM NaCl, 2.5 mM Tris-HCl, pH 8, 2 mM DTT 0.01 mg mL⁻¹ BSA, 0.05 mg mL⁻¹ heparin, and 5% glycerol) to remove secondary structures. Following incubation on ice, 30 units per reaction of SUPERase-In RNase Inhibitor (Thermo Fisher) and an appropriate volume of recombinant ORRM6 protein were added to a total reaction volume of 30 μL. The resulting binding reaction was incubated in the dark at 4°C for 20 min. To separate bound and unbound RNAs, 5% native polyacrylamide gels in 0.5× TBE buffer (44.5 mM Tris-HCl, 44.5 mM boric acid, and 1 mM EDTA) were preelectrophoresed in 0.5× TBE buffer for 30 min at 100 V. After preincubation, 25 μL of samples was loaded and electrophoresed at...
100 V for 1 h. The polyacrylamide gel was imaged on a Storm 860 phosphor-imager with a 650-nm excitation and 635-nm emission profile and a 1,000-V photomultiplier. Five to six independent REMSA experiments per RNA sample (accDC794, psbF-C77, or psbE-C214) were performed. Band intensities were quantified using MultiGauge software (Fujifilm). Using the modified Thompson r test, one outlier each was identified from the psbF-C77 and psbE-C214 data. After removal of the two outliers, Student’s t test was performed to compare the average values between the likely RNA targets of ORRMs and a control RNA to which ORRMs would not be expected to bind.

Stable Expression of ORRM6-CFP in Arabidopsis

At5g13270; PsbS, At1g44575; and ACTIN2, At3g18780.

Stable Expression of a Nucleus-Encoded, Plastid-Targeted *psbF* Gene in Arabidopsis

The T7 NEpsbF construct shown in Figure 8A was synthesized by Genscript to carry a T at position 77, subcloned into binary vector pDF264, and sequenced to confirm the absence of errors. pDF264 contains the 800-bp CaMV 35S promoter and the 260-bp napin-like sense polyadenylation signal (Hajdukiewicz et al., 1994; Fang and Fernandez, 2002; Lu et al., 2006). The binary vector containing the T7 NEpsbF construct was transformed into wild-type, *orm6-1,* and *orm6-2* Arabidopsis plants with the floral dip method (Clough and Bent, 1998).

BiFC Assay

The coding sequences of ORRM6, RIP1/MORF8 (At3g15000), RIP2/MORF2 (At2g33420), RIP9/MORF9 (At1g11430), ORRM1 (At3g15230), and ORRM1 (At3g20930) without the stop codon were amplified from full-length cDNAs as described above and in previous studies (Bentolila et al., 2012; Sun et al., 2013, 2015; Shi et al., 2015, 2016b). The binary vector containing the T7 NEpsbF construct was transformed into wild-type, *orm6-1,* and *orm6-2* Arabidopsis plants with the *A. tumefaciens* GV3101. As described by Shi et al. (2016b), constructs were transformed into wild-type, *orm6-1,* and *orm6-2* Arabidopsis plants with the *A. tumefaciens*-mediated floral dip method (Clough and Bent, 1998).

Accession Numbers

Sequence data of related genes/proteins can be found in the GenBank/EMBL databases under the following accession numbers: ORRM1, At3g20930; ORRM6, At1g73530; RIP1/MORF8, At3g15000; RIP2/MORF2, At2g33420; RIP9/MORF9, At1g11430; ORRM1 (At3g15230); ORRM1 (At3g20930) without the stop codon were amplified from full-length cDNAs as described above and in previous studies (Bentolila et al., 2012; Sun et al., 2013, 2015; Shi et al., 2015, 2016b), cloned into the pC85/GW/TOPO TA vector (Thermo Fisher), and sequenced to confirm the absence of errors. The confirmed fragments were then subcloned into XNGW and XCGW vectors (Ohashi-Ito and Bergmann, 2006) by LR recombination reactions. The two vectors have been used previously to demonstrate interactions between different RNA editing factors, such as ORRM4 and RIP1/MORF8 (Shi et al., 2016b). All the primers used are listed in Supplemental Data Set S2. Final vectors were validated by sequencing and transformed into *A. tumefaciens* GV3101. As described by Shi et al. (2016b), *A. tumefaciens* cultures expressing GFP and GFP were mixed in equal volume and used to infiltrate leaves from 4- to 6-week-old *N. benthamiana.* All the *N. benthamiana* plants used for reciprocal BiFC assays were grown under the same environmental conditions, and leaves of similar age were used to test interactions between different pairs of proteins. Infiltrated leaves were examined with a confocal microscope as described previously (Shi et al., 2016b).

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Protein sequence alignment of ORRMs.

Supplemental Figure S2. Positive controls for transient expression of ORRM1, LPAr6, and RARE1 in *N. benthamiana* leaves.

Supplemental Figure S3. Relative transcript levels of select PSII genes in *N. benthamiana* leaves.

Supplemental Table S1. Relative abundances of select PSII proteins in *N. benthamiana* leaves.

Supplemental Data Set S1. Extents of chloroplast and mitochondrial RNA editing in wild-type and *orm6-2* mutant plants determined via STS-PCR-seq.

Supplemental Data Set S2. Primers used in this study.

ACKNOWLEDGMENTS

We thank James P. O’Donnell, Krishna Nath, Kaley A. Walker, and Kelsey L. Walker for technical assistance; Christopher D. Jackson for Western Michigan University (WMU) growth chamber management; Peter Westhoff and Karin Meierhoff for sharing Gateway expression vector pPAU1; Jian Yao for sharing Gateway expression vectors for P7d4 and P7FADDEST-CFP; John Kapenga and Elise DeDoncker for access to the WMU Biologic Imaging Center; and Todd J. Barkman, Pamela Hoppe, Blair Szymczyna, and Jian Yao for comments on experimental design.

Received October 20, 2016; accepted February 13, 2017; published February 17, 2017.

LITERATURE CITED

Bock R, Kössel H, Maliga P (1994) Introduction of a heterologous editing site into the tobacco plastid genome: the lack of RNA editing leads to a mutant phenotype. EMBO J 13: 4623–4628

Chaudhuri S, Maliga P (1996) Sequences directing C to U editing of the plastid *psbl* mRNA are located within a 22 nucleotide segment spanning the editing site. EMBO J 15: 5958–5964

Copyright © 2017 American Society of Plant Biologists. All rights reserved.

