On the Cover: The number of seeds per spike is an important trait targeted to optimize yield in barley. The spike of barley forms a triple spikelet meristem with one central spikelet meristem and two lateral spikelet meristems. In two-rowed barley cultivars, only the central spikelet develops and forms a seed, while in the six-rowed barley cultivars, all three spikelets develop into grains. In addition, intermediate mutants are characterized by a partial development of lateral spikelets resulting in varying two- and six-rowed spike morphology. In this issue, Van Esse et al. (pp. 2397–2408) used RNA sequencing of allelic six-rowed spike3 (vrs3) mutants with an intermediate spike phenotype for gene identification and functional analysis. The causal gene was identified as a putative histone Lys demethylase with a conserved zinc finger and Jumonji C and N domain. Comparative transcriptional profiling of vrs3 and mutants of the known row-type regulators VRS1 (Hv.HOMEOBOX1), VRS4 (Hv.RAMOSA2), and INTERMEDIATE-C (INT-C; Hv.TEOSINTE BRANCHED1) demonstrated that VRS3 acts as transcriptional activator of both VRS1 and INT-C. The genetic dissection of regulatory networks that control lateral spikelet development provides the basis for targeted improvement of seed number in barley. The image shows barley spikes of cv Bowman (left) and two introgression lines of allelic vrs3 mutants in cv Bowman (middle and right), which exhibit a partial development of the lateral spikelets. The awns are removed from the spike to visualize the difference between cv Bowman and the vrs3 introgression lines. Photo by Wilma van Esse.

ON THE INSIDE

Peter V. Minorsky

LETTER TO THE EDITOR

UPDATE

Leaf Hydraulic Architecture and Stomatal Conductance: A Functional Perspective. Fulton E. Rockwell and N. Michele Holbrook

Mechanistic modeling of water transport from petiole to stomata provides new perspectives on optimality in vascular and mesophyll transport properties.

BREAKTHROUGH TECHNOLOGIES

A High-Throughput, Field-Based Phenotyping Technology for Tall Biomass Crops. Maria G. Salas Fernandez, Yin Bao, Lie Tang, and Patrick S. Schnable

A ground-based platform enables high-throughput, image-based data and analysis to characterize plant architecture of a tall biomass crop species.

Plant transformation with pooled CRISPR libraries enables the rapid production of mutant lines for functional screens.
Analysis of the ZAR1 Immune Complex Reveals Determinants for Immunity and Molecular Interactions. Mael Baudin, Jana A. Hassan, Karl J. Schreiber, and Jennifer D. Lewis

Deciphering the molecular interactions within the ZAR1-ZED1 immune complex that lead to the induction of plant immunity.

RESEARCH REPORT

Optical Measurement of Stem Xylem Vulnerability. Timothy J. Brodribb, Marc Carriqui, Sylvain Delzon, and Christopher Lucani

An optical method is shown to accurately measure the vulnerability of stem xylem to cavitation during water stress.

Monophyletic Origin and Evolution of the Largest Crucifer Genomes. Terezie Mandáková, Petra Hlousková, Dmitry A. German, and Martin A. Lysak

The largest Brassicaceae genomes, forming the well-supported Hesperis clade, have descended from a common ancestor with seven chromosomes and exhibit considerable karyotype and chromosome number stasis.

RESEARCH ARTICLES

BIOCHEMISTRY AND METABOLISM

Hydroxystilbenes Are Monomers in Palm Fruit Endocarp Lignins. José Carlos del Río, Jorge Rencoret, Ana Gutiérrez, Hoon Kim, and John Ralph

Lignin polymers in the tough outer skin (endocarp) of palm fruits are produced, in part, from a new class of monomers, hydroxystilbenes, including the valuable resveratrol and piceatannol.

Two Glycerol-3-Phosphate Dehydrogenases from Chlamydomonas Have Distinct Roles in Lipid Metabolism. Thomas Driver, Drupad K. Trivedi, Owen A. McIntosh, Andrew P. Dean, Royston Goodacre, and Jon K. Pittman

Two glycerol-3-phosphate dehydrogenases from C. reinhardtii are required for storage lipid accumulation in response to nutrient stress but have distinct metabolic functions.

The Pseudoenzyme PDX1.2 Sustains Vitamin B₆ Biosynthesis as a Function of Heat Stress. Elisa Dell’Aglio, Svetlana Boycheva, and Teresa B. Fitzpatrick

Expression of PDX1.2 is regulated by the HSFA1 transcription factor family and is an important abiotic stress tolerance strategy in most eudicots that is not utilized by monocots such as grasses.

Analysis of Posttranslational Activation of Alternative Oxidase Isoforms. Jennifer Selinski, Andreas Hartmann, Adrian Kordes, Gabriele Deckers-Hebestreit, James Whelan, and Renate Scheibe

The multiple alternative oxidase isoforms from Arabidopsis are differentially activated by various metabolites, suggesting isoform-specific functions.
The Enzyme Activity and Substrate Specificity of Two Major Cinnamyl Alcohol Dehydrogenases in Sorghum (Sorghum bicolor), SbCAD2 and SbCAD4. *Se-Young Jun, Alexander M. Walker, Hoon Kim, John Ralph, Wilfred Vermerris, Scott E. Sattler, and ChulHee Kang*

Substrate catalysis by cinnamyl alcohol dehydrogenases from Sorghum bicolor deduced from crystal structures, site-directed mutagenesis, and kinetics. 2128

Identification and Metabolite Profiling of Chemical Activators of Lipid Accumulation in Green Algae. *Nishikant Wase, Boqiang Tu, James W. Allen, Paul N. Black, and Concetta C. DiRusso*

Small compound activators of lipid accumulation in algae are distinguished by differential effects on lipid and polar metabolite profiles. 2146

Nutrient limitation, self-shading, and quorum sensing are not major limiting factors for the growth of Synechocystis in batch cultures. 2166

Monogalactosyldiacylglycerol Facilitates Synthesis of Photoactive Protochlorophyllide in Etioplasts. *Sho Fujii, Koichi Kobayashi, Noriko Nagata, Tatsuru Masuda, and Hajime Wada*

Monogalactosyldiacylglycerol is required for membrane-associated processes of the protochlorophyllide synthesis pathway and the formation of protochlorophyllide-enzyme complexes in Arabidopsis etioplasts. 2183

Leaf Starch Turnover Occurs in Long Days and in Falling Light at the End of the Day. *Olivier Fernandez, Hirofumi Ishihara, Gavin M. George, Virginie Mengin, Anna Flis, Dean Sumner, Stéphanie Arrivault, Regina Feil, John E. Lunn, Samuel C. Zeeman, Alison M. Smith, and Mark Stitt*

Starch in Arabidopsis leaves is increasingly liable to degradation with time after dawn, so that accumulation slows and turnover in response to falling light accelerates as the day proceeds. 2199

Identification and Characterization of Daurichromenic Acid Synthase Active in Anti-HIV Biosynthesis. *Miu Iijima, Ryosuke Munakata, Hironobu Takahashi, Hiromichi Kenmoku, Ryuichi Nakagawa, Takeshi Kodama, Yoshinori Asakawa, Ikuro Abe, Kazufumi Yazaki, Fumiya Kurosaki, and Futoshi Taura*

Daurichromenic acid, an anti-HIV meroterpenoid, is biosynthesized by a novel flavoprotein oxidase localized in the specialized epidermal organ, the glandular scales of Rhododendron dauricum. 2213

CELL BIOLOGY

The PEX1 ATPase Stabilizes PEX6 and Plays Essential Roles in Peroxisome Biology. *Mauro A. Rinaldi, Wendell A. Fleming, Kim L. Gonzalez, Jaeseok Park, Meredith J. Ventura, Ashish B. Patel, and Bonnie Bartel*

Novel missense alleles of the Arabidopsis PEX1 ATPase reveal essential peroxisomal roles that impact embryogenesis and plant growth. 2231
Unique Motifs and Length of Hairpin in Oleosin Target the Cytosolic Side of Endoplasmic Reticulum and Budding Lipid Droplet.
Chien-Yu Huang and Anthony H.C. Huang

The mechanism of oleosin targeting endoplasmic reticulum-lipid droplets and extracting LDs to the cytosol or ER lumen is delineated.

ECOPHYSIOLOGY AND SUSTAINABILITY

Variation in Leaf Respiration Rates at Night Correlates with Carbohydrate and Amino Acid Supply.
Brendan M. O’Leary, Chun Pong Lee, Owen K. Atkin, Riyan Cheng, Tim B. Brown, and A. Harvey Millar

Mature Arabidopsis leaves display substantial variation in nighttime respiration rates that is metabolically linked to daytime carbon and nitrogen assimilation but not to nighttime protein synthesis.

The Auxin Biosynthetic TRYPTOPHAN AMINOTRANSFERASE RELATED TaTAR2.1-3A Increases Grain Yield of Wheat.
An Shao, Wenying Ma, Xueqiang Zhao, Mengyun Hu, Xue He, Wan Teng, Hui Li, and Yiping Tong

Overexpression of the auxin biosynthesis gene TaTAR2.1-3A in wheat increases grain yield under different nitrogen nutritional conditions.

Root Tip Shape Governs Root Elongation Rate under Increased Soil Strength.
Tino Colombi, Norbert Kirchgessner, Achim Walter, and Thomas Keller

Root tip shape in wheat is a pivotal trait governing root tip penetration stress and thus root elongation rate in soils of greater strength.

Genetic Control of Plasticity in Root Morphology and Anatomy of Rice in Response to Water Deficit.
Niteen N. Kadam, Anandhan Tamilselvan, Lovely M.F. Lawas, Cherryl Quinones, Rajeev N. Bahuguna, Michael J. Thomson, Michael Dingkuhn, Raveendran Muthurajan, Paul C. Struik, Xinyou Yin, and S.V. Krishna Jagadish

The genetic analysis of root morphology and anatomy in a rice diversity panel resulted in identification of the genetic loci that regulates the rooting plasticity in response to water deficit.

OsHAD1, a Haloacid Dehalogenase-Like APase, Enhances Phosphate Accumulation.
Bipin K. Pandey, Poonam Mehra, Lokesh Verma, Jyoti Bhadouria, and Jitender Giri

Overexpression of OsHAD1 enhances P accumulation in rice by activation of Pi starvation responses such as ATP depletion, APase secretion, organic acid production, and induction of Pi transporters.

Root Cortical Senescence Improves Growth under Suboptimal Availability of N, P, and K.
Hannah M. Schneider, Johannes A. Postma, Tobias Wojciechowski, Christian Kuppe, and Jonathan P. Lynch

SimRoot, a functional-structural plant model, demonstrated how root cortical senescence in barley may have utility for soil resource capture in edaphic stress conditions.
GENES, DEVELOPMENT, AND EVOLUTION

Transcription Factor AREB2 Is Involved in Soluble Sugar Accumulation by Activating Sugar Transporter and Amylase Genes. Qi-Jun Ma, Mei-Hong Sun, Jing Lu, Ya-Jing Liu, Da-Gang Hu, and Yu-Jin Hao

The ABA-responsive transcription factor MdAREB2 directly activates the expression of amylase and sugar transporter genes to promote soluble sugar accumulation.

NTL8, a membrane-associated NAC transcription factor, negatively regulates trichome formation in Arabidopsis.

Ripening Transcriptomic Program in Red and White Grapevine Varieties Correlates with Berry Skin Anthocyanin Accumulation. Mélanie Massonnet, Marianna Fasoli, Giovanni Battista Tornielli, Mario Altieri, Marco Sandri, Paola Zuccolotto, Paola Paci, Massimo Gardiman, Sara Zenoni, and Mario Pezzotti

Grapevine berry development features both common and skin color-dependent transcriptomic changes.

Six-rowed spike3 (VRS3) encodes a histone demethylase that controls lateral spikelet development by activating the expression of INTERMEDIATE C (TEOSINTE BRANCHED1) and VRS1.

MEMBRANES, TRANSPORT, AND BIOENERGETICS

A Dual Role for the OsK5.2 Ion Channel in Stomatal Movements and K⁺ Loading into Xylem Sap. Thanh Hao Nguyen, Shouguang Huang, Donaldo Meynard, Christian Chaine, Rémy Michel, M. Rob G. Roelfsema, Emmanuel Guiderdoni, Hervé Sentenac, and Anne-Aliénor Véry

The rice K⁺ channel OsK5.2 is necessary for rapid stomatal closure and contributes to shoot K⁺ supply from the root, thus highlighting the differing functional distribution of Shaker channels compared to Arabidopsis.

[OPEN] A Light Harvesting Complex-Like Protein in Maintenance of Photosynthetic Components in Chlamydomonas. Lei Zhao, Dongmei Cheng, Xiahe Huang, Mei Chen, Luca Dall’Osto, Jiale Xing, Liyan Gao, Lingyu Li, Yale Wang, Roberto Bassi, Lianwei Peng, Yingchun Wang, Jean-David Rochaix, and Fang Huang

Msf1 is required for the maintenance of PSI and chlorophyll-binding proteins mainly under stress conditions in Chlamydomonas.

[OPEN] Wheat Vacuolar Iron Transporter TaVIT2 Transports Fe and Mn and Is Effective for Biofortification. James M. Connorton, Eleanor R. Jones, Ildefonso Rodríguez-Ramiro, Susan Fairweather-Tait, Cristobal Uauy, and Janneke Balk

Altering the expression of a vacuolar iron transporter doubles iron content in white wheat flour.
SIGNALING AND RESPONSE

[OPEN] ROOT DETERMINED NODULATION1 Is Required for M. truncatula CLE12, But Not CLE13, Peptide Signaling through the SUNN Receptor Kinase. Tessema Kassaw, Stephen Nowak, Elise Schnabel, and Julia Frugoli

Genetic analysis of the autoregulation of nodulation pathway in M. truncatula reveals diversity in how CLE peptides that signal through the SUNN receptor kinase may be modified in the root. 2445

Autophosphorylation Affects Substrate-Binding Affinity of Tobacco Ca\(^{2+}\)-Dependent Protein Kinase1. Takeshi Ito, Sarahmi Ishida, Shota Oe, Jutarou Fukazawa, and Yohsuke Takahashi

Autophosphorylation could prevent the excessive phosphorylation of substrates and alter the substrate preference of Ca\(^{2+}\)-dependent protein kinases. 2457

miR390/TAS3 affect rhizobial infection, nodule proliferation, and the maintenance of a single-nodule meristem in addition to lateral root growth in Medicago truncatula. 2469

[OPEN] A PIF1/PIF3-HY5-BBX23 Transcription Factor Cascade Affects Photomorphogenesis. Xinyu Zhang, Junling Huai, Fangfang Shang, Gang Xu, Weijiang Tang, Yanjun Jing, and Rongcheng Lin

Two PIF transcription factors activate the expression of HY5 and BBX23, the proteins of which interact to affect downstream gene expression in photomorphogenesis. 2487

A Lectin Receptor-Like Kinase Mediates Pattern-Triggered Salicylic Acid Signaling. Xuming Luo, Ning Xu, Junkai Huang, Feng Gao, Huasong Zou, Marie Boudsocq, Gitta Coaker, and Jun Liu

The Arabidopsis L-type lectin receptor-like kinase LecRK-I X.2 recruits calcium dependent protein kinases (CPKs) to phosphorylate NADPH oxidase RbohD to activate H2O2-SA circuit. 2501

SYSTEMS AND SYNTHETIC BIOLOGY

AtAIRP2 E3 Ligase Affects ABA and High-Salinity Responses by Stimulating Its ATP1/SDIRIP1 Substrate Turnover. Tae Kin Oh, Jong Hun Kim, Seok Keun Cho, Moon Young Ryu, Seong Wook Yang, and Woo Taek Kim

AtAIRP2 and SDIR1 RING E3 Ub ligases play combinatorial roles in response to ABA and high-salinity stress during germination growth via the UPS-dependent down-regulation of ATP1/SDIRIP1 in Arabidopsis. 2515

A combination of metabolomics and mass spectrometry imaging provides new insights in metabolic processes during the germination of maize seeds. 2532

Continued on next page
CORRECTION

[CC-BY] Article free via Creative Commons CC-BY 4.0 license.
[OPEN] Articles can be viewed without a subscription.