Maize is one of the most important crops and is cultivated worldwide as a source of staple food, animal feed, and industrial materials. According to the Food and Agriculture Organization, the production of maize was 1,016.7 million tons in 2013, which was far more than rice (Oryza sativa) and wheat (Triticum aestivum; 745.7 and 713.1 million tons, respectively). Yield improvement is a central goal of maize breeding. Kernel size and weight are two significant components of maize yield, and many attempts have been made to elucidate the genetic basis of kernel size and weight.

Many studies have mapped quantitative trait loci (QTLs) for natural variations in kernel size and weight. For example, Liu et al. (2014) identified 55 QTLs for kernel size and weight in an F2 population. Raihan et al. (2016) mapped 16 major QTLs for kernel traits in a recombinant inbred line (RIL) population. Jiang et al. (2015) mapped 28 QTLs in a test cross population. Most of these studies used two diverse inbred lines to develop the segregating population and used a limited number of genetic markers to construct the linkage map, which greatly limited the resolution and power to detect rare and/or small-effect QTLs. Large-scale QTL mapping studies including more diverse genetic backgrounds and dense genetic markers would provide more insight into the number and effect of QTLs controlling the natural variations of kernel size and weight in maize.

Maize (Zea mays) is one of the most important crops and is cultivated worldwide as a source of staple food, animal feed, and industrial materials. According to the Food and Agriculture Organization, the production of maize was 1,016.7 million tons in 2013, which was far more than rice (Oryza sativa) and wheat (Triticum aestivum; 745.7 and 713.1 million tons, respectively). Yield improvement is a central goal of maize breeding. Kernel size and weight are two significant components of maize yield, and many attempts have been made to elucidate the genetic basis of kernel size and weight.

Many studies have mapped quantitative trait loci (QTLs) for natural variations in kernel size and weight. For example, Liu et al. (2014) identified 55 QTLs for kernel size and weight in an F2 population. Raihan et al. (2016) mapped 16 major QTLs for kernel traits in a recombinant inbred line (RIL) population. Jiang et al. (2015) mapped 28 QTLs in a test cross population. Most of these studies used two diverse inbred lines to develop the segregating population and used a limited number of genetic markers to construct the linkage map, which greatly limited the resolution and power to detect rare and/or small-effect QTLs. Large-scale QTL mapping studies including more diverse genetic backgrounds and dense genetic markers would provide more insight into the number and effect of QTLs controlling the natural variations of kernel size and weight in maize.

Maize (Zea mays) is one of the most important crops and is cultivated worldwide as a source of staple food, animal feed, and industrial materials. According to the Food and Agriculture Organization, the production of maize was 1,016.7 million tons in 2013, which was far more than rice (Oryza sativa) and wheat (Triticum aestivum; 745.7 and 713.1 million tons, respectively). Yield improvement is a central goal of maize breeding. Kernel size and weight are two significant components of maize yield, and many attempts have been made to elucidate the genetic basis of kernel size and weight.

Many studies have mapped quantitative trait loci (QTLs) for natural variations in kernel size and weight. For example, Liu et al. (2014) identified 55 QTLs for kernel size and weight in an F2 population. Raihan et al. (2016) mapped 16 major QTLs for kernel traits in a recombinant inbred line (RIL) population. Jiang et al. (2015) mapped 28 QTLs in a test cross population. Most of these studies used two diverse inbred lines to develop the segregating population and used a limited number of genetic markers to construct the linkage map, which greatly limited the resolution and power to detect rare and/or small-effect QTLs. Large-scale QTL mapping studies including more diverse genetic backgrounds and dense genetic markers would provide more insight into the number and effect of QTLs controlling the natural variations of kernel size and weight in maize.

Maize (Zea mays) is one of the most important crops and is cultivated worldwide as a source of staple food, animal feed, and industrial materials. According to the Food and Agriculture Organization, the production of maize was 1,016.7 million tons in 2013, which was far more than rice (Oryza sativa) and wheat (Triticum aestivum; 745.7 and 713.1 million tons, respectively). Yield improvement is a central goal of maize breeding. Kernel size and weight are two significant components of maize yield, and many attempts have been made to elucidate the genetic basis of kernel size and weight.

Many studies have mapped quantitative trait loci (QTLs) for natural variations in kernel size and weight. For example, Liu et al. (2014) identified 55 QTLs for kernel size and weight in an F2 population. Raihan et al. (2016) mapped 16 major QTLs for kernel traits in a recombinant inbred line (RIL) population. Jiang et al. (2015) mapped 28 QTLs in a test cross population. Most of these studies used two diverse inbred lines to develop the segregating population and used a limited number of genetic markers to construct the linkage map, which greatly limited the resolution and power to detect rare and/or small-effect QTLs. Large-scale QTL mapping studies including more diverse genetic backgrounds and dense genetic markers would provide more insight into the number and effect of QTLs controlling the natural variations of kernel size and weight in maize.
Despite the large number of QTLs that have been identified for maize kernel size and weight, none of them has been delimited to the causative variation. On the other hand, many genes controlling maize kernel development have been cloned using kernel mutants identified from Robertson's Mutator stocks, including emp2 (empty pericarp), emp4, emp5, emp16, dek1 (defective kernel1), dek35, maize pentatricopeptide repeat6, small kernel1, embryo defective14, U6 biogenesis-like1, and many others (Fu et al., 2002; Li et al., 2002; Gutiérrez-Marcos et al., 2007; Manavsky et al., 2012; Liu et al., 2013; Li et al., 2014, 2015, 2017; Chen et al., 2016; Xiu et al., 2016). Mutations in these genes usually have severe phenotypes in kernels, such as empty pericarp, where both embryo and endosperm cannot develop properly. It is unclear whether weak mutations (or genetic variations) of these genes exist in nature and whether such genetic variants can contribute to phenotypic diversity in maize kernel. A comparative analysis between these mutant genes and kernel size/weight QTLs will not only provide candidate genes for QTLs but also shed light on the extent to which genes identified through mutant studies can contribute to natural variations in maize kernel phenotypes.

Maize shares common ancestors with rice (Murat et al., 2017). Comparative QTL studies between species showed that similar traits were usually controlled by QTLs that are located within syntenic regions among the species (Paterson et al., 1995). This idea has been illustrated further by comparative functional studies at the single gene level. Many genes that could affect the seed shape and weight have been fine-mapped and cloned in rice, such as GS3 (Fan et al., 2006; Mao et al., 2010), GW2 (Song et al., 2007), and GS5 (Li et al., 2011). Li et al. (2010a, 2010b) isolated the maize orthologs of rice GS3 and GW2 and showed that the maize genes also control similar traits, although with different genetic variations. Similarly, Liu et al. (2015) showed that GS5 contributes to kernel size variation in maize as well as in rice. Notably, the wheat orthologs of rice GW2 and GS5 also were associated significantly with wheat kernel size and weight (Su et al., 2011; Hong et al., 2014; Qin et al., 2014; Jaiswal et al., 2015; Wang et al., 2015, 2016; Ma et al., 2016; Simmonds et al., 2016). In addition to GS3, GW2, and GS5, many other genes controlling rice kernel size/weight have been cloned, such as genes involved in G-protein signaling (DEP1 and D1) and genes from phytohormone pathways (DST and Gna1 for cytokinin; D11, SR55, D61, gGL3, and SMG1 for brassinosteroid; and TGW6 for auxin). It remains an open question whether their maize homologous counterparts have a similar function in the phenotypic diversity of kernel size/weight. A systematic investigation of the function of these genes in maize would provide more insights into the genetic mechanisms controlling kernel development in the two closely related important crops.

In this study, we used 10 RIL populations to dissect the genetic basis of maize kernel size and weight with three models: separate linkage mapping (SLM), joint linkage mapping (JLM), and genome-wide association mapping (GWAS). Many QTLs with major and minor effects were identified. A comparison between these QTLs and the genes from maize mutant studies and maize homologs of well-known rice seed size/weight genes suggested that many of these genes have roles in controlling natural variations of kernel size and weight. There are also many QTLs that are not coincident with any known candidate genes or that contain candidate genes that do not affect natural variations in kernel size and weight. These results suggest both a conserved and species-specific genetic architecture of kernel traits between rice and maize. Furthermore, we found that ZmINCW1, an ortholog of the rice seed weight gene GRAIN INCOMPLETE FILLING1 (GIFI), had a conserved function that affects kernel/seed development in maize and Arabidopsis (Arabidopsis thaliana). Our results help to elucidate the genetic basis of maize kernel size and weight.

RESULTS

Phenotypic Variation and Heritability of Kernel Size and Weight

We used 10 RIL populations derived from 14 diverse maize inbred lines (Fan et al., 2016) to dissect the genetic architecture of kernel size and weight in maize. These lines were grown under multiple environments. Seven of them (B73 × BY804, KUI3 × B77, K22 × CI7, DAN340 × K22, ZHEN58 × SK, YU87-1 × BK, and ZONG3 × YU87-1) were planted in eight environments, while the other three (DE3 × BY815, K22 × BY815, and BY815 × KUI3) were planted in four environments. Five maize kernel traits were measured for each line in these 10 RIL populations, including hundred kernel weight (HKW; weight of 100 kernels), kernel test weight (KTW; weight of 250 mL of kernels), kernel length (KL), kernel thickness (KT) and kernel width (KW; Fig. 1A). Best linear unbiased prediction (BLUP) values of each line were used to represent the phenotypic value. Both the 14 parental lines and the 10 RIL populations showed significant variations in these five kernel traits (Fig. 1, B and C; Supplemental Fig. S1). Broad-sense heritability ranged from 0.53 (KT in DE3 × BY815) to 0.94 (HKW in ZHEN58 × SK), with most higher than 0.8 (Supplemental Table S1). This suggests that phenotypic variation is controlled largely by genetic factors and can be genetically mapped. We calculated the correlation coefficient between HKW and the three kernel size traits, KL, KW, and KT (Supplemental Table S2), and found that KW and KT were significantly positively correlated with HKW in all 10 RIL populations, while KL was positively correlated with HKW in seven RIL populations. The correlation coefficients for KL were usually smaller compared with KW and KT, suggesting that KW and KT may play more important roles for kernel weight in maize.
Dissection of the Genetic Architecture of Maize Kernel Size and Weight with Three Methods

First, we performed SLM in each RIL population with the composite interval mapping method (Zeng, 1994). In total, we identified 373 QTLs for kernel size and weight, including 90, 70, 61, 89, and 63 QTLs for HKW, KTW, KL, KW, and KT, respectively (Fig. 2A; Table I; Supplemental Table S3; Supplemental Figs. S2 and S3). The phenotypic variation explained by each QTL ranged from 2.91% to 19.43%, with an average of 7%. Out of these 373 QTLs, 267 (72%) were identified in only one population. Some QTLs could be identified in at least two populations for the same trait, including 27 QTLs for HKW, 24 for KTW, 15 for KL, 25 for KW, and 15 for KT. The presence of population-common and specific QTLs may reflect differences in allele frequency of the underlying causative sites and suggests that populations from diverse genetic backgrounds are needed to comprehensively understand the genetic architecture of kernel size and weight. Importantly, 10, 11, 10, 17, and nine major QTLs ($R^2 > 10\%$, i.e. QTLs that can explain more than 10% of the phenotypic variation) were identified for HKW, KTW, KL, KW, and KT, respectively. Among these major QTLs, 17 could be detected in more than one population for the same trait. We also detected 18 major QTLs that can affect more than one trait (Supplemental Tables S4 and S5). An example QTL for KW, KT, and HKW is shown in Figure 2B. Detailed information about these 373 QTLs is provided in Supplemental Table S6.

We also performed JLM and GWAS by analyzing the 10 RIL populations jointly (see “Materials and Methods”). In JLM, we identified 56, 59, 55, 68, and 62 QTLs for HKW, KTW, KL, KW, and KT, respectively (Fig. 2A; Table I; Supplemental Table S7; Supplemental Fig. S3). In GWAS, we detected between 123 and 198 significant single-nucleotide polymorphisms (SNPs) for each trait (Supplemental Table S8). To avoid redundancy of the significant SNPs caused by linkage disequilibrium, we performed a backward regression procedure (see “Materials and Methods”). After this analysis, 30, 22, 26, 32, and 25 independent SNPs for HKW, KTW, KL, KW, and KT, respectively, were obtained (Table I; Supplemental Table S9). Some SNPs can control two or more traits simultaneously. On average, each of the identified SNPs with GWAS could explain only a very small amount of phenotypic variation (between 1.06% and 1.35%) compared with QTLs identified with SLM, but they could jointly explain a large portion of phenotypic variation (55.85%, 59.17%, 59.91%, 75.72%, and 36.4% for HKW, KTW, KL, KW, and KT, respectively).

Notably, a considerable number of loci could be identified by more than one model (Fig. 2C). For example, 61.9% of QTLs identified with SLM also can be detected

Figure 1. Measurements of kernel traits and variations of kernel size among 14 parental lines and representative lines in two RIL populations. A, Measurements of KL, KW, and KT illustrated with a B73 kernel. Bar = 1 cm. B, Fourteen parental inbred lines used in this study showed considerable variations of kernel size. The arrows point from paternal lines to maternal lines. C, Kernels of representative lines in YU87-1 × BK (left) and ZHENG58 × SK (right) RIL populations. Bar = 1 cm.
using JLM and/or GWAS. Similarly, 55% of JLM QTLs and 69.2% of GWAS SNPs can be identified by the other two models. More importantly, 22 major QTLs can be identified in all three models. These results confirm the reliability of the identified QTLs and suggest that the three statistical models are complementary to each other. The integrated use of these models can provide more insight into the genetic architecture of phenotypic variation.

Natural Variations of Some Maize Mutant Genes Were Significantly Associated with Kernel Development

To identify candidate genes for the QTLs, we collected 36 maize genes that had been cloned using maize kernel mutants and were reported to be involved in maize kernel development (Supplemental Table S10). Of these 36 genes, 21 were located in the QTLs identified by SLM, seven were located in the QTLs identified by JLM, and 15 were located within a 1-Mb region of the
significant SNPs identified by GWAS (Supplemental Table S10). To further confirm the function of these genes, we used an independent association panel consisting of 540 lines. This panel has been genotyped with 1.25 million SNPs (Liu et al., 2017). Between one and 209 SNPs were identified in these 36 genes and were used to identify loci that are significantly associated with variations in kernel size and weight. We found that seven of these 36 genes affect at least one kernel trait (Supplemental Table S10; Supplemental Fig. S5). To further confirm the functions of these 30 genes, we used an independent association panel consisting of 540 lines. This panel has been genotyped with 1.25 million SNPs (Liu et al., 2017). Between one and 209 SNPs were identified in these 36 genes and were used to identify loci that are significantly associated with variations in kernel size and weight. We found that seven of these 36 genes affect at least one kernel trait (Supplemental Table S10; Supplemental Fig. S5). For example, Dek36 (GRMZM5G892151) was significantly associated with both HKW ($P = 5.13 \times 10^{-3}$) and KTW ($P = 6.30 \times 10^{-4}$; Supplemental Fig. S5B). Many of the most significant SNPs were either located in the untranslated region or represented synonymous substitutions. This is reasonable considering that loss-of-function alleles of most genes usually lead to defective kernels with limited/no viability; thus, genetic variation greatly affecting gene function would be unfavorable under natural conditions. It is also possible that the synonymous variants are in linkage disequilibrium with the causal variants that were not assayed. Nevertheless, these findings provide evidence that many of the genes identified from mutant studies contain natural genetic variations and that many of them contribute to phenotypic diversity in maize kernel size and weight.

Many Rice Seed Size/Weight Genes Have Conserved Functions in Maize

To provide insight into whether rice seed size/weight genes have similar functions in maize, we investigated the functions of the maize orthologs of 18 rice genes that have been shown to affect seed size or weight (Supplemental Table S11). These 18 genes are involved in proteasomal degradation, phytohormones (auxin, cytokinin, and brassinosteroid), G-protein signaling, and other processes.

Based on the MSU Rice Genome Annotation Project (Kawahara et al., 2013; http://rice.plantbiology.msu.edu/cgi-bin/gbrowse/rice/), we identified 30 maize orthologs of these 18 rice genes (Supplemental Table S11), with nine genes having one ortholog, six genes having two orthologs, and three genes having three orthologs. Colocalization of these 30 genes and the identified QTLs highlighted several interesting findings. (1) Twenty-four of the 30 genes were located in the QTL confidence intervals or within 1-Mb flanking regions of the significant SNPs (Fig. 3; Supplemental Table S11). (2) Three genes were located within 500 kb of the peak, and two genes were very close to the peak (3.4 kb for ZmGW7-2 and 59.9 kb for ZmBG2). (3) Six genes were located in major QTLs; for example, ZmSLG was located in a major QTL ($R^2 = 12.40\%$) for KW in the K22 × CI7 population and a major QTL ($R^2 = 12.89\%$) for HKW in the BY815 × KU13 population (Supplemental Table S11). (4) Five genes were located within QTLs identified in all three models. These results suggest that the rice orthologous genes provide good candidates for the maize QTLs.

We investigated the functions of these 30 genes using the association panel consisting of 540 inbred lines. Between nine and 174 SNPs (58.3 on average) were identified within each gene and were used for candidate gene association analysis. Out of these 30 genes, five were significantly associated with at least one kernel size or weight trait by candidate gene association analysis (Fig. 3; Supplemental Fig. S4; Supplemental Table S11), and all of these five genes were located in the QTLs identified in this study. ZmSLG (GRMZM2G179703) was significantly associated with KW ($P = 1.06 \times 10^{-3}$; Supplemental Fig. S4A); ZmGL2 (GRMZM2G113779) was significantly associated with KTW ($P = 9.44 \times 10^{-3}$) and HKW ($P = 1.04 \times 10^{-3}$; Supplemental Fig. S4B); ZmGL2 (GRMZM2G034876) was significantly associated with KW ($P = 2.65 \times 10^{-3}$) and HKW ($P = 2.97 \times 10^{-3}$; Supplemental Fig. S4C); ZmGW7-2 (GRMZM2G370081) was significantly associated with KW ($P = 4.57 \times 10^{-4}$; Supplemental Fig. S4D); and ZmSRS1-2 (GRMZM2G414043) was significantly associated with KL ($P = 4.56 \times 10^{-4}$; Supplemental Fig. S4E).

The most significant SNPs in ZmGL2 and ZmGW7-2 are missense variants that lead to amino acid changes (Gly/Ser-211 and His/Gln-271), while the most significant SNPs in ZmSLG, ZmGL2, and ZmSRS1-2 are located in the 5’ untranslated region (UTR) or the 3’ UTR. GWAS for expression levels of these five genes showed that the expression level of ZmSLG was significantly associated with SNPs located in this gene ($P = 3.86 \times 10^{-11}$; Supplemental Fig. S4F). We also found a significant correlation between the expression level of ZmSLG and KW ($P < 0.01, r = -0.18$; Supplemental Fig. S4G). This indicates that the cis-element near ZmSLG might regulate its expression to affect kernel development. Notably, ZmSLG also is located within a region that has been shown to be under artificial selection during the generation of small seed and big seed

Table 1. QTLs or significant SNPs for kernel size and weight detected with three methods

<table>
<thead>
<tr>
<th>Mapping Method</th>
<th>HKW</th>
<th>KTW</th>
<th>KL</th>
<th>KW</th>
<th>KT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLMA</td>
<td>90</td>
<td>27</td>
<td>10</td>
<td>70</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>24</td>
<td>11</td>
<td>4</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>61</td>
<td>15</td>
<td>10</td>
<td>2</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>89</td>
<td>25</td>
<td>17</td>
<td>17</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>63</td>
<td>15</td>
<td>9</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>ILMA</td>
<td>56</td>
<td>59</td>
<td>59</td>
<td>55</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>68</td>
<td>62</td>
<td>62</td>
<td>62</td>
<td>62</td>
</tr>
<tr>
<td>GWASb</td>
<td>194</td>
<td>30</td>
<td>136</td>
<td>22</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>138</td>
<td>26</td>
<td>163</td>
<td>32</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>123</td>
<td>25</td>
<td>123</td>
<td>25</td>
<td>123</td>
</tr>
</tbody>
</table>

*The number of QTLs identified in one population, more than one population, major QTLs in one population ($R^2 > 10\%$), and major QTLs in at least two populations, respectively.

**The number of significant SNPs identified by GWAS and backward regression, respectively.
populations by Hirsch et al. (2014a). These results provide evidence that some maize orthologous genes might have similar and conserved functions as their rice counterparts.

ZmINCW1, Whose Protein Sequence Has High Similarity to Rice GIF1, Affects Kernel Development in Maize

The maize gene Mn1 (GRMZM2G119689; Miniature-1, also named incw2) is critical in maize kernel development, and the mn1 seed weighs only 20% of the normal seed (Lowe and Nelson, 1946). Mn1 encodes a cell wall invertase, and extremely low invertase activity is the causal basis of the mutant phenotype (Miller and Chourey, 1992). Because of the tetraploid origin of maize, Mn1 has a paralog in the maize genome, GRMZM2G095725. Both Mn1 and GRMZM2G095725 are orthologs of rice GIF1 (Supplemental Fig. S4), which affects rice grain filling and weight (Wang et al., 2008). Interestingly, both Mn1 and GRMZM2G095725 are located in the confidence intervals of QTLs for maize kernel traits in this study.

In addition to the two genes, we identified a third gene, GRMZM2G139300, that shares high protein sequence similarity to rice GIF1 (identity = 71.28%, E-value = 0; Supplemental Fig. S6). GRMZM2G139300 had previously been designated as the incw1 locus on maize chromosome 5 and encodes a cell wall invertase (Shanker et al., 1995). Hereafter, it is named ZmINCW1.

ZmINCW1 showed abundant variations in gene expression in the association panel (Fig. 4A), and the phenotypic variations explained by these QTLs are 14% (HKW-12YN), 8% (KW-11DHN), and 3.7% (KW-BLUP). The distances between ZmINCW1 and the peaks of these three QTLs are less than 1 Mb (550, 417, and 786 kb, respectively), providing a good candidate for these QTLs. We also detected QTLs covering ZmINCW1 for KL in the DAN340 × K22 population (Supplemental Fig. S7A) and for HKW in the DE3 × BY815 population (Supplemental Fig. S7B; phenotypic variations explained by these two QTLs are 8.5% and 19%, respectively).

Figure 3. Comparative analysis of QTLs and genes identified from maize mutant studies or based on rice seed size or weight genes. A total of 21 rice genes (18 from this study and GS3, GW2, and GS5 from previous studies; shown in red) and 36 maize genes (shown in blue) reported to be involved in maize kernel development in mutant studies are shown. Points with different color and shape indicate that genes were significantly associated with maize kernel size or weight by different methods. The heat map in the chromosome region indicates the density of QTLs for kernel traits (see scale at bottom right). The window size is 1 Mb.
most significant SNP (chr5.S_169456915) also showed significant correlation with KT ($P = 2.57 \times 10^{-3}$). Besides the significant SNPs located within ZmINCW1, there were some significant SNPs located ~220 kb upstream of the gene (three SNPs in the intergenic region and four SNPs in three other genes; Fig. 4C). We then performed GWAS conditioning on the most significant SNPs in ZmINCW1 and found no other significant SNPs for the expression of ZmINCW1. This result indicates that the expression of ZmINCW1 is regulated mainly by nearby variations. Interestingly, the expression levels of ZmINCW1 are associated significantly with kernel traits in two of 12 environments (KL in 2011 Hainan, $r = 0.17, P = 1.87 \times 10^{-3}$; HKW in 2011 Yunnan, $r = 0.16, P = 7.3 \times 10^{-3}$; Fig. 4D). The failure to detect significant associations in the other 10 environments indicates an environmental effect of this gene. Together, these results support the notion that cis-variations around ZmINCW1 affect its expression, which, in turn, can control kernel size and weight in maize.

Overexpression of Maize ZmINCW1 in Arabidopsis Can Increase Seed Weight

To further verify the function of ZmINCW1, we identified a T-DNA mutant of the AtcwINV2 gene (stock, SALK_068113C; http://www.arabidopsis.org/), which is the ortholog of ZmINCW1 in Arabidopsis (Supplemental Fig. S5). This line has a T-DNA insertion in the fourth exon of AtcwINV2 (Fig. 5, A and B), and this insertion disturbs the glycosyl hydrolase C-terminal domain. Compared with wild-type (Columbia-0) controls, the homozygous mutants showed normal growth and could produce normal seed (Fig. 5, C and D). However, the thousand seed weight was reduced significantly in the mutant plant (16.85 mg versus 16.14 mg, one-way ANOVA, $n = 20/32, P = 7.34 \times 10^{-6}$; Fig. 5E), suggesting that AtcwINV2 could affect Arabidopsis seed development.

Next, we overexpressed ZmINCW1 in this mutant, and the expression level of ZmINCW1 was confirmed using RT-PCR and western blot (Fig. 5, F and G). We screened two positive transgenic lines (T1) that expressed ZmINCW1 and eight negative transgenic lines that had no detectable expression of ZmINCW1 or that did not have the transgene. Both positive and negative T1 transgenic lines bear normal seeds (Fig. 5, H and I); however, the positive T1 transgenic lines had increased thousand seed weight compared with the negative T1 transgenic lines by 28.35% (21.52 mg versus 16.77 mg, one-way ANOVA, $n = 6/26, P = 1.51 \times 10^{-12}$; Fig. 5J). We also found significant differences between wild-type and negative T2 transgenic lines ($n = 7/5, P = 9.91 \times 10^{-3}$; Fig. 5K) and between positive transgenic lines and negative transgenic lines in the T2 generation ($n = 6/5, P = 0.03$; Fig. 5K). These findings suggest that ZmINCW1 has conserved function for seed development in maize and Arabidopsis.

DISCUSSION

Maize has tremendous phenotypic and genotypic diversity. It has been estimated that there is a polymorphic site in every 44 bp on average, that the B73 reference genome sequence may capture only ~70% of the low-copy genome fraction represented by 27 diverse maize inbred lines (Gore et al., 2009), and that ~50% of the representative transcript assemblies identified from 503 maize inbred lines are not present in B73

Figure 4. ZmINCW1 was significantly associated with maize kernel development. A, ZmINCW1 is located in the QTLs identified in the B73 × BY804 population for kernel size and weight. 12YN, Yunnan province in 2011; 11DHN, Hainan province in 2011. The arrow indicates the position of ZmINCW1. B, SNPs in ZmINCW1 were significantly associated with kernel size and weight in an association panel. C, GWAS of the expression level of ZmINCW1. The red points indicate the SNPs located in ZmINCW1. D, The expression level of ZmINCW1 was significantly positively correlated with HKW in 2011 Yunnan ($n = 292, r = 0.16, P = 7.30 \times 10^{-3}$).
Jin et al. (2016) identified 13,382 genes with expression presence/absence in 368 maize inbred lines and found that 788 novel genes were associated with 487 metabolic traits and a novel gene was associated with kernel width. These pan-genome and pan-transcriptome analyses showed great diversity and the importance of presence/absence or expression presence/absence for agronomic traits (Lai et al., 2010; Jin et al., 2016).

In this study, we mapped 373 QTLs with the SLM model for natural variation of maize kernel size and weight with 10 RIL populations. This represented 309 independent loci. The total numbers of QTLs identified by other studies, which used only one population, ranged from 12 to 55 (Liu et al., 2014; Zhang et al., 2014; Jiang et al., 2015; Chen et al., 2016; Raihan et al., 2016). Compared with the results published previously, we identified many more QTLs for kernel size and weight. There might be two main reasons for the greater number of QTLs identified in this study. First, RIL populations had more recombinant events compared with F2 populations used by other groups. Second, more diversity was introduced with more parental inbred lines (14 in this study) compared with two or four lines used by others. Neuffer and Sheridan (1980) estimated that maize kernel mutants map to 285 loci. This number is very close to the number of loci (309) identified for natural variation of kernel size and weight by this study. This estimate and our results show the complexity of the genetic basis of maize kernel size and weight.

Cell wall invertase, which hydrolyzes Suc into Glc and Fru, plays an important role in plant growth and development. Transgenic carrot (Daucus carota) plants with reduced cell wall and vacuolar invertase activity had altered phenotypes at the very early stages of development and reduced tap root development leading to smaller organ size (Tang et al., 1999). Rice GIF1, a cell wall invertase, was reported to affect grain filling and weight (the gif1 mutant had ~24% lighter seeds compared with the wild type) and was a domestication gene (Wang et al., 2008). In maize, Mn1 (incw2), which also encodes a cell wall invertase, was confirmed to be important for kernel development. Kernel weight of the Mn1 mutant was about 20% of wild-type weight due to the low cell wall invertase activity (Lowe and Nelson, 1946; Miller and Chourey, 1992). ZmINCW1 also encoded a cell wall invertase and was located in QTLs mapped in three RIL populations and was significantly associated with kernel size and weight. T-DNA insertion lines of the Arabidopsis ortholog (AtcwINV2) of ZmINCW1 had reduced seed weight. Transformation of ZmINCW1 into this mutant increased seed weight, which indicates that ZmINCW1 had conserved function for kernel/seed development in maize and Arabidopsis. Similar conserved function also was reported...
for Mn1, OsGIF1, and AtcwINV1. Constitutive expression of Mn1, AtcwINV1, and OsGIF1 via a transgenic method in an elite maize inbred line (Ye478) produced larger cobs and kernels, leading to up to 145.3% improvement in grain yield (Li et al., 2013). These results suggest that genes encoding cell wall invertase might be a good choice for yield improvement through marker-assisted selection or genetic engineering.

Comparative genetic analysis is a powerful method for identifying genes that have conserved functions across species, such as flowering time (Ghd7 in rice and ZmCCT in maize; Xue et al., 2008; Hung et al., 2012; Yang et al., 2013) and branching regulation (hb1 in maize and OsTBI in rice; Takeda et al., 2003; Clark et al., 2006). Seed size and weight are two of the most important agronomic traits for yield and undergo selection during domestication. In rice, many genes affecting kernel development have been cloned (Supplemental Table S7), such as GS3, GW2, and GS5. Their orthologs in maize, ZmGS3 (Li et al., 2010a), ZmGW2-CHR4 and ZmGW2-CHR5 (Li et al., 2010b), and ZmGS5 (Liu et al., 2015), also were found to be involved in kernel development, but with different mechanisms. Here, we found that ZmINCW1 has conserved function for kernel/seed weight in maize and Arabidopsis and that expression regulation by cis-elements might be the cause of the phenotypic change. This is very different from rice GIF1, where a one-nucleotide deletion caused the premature termination of its open reading frame. These findings suggest that even though these genes have conserved functions, the types of genetic variation important for the phenotype may be different between species.

We used comparative genetic analysis and identified 30 genes that are orthologs of 18 cloned rice genes for seed size or weight. Among these 30 genes, 26 are located in the candidate region mapped by at least one method (SLM, JLM, and GWAS) in the RIL populations and five were found to be significantly associated with kernel traits by candidate gene association mapping in a large association panel. Given the conserved functions of many of the known genes for kernel development in maize, rice, and wheat (Su et al., 2011; Hong et al., 2014; Qin et al., 2014; Jaiswal et al., 2015; Wang et al., 2015, 2016; Ma et al., 2016; Simmonds et al., 2016), these genes represent additional candidates for kernel development across various species.

In summary, our findings shed light on the genetic basis of kernel size and weight in maize. We provided candidate genes for many of the loci that contribute to natural variation in maize kernel size and weight. We also provided evidence for a conserved and unique genetic architecture of kernel traits in maize compared with rice.

MATERIALS AND METHODS

Plant Materials and Phenotype Measurements

Seven RIL populations (B73 × BY804, KU13 × B77, K22 × CI7, DAN340 × K22, ZHENGS58 × SK, YU87-1 × BK, and ZONG3 × YU87-1) were planted in eight trials in Hubei, Chongqing, Henan, Yunnan, and Hainan province in China during 2011 and 2012, while the other three RIL populations (DE3 × BY815, K22 × BY815, and BY815 × KU13) were planted in four trials (Chongqing, Hubei, Henan, and Yunnan province in China during 2012) because of insufficient seeds for field trials in 2011. An association mapping population consisting of 540 inbred lines (AM540) also was planted in these eight environments during 2011 and 2012. All populations were planted with one random-block replication per location. For each line, we planted 11 plants per replication selected five well-matured ears in the middle of the field to measure five kernel size and weight traits (i.e. KL, KW, KT, HKW, and KTW). Before measuring traits, we first mixed kernels of these five ears and used a digital ruler to measure KL, KW, and KT of 30 single kernels (illustrated in Fig. 1A). The average of these 30 kernels was used to represent the trait measurement. We measured HKW three times for a single line and used the mean value to represent HKW for that line. We used 250 mL of kernels to measure the KTW for each line, and if there were not enough kernels to measure 250 mL, we used at least 50 mL of kernels to measure the weight and then converted it to the 250-mL weight.

We used the BLUP value of each line to perform data analysis, including phenotype statistics, correlation analysis, and QTL mapping. BLUP values were computed by PROC MIXED in the Statistical Analysis System, and Pearson correlation coefficients were calculated with Excel. The heritability for each trait was calculated as follows: $h^2 = \frac{s^2}{d^2} = \frac{s^2}{s^2/n}$, where s^2 is the genetic variance, d^2 is the residual variance, and n is the number of environments.

Genotype

Ten RIL populations used in this study have been genotyped with the Illumina MaizeSNP50 BeadChip, with each population having 11,360 to 15,285 polymorphic markers, and these polymorphic markers were used to construct a high-density linkage map (Pan et al., 2016). These 10 populations contain 1,979 to 3,071 genetic blocks in which no recombination events occur. The 14 inbred lines used to construct the 10 RIL populations also were contained in the 368 lines that were genotyped by RNA sequencing in a previous study (Fu et al., 2013). Thus, we projected the 1.03 million SNP genotypes of the 14 parental lines onto their 1,887 offspring RILs using a two-step imputation strategy. We first used a method similar to the aforementioned imputation to separately project high-density SNPs from two parents onto offspring RILs based on the linkage map for each population, and then we mapped the projected genotypes of RILs to base pairs according to the parental genotypes. In total, there were 14,612 genetic blocks for JLM and 185,212 blocks for GWAS.

SLM, JLM, and GWAS in the RIL Populations

SLM was performed by composite interval mapping (CIM) using the Windows QTL Cartographer software version 2.5 (Wang et al., 2012) in each RIL population. The program settings were as follows: CIM model = model 6; Standard model; control markers numbers = 5; window size = 10 centimorgan; regression method = Backward Regression Method; walk speed = 0.5 centimorgan. We used LOD = 2.5 as the threshold, and the 2-LOD interval was considered as the QTL candidate region.

We combined 10 RIL populations to perform JLM and GWAS (Xiao et al., 2016). For JLM, a linear mixed model was used to detect significant recombination blocks. The model is as follows: $y = X\beta + Zg + e$, where $X\beta$ represents fixed effects, Z is an N × P matrix for the genotype (N is the total number of SNPs and P is the number of lines used to construct RIL populations), y is a vector of genetic effects for markers, e is a vector of polygenic effects, and e is a vector of the residual errors. The restricted maximum likelihood was used to estimate the parameters, and a permutation test of 500 permuted samples was used to determine the threshold of likelihood ratio test scores. At the type I error rate of 0.05, the threshold of likelihood ratio test scores was 2.76.

For GWAS, we used a stepwise regression method (Tian et al., 2011) with minor modification. To control the polygenic background effect, the GWAS was performed one chromosome at a time. For each chromosome, we forced population effects and the effects of QTLs detected by SLM and JLM from other chromosomes to be included in a general linear model. The residual of this model was then used as the dependent variable to test all SNPs on the current chromosome. We used both forward and backward regressions to select variables, and the cutoff P value for SNPs entering or leaving the model was determined by 500 permutations. The SNPs in the final model were regarded as significant SNPs, and the P value was calculated from the marginal F values of the SNPs. To reduce SNP redundancy, we performed a final backward
regression for the significant SNPs. For SNPs falling within the QTL regions, a backward regression was conducted one QTL at a time, where population effects and all other QTLs were fitted to the model. For the remaining SNPs falling outside the QTL regions, a backward regression was conducted by forcing population effects and all QTLs in the model. The median cutoff P value of 10 chromosomes was used as the threshold of the marker resulting in the final backward model.

Overlapping Analysis

To analyze the overlap between QTLs identified by SLM in each of the 10 RIL populations, we compared the confidence intervals of the mapped QTLs. When two QTLs overlapped, they were considered to represent a single unique QTL. For the analysis of overlapping between genes and QTLs, we compared the positions of the genes and the confidence interval of QTLs identified with three methods. If the candidate region of a QTL identified by SLM was larger than 5 Mb, we limited the candidate region to 2.5 Mb on each side of the peak position. Genes that fell into the candidate regions of QTLs identified by SLM and JLM or the 1-Mb flanking region of the significant SNPs identified by GWAS were considered to be located in the mapped QTLs. A significant level was obtained by comparing the number of genes falling within QTLs in our observation with the numbers resulting from 10,000 permutations. For each permutation, we randomly selected 30 genes and counted the number of genes falling within QTL regions. To evaluate the overlaps between QTLs identified by the three different models, a candidate region was used for each QTL identified by SLM and JLM, while the 1-Mb flanking region of the significant SNPs was used for GWAS. When there was an overlap between two QTLs, we considered them as one unique QTL.

Candidate Gene Association Analysis in an Association Panel

We identified 30 maize (Zea mays) orthologs of 18 cloned rice (Oryza sativa) genes based on the MSU Rice Genome Annotating Project (Kawahara et al., 2013). This rice annotation project used 232,821 representative peptide sequences from rice (release 7), Arabidopsis (Arabidopsis thaliana; release 10), poplar (Populus trichocarpa; release 2.2), grapevine (Vitis vinifera; release 1.12x), sorghum (Sorghum bicolor; release 1.4), maize (release 5b filtered set), and Brachypodium distachyon (release 1.0) to identify orthologous groups with OrthoMCL software (Li et al., 2003).

Since 1.25 million SNPs had been mapped previously in AM540 (Liu et al., 2017), we used this genotype data set to identify the SNPs in these 30 genes and then performed candidate gene association analysis. We used the mixed linear model (Yu et al., 2006), which took population structure and kinship into consideration, to test the significance between the SNPs within candidate genes and kernel traits with TASSEL software (Bradbury et al., 2007). The threshold was determined by Bonferroni correction ($P < 0.05/N$, where N is the gene number) for each trait.

Phylogenetic Tree Construction

Amino acid sequences of cell wall invertase protein sequences in rice, maize, and Arabidopsis were aligned using the ClustalW program (Thompson et al., 1994). A phylogenetic tree was constructed with MEGA6 (Tamura et al., 2013). The statistical method was neighbor joining, and 1,000 bootstrap replications were used to test the phylogeny. The substitution model was p-distance, and the partial deletion option was selected to treat gaps/missing data. The genes used for the phylogenetic tree construction were as follows: GRMZM2G095725, ZmInCW1 (GRMZM2G139300), ZmInCW2 (GRMZM2G119689), ZmInCW3 (GRMZM2G121633), and ZmInCW4 (GRMZM2G119944) from maize; OsCIN1 (LOC_Os02g33110), OsCIN2 (GIF1; LOC_Os04g33740), OsCIN3 (LOC_Os03g33720), OsCIN4 (LOC_Os01g73890), OsCINS (LOC_Os04g59690), OsCIN6 (LOC_Os05g59690), OsCIN7 (LOC_Os09g08072), and OsCIN8 (LOC_Os09g81200) and AtCIN1V1 (At1G17390), AtCIN1V2 (At1G36090), AtCIN1V3 (At1G56320), AtCIN1V4 (At5G36190), AtCIN1V5 (At5G3784), and AtCIN1V6 (At5G1920) from Arabidopsis.

GWAS of the Expression Level of ZmInCW1

Expression QTLs for ZmInCW1 were identified through GWAS in an association mapping population consisting of 368 maize inbred lines that were subsets of the 540 diverse lines used for candidate gene association. Gene expression was quantified in these 368 lines by RNA sequencing in a previous study (Fu et al., 2013). Since we had genotyped 368 lines with extra methods (Affymetrix Axiom Maize Genotyping 600K Array and genotyping by sequencing; Liu et al., 2017), we performed expression GWAS again with TASSEL software using a mixed linear ($Q+K$) model (Yu et al., 2006). The threshold was determined by Bonferroni correction, and it was $P < 7.97 \times 10^{-7}$ ($P < 1/n$, where n is the total number of SNPs).

Transgenic Analysis in Arabidopsis

The CTAB method was used to extract the Arabidopsis DNA, and primers AtcInINV2-T-DNA and p745 were used to confirm the T-DNA insertion. Primer ZmInCW1_CDS was used to amplify the maize open reading frame of ZmInCW1. The coding region of ZmInCW1 fused with the hemagglutinin (HA) tag was then cloned behind the cauliflower mosaic virus 35S promoter into pCAMBIA9913-3 vector and transformed into Arabidopsis by Agrobacterium tumefaciens-mediated transformation. Primer ZmInCW1_CDS was used to screen positive transgenic lines. Total RNA was extracted from fresh leaves using an RNA extraction kit (BioTeke), and cDNA was synthesized from the extracted RNA using the Transcript One-Step gDNA Removal and cDNA Synthesis SuperMix kit (TransGen). Quantitative PCR was performed for the gene expression using ZmInCW1 RT and ActIN1T primers. All primers used in this study are listed in Supplemental Table S12.

For protein expression analysis, proteins were extracted from aerial parts of three individual plants (six leaves) and separated by SDS-PAGE. Proteins were transferred to nitrocellulose membranes for western blot. HA detection was performed using a 1:5,000 dilution of anti-HA mouse monoclonal antibody, followed by hybridization with a 1:10,000 dilution of goat anti-mouse horseradish peroxidase secondary antibody. The horseradish peroxidase signal was detected by the ECL substrate kit.

When we measured the Arabidopsis seed weight, we first took digital photographs of the seeds and then measured the seed weight. With each photograph, we used ImageJ software to count the number of seeds. For each individual, we measured the weight of at least 200 seeds three to five times with replacement and then converted it to thousand seed weight.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Box plots of kernel size and kernel weight in 10 RIL populations.

Supplemental Figure S2. QTLs detected in 10 RIL populations with separate linkage mapping.

Supplemental Figure S3. Overview of identified QTLs and significant SNPs for KTW, KL, KW, and KT.

Supplemental Figure S4. Significant associations between kernel traits and five maize genes that are orthologs of cloned rice genes for seed size or weight.

Supplemental Figure S5. Significant associations between seven maize mutant genes, which were reported to be involved in maize kernel development and kernel traits.

Supplemental Figure S6. Phylogenetic tree of cell wall invertase proteins in maize, rice, and Arabidopsis.

Supplemental Figure S7. ZmInCW1 was located in candidate regions of QTLs identified in DANS40 × K22 for KL and in DE8 × BY815 for HKW.

Supplemental Table S1. Mean values, SD, and heritability of five kernel traits in 10 RIL populations.

Supplemental Table S2. Correlation coefficients between HKW and three other kernel size traits in 10 RIL populations.

Supplemental Table S3. QTL numbers for kernel size and weight in 10 RIL populations.

Supplemental Table S4. List of phenotypic variations explained by pleiotropic QTLs that could be detected in more than one population for the same traits.

Supplemental Table S5. List of phenotypic variations explained by pleiotropic QTLs that could be detected in more than one population for different traits.
Supplemental Table S6. Full list of identified QTLs with SLM for kernel size and weight in 10 RIL populations.

Supplemental Table S7. Full list of identified QTLs with JLM for kernel size and weight through combining 10 RIL populations.

Supplemental Table S8. Full list of identified significant SNPs with GWAS for kernel size and weight through combining 10 RIL populations.

Supplemental Table S9. Full list of candidate SNPs identified with GWAS for kernel size and weight through combining 10 RIL populations.

Supplemental Table S10. Significant associations between reported maize genes for seed development and maize kernel size and weight in this study.

Supplemental Table S11. Significant associations between maize orthologs of cloned rice genes and maize kernel size and weight.

Supplemental Table S12. Primers used in this study.

ACKNOWLEDGMENTS

We thank Xiongbing Yan for help in field work and Dr. Zhibing Lai and Dr. Hongze Wang for helping with the Arabidopsis transgenic experiments.

Received May 31, 2017; accepted August 12, 2017; published August 15, 2017.

LITERATURE CITED

translation initiation of rps3 mRNA in maize mitochondria. Plant Cell 24: 3087–3105