












development (Quint et al., 2009). The auxin phenotypes
of iar4 roots are believed to arise from altered auxin
homeostasis. To clarify the function of MAB1 in auxin-
regulated organ formation, we analyzed the expression
of an auxin-responsive marker, DR5rev:GFP, in the
mab1-1 mutant (Friml et al., 2003). DR5rev:GFP was
expressed in the tips of wild-type roots (Fig. 5A). In
mab1-1 mutants, the marker gene showed reduced ex-
pression in the root tips (Fig. 5B), as previously reported
forDR5:GUS expression in iar4 roots (Quint et al., 2009).
In contrast, up-regulated GFP signals were found in the
vascular tissue of the maturation zone of mab1-1 pri-
mary roots (Supplemental Fig. S6, A and B). This
analysis indicates that the conflicting findings on DR5
expression cannot simply be explained in terms of
MAB1 function in auxin homeostasis. Next, we ana-
lyzed the localization of PIN auxin efflux carriers that
drive polar auxin transport in the mab1-1 mutant. PINs
were localized in the basal side of the plasma mem-
brane in the stele and apically in the epidermis of wild-
type roots (Fig. 5C). The amount of PIN proteins (PIN1
and PIN2) appeared to be lower in mab1-1 roots than in
wild-type roots, although no defect in PIN polarity was

found inmab1-1 (Fig. 5D; Supplemental Fig. S6, C–E). In
addition, exogenous auxin treatment did not rescue the
short-root phenotypes and decreased PIN2 abundance
in mab1-1 mutants, and mab1-1 roots displayed the
same auxin response observed in wild-type roots
(Supplemental Fig. S6, F–L), indicating that mab1 phe-
notypes do not result from defective auxin homeostasis
and auxin response but rather from defective polar
auxin transport in root development. In embryogenesis,
we observed enhanced and expanded expression of
DR5rev:GFP at the tips of cotyledon primordia and
radicles of mab1-1 embryos compared to that in wild-
type embryos (Fig. 5, E and F). In wild-type embryos,
PIN1 was localized to the upper side of the plasma
membrane in the protodermal cells toward the tips of
the cotyledon primordia and basally in inner cells
(Fig. 5, G and H; Supplemental Fig. S6M). Almost
normal PIN1 polaritywas found in the protodermal cell
layer and inner cells ofmab1-1 embryos (Fig. 5, G–J). By
contrast, the level of PIN1 was severely reduced in
mutant embryos, especially in provascular tissues.
The number of PIN1-expressing provascular cells
was severely reduced, and discontinuity of the

Figure 5. Auxin-regulated organ development in
wild type and mab1-1. A and B, DR5rev:GFP
expression in roots of wild type (Col; A) and
mab1-1 (B). Arrowheads indicate expanded GFP
signals. C andD, Immunolocalization of PIN1 and
PIN2 in wild-type (Col; C) andmab1-1 (D) roots. E
and F, DR5rev:GFP expression in heart-stage
embryos of wild type (Col; E) and mab1-1 (F). G
to J, PIN1 localization in the longitudinal middle
(G and I) and surface (H and J) sections of wild-
type (Col; G and H) andmab1-1 (I and J) embryos
at the midheart stage. The arrow indicates the
predicted direction of auxin transport by the
polarity of PIN1 localization. K, Reverse tran-
scription quantitative PCR analysis of cDNA from
wild-type and mab1-1 roots in 5-d-old seedlings.
Expression levels of PIN genes were unaffected by
the mab1-1 mutation. Data shown are means of
four independent experiments, with error bars
representing the SD. L to O, PIN2-GFP localization
in PIN2p:PIN2-GFP roots incubated with DMSO
(L and N) or 500 mM 3-BP (M and O) for the in-
dicated times. Scale bars = 20 mm.
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PIN1-expressing provascular cells was often found in
mab1-1 embryos (Supplemental Fig. S6, M–O). These
results indicate that MAB1 modulates polar auxin
transport in organ development through control of the
level of PIN. We investigated the cause of the decrease
in PIN levels in mab1 mutants by comparing tran-
scription levels of PIN genes in roots and whole seed-
lings of wild type and mab1-1mutants. We did not find
any evidence of a change in PIN transcription levels in
the mutant (Fig. 5K; Supplemental Fig. S7), suggesting
that regulation of PIN protein levels viaMAB1might be
posttranscriptional.
Furthermore, to examine whether pharmacological

inhibition of the TCA cycle also affects PIN localization
as the mab1-1 mutation did, we treated PIN2-GFP-
expressing wild-type seedlings with 3-bromopyruvate
(3-BP), one of the pyruvate mimetics known to function
as an inhibitor of several kinds of enzymes in the TCA
cycle (Shoshan, 2012). Treatment with 3-BP induced
PIN2-GFP aggregations in the cytoplasm and a subse-
quent severe reduction of PIN2-GFP in the plasma
membrane (Fig. 5, L–O; Supplemental Fig. S8). These
results imply that the decreased level of PIN proteins in
the mab1-1 mutant resulted from the deficiency of the
TCA cycle caused by PDC dysfunction.

mab1 Alters Intracellular Distribution of PIN Auxin
Efflux Carriers

PIN proteins are continuously internalized from the
plasma membrane and recycled between the plasma
membrane and endosomes (Geldner et al., 2003;
Dhonukshe et al., 2007). Furthermore, PIN proteins are
targeted to the lytic vacuolar compartment and de-
graded there (Jaillais et al., 2006, 2007). This raises
several possible ways in which PIN targeting to the
vacuole could be accelerated and PIN recycling re-
duced inmab1mutants. First, we analyzed the effects of
the mab1 mutation on PIN targeting to the vacuole us-
ing concanamycin A, a specific inhibitor of vacuolar
H+-ATPase required for acidification of lytic compart-
ments and protein degradation. We examined the ac-
cumulation and trafficking of PIN2-GFP to the vacuole
for degradation after concanamycin A treatment. In
wild-type roots, a small increase in GFP aggregation
was detectable 3 h after concanamycin A treatment
(Fig. 6, A–C and G–J). At 6 h after the start of treatment,
the cells showed induced accumulation and aggrega-
tion of PIN2-GFP in vacuoles in wild-type roots, pre-
dominantly in cells soon after division. In contrast,
PIN2-GFP aggregation and accumulation in lytic vac-
uoles was detectable 3 h after concanamycin A treat-
ment in most epidermal cells of mab1-1 roots (Fig. 6,
D–F). These results indicate that PIN2 degradation in
vacuoles was accelerated in mab1-1. Next, treatment
with the phosphatidylinositol-3-kinase inhibitor wort-
mannin, which alters prevacuolar compartment iden-
tity and causes swelling of the compartment, induced
much more swelling of intracellular PIN2-GFP signals

in mutant roots than in wild-type roots (Supplemental
Fig. S9). At the same time, the abundance of PIN2-GFP
in the plasmamembrane was increased bywortmannin
treatment in mab1-1 root epidermis. These results indi-
cate that mab1 results in vacuolar trafficking of PIN2,
leading to severe reduction of the PIN2 level in the
plasma membrane. Next, we examined whether a
reduced PIN2 level in the plasma membrane is a
result of defective PIN2 recycling. PIN2-GFP-
expressing seedlings were treated with brefeldin A
(BFA) for 90 min and then permitted to recover in
liquid medium for 120 min. BFA bodies disappeared
in most of the epidermal cells of the wild type (Fig. 6,
K–M, Q, and R), whereas BFA bodies were often
found in the mab1-1 epidermis (Fig. 6, N–R), indi-
cating that mab1 also reduced PIN2 recycling via
endosomes.

DISCUSSION

The mitochondrial PDC plays a central role in con-
trolling the entry of carbon into the TCA cycle. The
enzyme complex, whose biochemical functions under-
pin energy production, respiration, and primary me-
tabolism, has a remarkable effect on the growth and
development of organisms. The PDC consists of three
enzyme components: E1, E2, and E3. These components
have distinct enzymatic activities that act sequentially
to convert pyruvate to acetyl-CoA and to reduce NAD+

to NADH. Eukaryotic mitochondrial PDH consists of
20–30 E1 heterotetramers (E1a and E1b), one E2 60mer,
and six E3 dimers. In Arabidopsis, the components of
the mitochondrial PDC are encoded by two E1a genes
(IAR4 and IAR4L; Luethy et al., 1995; Quint et al., 2009),
one E1b gene (MAB1; Luethy et al., 1994), three E2
genes (mtE2-1, mtE2-2, and mtE2-3; Guan et al., 1995;
Thelen et al., 1999; Taylor et al., 2004), and two E3 genes
(At1g48030 and At3g17240; Lutziger and Oliver, 2001).
However, while the biochemical function of each
component is known, the role of PDC activity as a
whole, and/or each enzyme component individually,
in plant growth and development is not well under-
stood. In our studies, the mab1-1 mutation caused a
partial reduction of enzymatic activity and respiration,
and showedmild auxin-related phenotypes. TheMAB1
knockout mutant, mab1-3, did not produce homozy-
gous plants, suggesting that MAB1 functions as a mi-
tochondrial PDH E1b and plays an essential role in
plant development. In addition, the physical interaction
between MAB1 and IAR4 (Fig. 3A), specifically the
decreased abundance of IAR4 and IAR4L in mab1-
1 (Fig. 3, C–E; Table 1) and the phenotypic similarities
between mab1 and iar4 (Supplemental Figs. S2 and S5),
suggests that IAR4 and IAR4L contribute to PDC ac-
tivity as E1a components. Previously, IAR4 was iden-
tified as a gene for auxin conjugate sensitivity and auxin
homeostasis. Most IAA is conjugated to peptides,
amino acids, or sugars, while active free IAA occurs in
minute amounts (Ludwig-Müller, 2011). This suggests
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that auxin homeostasis could be regulated through
the formation and hydrolysis of auxin conjugates.
Many IAA-amino acid conjugates inhibit root
elongation in a similar manner to IAA, possibly
through hydrolysis by an endogenous auxin con-
jugate hydrolase. Mutant iar4 plants have reduced
sensitivity to several IAA-amino acid conjugates,
such as IAA-Ala and IAA-Gly. Interestingly, we
found overaccumulation of the corresponding
amino acids, especially those derived from pyru-
vate such as Ala and Gly, in mab1-1 mutants that
also have reduced sensitivity to IAA-Ala (Fig. 4D;

Supplemental Fig. S5). A mutation in mtE2-1 has
been reported to cause overaccumulation of amino
acids, especially Ala, and of intermediary metabo-
lites of the TCA cycle (Yu et al., 2012). This suggests
that iar4 mutants possibly accumulate the same
amino acids as PDH-deficient mutants, leading to
an inhibitory effect on the hydrolysis of IAA-amino
acids. There appears to be a close correspondence
between the specificity of IAA-amino acid conju-
gate response defects in iar4 and that of the amino
acids accumulated in mab1 (Fig. 4D; LeClere et al.,
2004).

Figure 6. PIN2-GFP degradation and recycling inwild-type andmab1-1 roots. A to F, PIN2-GFP localization in epidermis of wild-
type (Col; A to C) andmab1-1 (D to F) roots treatedwith dimethyl sulfoxide (A and D) andwith 1 mM concanamycin A (concA) for
3 h (B and E) and 6 h (C and F). G to I, The brightness of the GFP fluorescence was increased equally in both wild-type (Col; left)
and mab1-1 (right) epidermal cells harboring PIN2p:PIN2-GFP, marked by an asterisk in A to F. Arrows indicate GFP accumu-
lation in vacuoles and GFP aggregation in the cytosol. J, Percentage of epidermal cells of 5-d-old seedlings with internalized
PIN2-GFP signals, treated with dimethyl sulfoxide, and with 1 mM concA for 3 h and 6 h. K to P, PIN2-GFP localization in epi-
dermis of the primary roots of 4-d-old wild-type (Col; K to M) andmab1-1 (N to P) seedlings before (K and N), after treatment with
50 mM BFA for 90 min (L and O), and 120 min after BFA washout (M and P). Q, Percentages of epidermal cells harboring BFA
bodies after treatment with BFA for 90 min. n = 992, 571 cells from seven roots in the wild type and eight inmab1-1. Data shown
are mean values, with error bars representing the SD. P = 0.392, Student’s t test. R, Percentages of epidermal cells harboring small
vesicles within 120 min after BFAwashout. n = 716, 510 cells from six roots in the wild type and nine inmab1-1. Data shown are
mean values, with error bars representing the SD. ** P , 0.01. Scale bars = 10 mm.

904 Plant Physiol. Vol. 180, 2019

Ohbayashi et al.

 www.plantphysiol.orgon October 22, 2020 - Published by Downloaded from 
Copyright © 2019 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org/cgi/content/full/pp.18.01460/DC1
http://www.plantphysiol.org


Role of PDC E1b in Auxin-Regulated Organ Development

Local auxin accumulation promotes aerial and un-
derground organ development. Mutations in Arabi-
dopsis genes encoding subunits of the mitochondrial
PDC have been reported to cause defective organ de-
velopment; we report a similar effect here in mab1-1.
The mutant m132, which has a defective mtE2-1 gene,
and T-DNA insertion alleles of mtE2-1 and mtE2-3
showed reduction in organ size (Yu et al., 2012; Song
and Liu, 2015), whereas iar4 has defects in root elon-
gation (LeClere et al., 2004; Quint et al., 2009). Increas-
ing the levels of auxin can rescue the defects in iar4,
suggesting that IAR4 is required for root development
through the control of auxin homeostasis. However, the
inconsistent auxin response in mab1 mutants cannot
simply be explained in terms of auxin levels. Although
DR5rev:GFP was reduced in mab1-1 root tips as in iar4
(Fig. 5B; Quint et al., 2009), the auxin response marker
was up-regulated in the vasculature of the maturation
zone of mab1-1 roots (Fig. 5D; Supplemental Fig. S6, A
and B). We suggest that a deficiency of basipetal auxin
transport in the vasculature could account for this in-
consistent auxin response. This is consistent with the
severe reduction of PIN1 expression in mab1-1 roots. In
addition, the results of our PIN1 localization analysis
indicated that in mab1 embryos auxin is transported to
the tips of cotyledon primordia via the protoderm, but
does not flow down via provascular tissues due to se-
vere reduction of PIN1 and discontinuity of PIN1-
expressing provascular cells in inner cells (Fig. 5;
Supplemental Fig. S6). In addition, exogenous auxin
treatment failed to rescue impaired PIN2 localization in
mab1 roots, indicating that auxin homeostasis is not
involved in the control of PIN localization in the mab1
background (Supplemental Fig. S6). Our results sug-
gest that MAB1 is required for organ development by
affecting PIN-dependent polar auxin transport. Addi-
tionally, we showed that themab1mutation accelerated
PIN2 trafficking to vacuoles and impaired PIN2 recy-
cling (Fig. 6; Supplemental Fig. S9). Similar reduced
PIN2 recycling and enhanced PIN2 targeting to the
vacuole have been observed in seedlings treated with
inhibitors of exocytosis (Zhang et al., 2016), suggesting
that MAB1 is required for PIN exocytosis to the plasma
membrane. In addition, our results of pharmacological
analysis using 3-BP, the inhibitor of the TCA cycle,
suggest that the effect of the mab1 mutation on PIN
localization is caused by a dysfunctional TCA cycle.
The exact mechanisms by which mitochondrial PDH
and/or the TCA cycle affect PIN trafficking remain to
be determined. Considering the fact that TCA cycle
plays a key role in ATP production, it is possible that
ATP depletion affects PIN trafficking. ATP deple-
tion has been shown to induce marked internaliza-
tion of polarly localized membrane proteins in rat
cholangiocytes (Doctor et al., 2000). Although
ATP depletion has been shown to inhibit clathrin-
mediated endocytosis slightly in Arabidopsis seed-
lings (Dejonghe et al., 2016), which seems opposite to

the effect of mab1 and 3-BP treatment, its effect on PIN
trafficking remains obscure. Further investigation of the
effect of mab1 and 3-BP treatment on PIN trafficking
will be necessary. Another possibility is the generation
of reactive oxygen species, which is generally associ-
ated with respiration in nongreen tissues. Recently, the
importance of redox homeostasis in auxin-dependent
organ development has been clarified. A mutation in
the ROOT MERISTEMLESS1/CADMIUM SENSI-
TIVE2 (RML1/CAD2) gene, which encodes the first
enzyme of glutathione biosynthesis, abolishes postem-
bryonic root development (Vernoux et al., 2000).
Additional mutations in the NADPH-dependent thio-
redoxin reductases, NTRA and NTRB, interfere with
developmental processes of aerial organs through
modulation of auxin action in the cad2 mutant back-
ground (Bashandy et al., 2010). Furthermore, nitric
oxide (NO), which regulates redox reactions in plant
defense mechanisms, has also been reported to control
the PIN1 level in organ development (Fernández-
Marcos et al., 2011). The NO-overproducing mutant
chlorophyll a/b binding protein underexpressed 1/NO
overproducer 1 (cue1/nox1) displays a severe reduction
in PIN1 levels in addition to reduced root meristem
activity. Thus, redox reactions have been shown to have
several roles in PIN regulation. Further analyses of the
mab1mutant will undoubtedly provide insight into the
association between mitochondrial PDH enzymatic
activity and polar auxin transport.

CONCLUSIONS

Here, we show that MAB1, which encodes a mito-
chondrial PDH E1b, is a novel molecular player in
auxin-regulated organ formation in Arabidopsis. The
mab1 mutation affected PDC enzymatic activity, respi-
ration, and amino acid metabolism. Interestingly, in the
mab1 mutant, the level of PIN auxin efflux carrier was
decreased, possibly by impaired PIN recycling and ac-
celerated targeting to lytic vacuoles. Our findings sug-
gest a functional link between this mitochondrial
metabolic pathway and PIN trafficking in organ
formation.

MATERIALS AND METHODS

Plant Materials and Growth Condition

Arabidopsis (Arabidopsis thaliana) accession Columbia (Col) was used as the
wild type. The following mutant alleles were used: pid-3 (Col; Bennett et al.,
1995) and pid-2 (Lansberg erecta [Ler]; Christensen et al., 2000). mab1-1 was
isolated from ethylmethane sulfonate-mutagenizedM2Col seeds obtained from
LEHLE SEEDS (http://www.arabidopsis.com/). mab1-2 and mab1-3 carry
T-DNA insertions at ;310 bp upstream of the translation start site and in the
third exon of MAB1, respectively. mab1-2 (SALK_111681) and mab1-3
(GABI_550G12) were obtained from the Arabidopsis Biological Resource
Center and Nottingham Arabidopsis Stock Center (Alonso et al., 2003; Rosso
et al., 2003). Plants carrying the mutant alleles were backcrossed three times to
Col prior to phenotypic analysis. The plants were grown on soil as previously
described (Fukaki et al., 1996). Siliques were collected for analyses of embryo
phenotype, immunolocalization, and in situ hybridization. For analysis of
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seedling phenotypes, seeds were surface sterilized and germinated on Mura-
shige and Skoog plates as previously described (Furutani et al., 2004).

Mapping and Cloning of MAB1 Genes

The mab1-1 mutant was crossed with pid-2 (Ler) plants to map the MAB1
locus. Approximately 200 F2 seedlings lacking cotyledons and exhibiting short
roots were screened, and the MAB1 locus was mapped between the bacterial
artificial chromosome contigs MBA10 and MFG13 on chromosome V. A 5.0-kb
DNA fragment, which included the 1.0 kb upstream region and the 0.7 kb
downstream region of the At5g50850 gene, was cloned into the binary vector
pBIN19. In addition, the MAB1-coding region was inserted into pGWB5 be-
tween the cauliflower mosaic virus 35S promoter and the GFP-coding region
(Nakagawa et al., 2007a). For MAB1p:MAB1-mCherry transformants, the ge-
nome fragment of the 1.0-kb sequence upstream of the translation start site of
MAB1 (At5g50850), the coding sequence of MAB1, and the mCherry sequence
were amplified and cloned into pGWB501 vector (Nakagawa et al., 2007b).
These constructs were transformed into Agrobacterium tumefaciens strain MP90,
which was then transformed into mab1-1 plants using the floral dip method
(Clough and Bent, 1998). Transformants were selected by germinating seeds on
medium containing 30mg/mL kanamycin. Homozygous lines were obtained in
the T3 generation, and T3 or T4 homozygous lines were used for complemen-
tation testing and reporter analysis.

Microscopy

For histological analysis, embryos were stained with 30 mg/mL of FM4-64
and fluorescence was imaged using a confocal laser-scanning microscopy
(FV1000; Olympus). Whole-mount immunofluorescence was performed using
a previously described protocol (Sauer et al., 2006). Antibodies were diluted as
follows: 1:150 for goat anti-PIN1, 1:400 for sheep anti-PIN2, 1:600 for Alexa488-
and Alexa546-conjugated anti-rabbit, anti-goat, and anti-sheep secondary an-
tibodies. For visualizing mitochondria, seedlings were incubated in 1 mM of
MitoTracker Red580 (Molecular Probes) for 15min in the dark and thenwashed
three times for 15 min. Images for all staining procedures were obtained using
an Olympus FV1000 confocal microscope.

BiFC

The MAB1 and IAR4 open reading frames and the At2g25140/CLPB4 (CA-
SEIN LYTIC PROTEINASE B4) mitochondrial presequence, which corresponds
to the region spanning amino acids 1–90, were cloned into BiFC vectors or a
fluorescent protein expression vector (Lee et al., 2007; Taoka et al., 2011). For the
BiFC experiments, 3 mg each of Venus-N-terminal- and Venus-C-terminal-
tagged protein expression vector (MAB1-VN and IAR4-VC, CLPB4-VN and
IAR4-VC, and MAB1-VN and CLPB4-VC), and 3 mg of mitochondria-targeted
TagRFP expression plasmid (CLPB4-TagRFP), were cotransformed into Ara-
bidopsis protoplasts as previously described (Takeuchi et al., 2000). The CLPB4-
TagRFP expression plasmid was introduced as a marker for transformation
efficiency. After incubation at 23°C for 12 h in the dark, Venus (BiFC) and
TagRFP (transformation marker) fluorescence was analyzed by confocal
microscopy.

Yeast Two-Hybrid Assay

In order to eliminate mitochondrial transit peptides from MAB1, we per-
formed a PCR amplification of a truncated 1005-bp fragment of MAB1 com-
plementary DNA (cDNA) that corresponded to the region spanning amino
acids 30–363. The fragment was subcloned into pAD-GAL4-GWRFC and pBD-
GAL4-GWRFC (Yamaguchi et al., 2008). The mutation that causes the amino
acid change G284E, found in the mab1-1 mutant background, was introduced
into the truncated MAB1 gene. The plasmids were introduced into the AH109
strain using a Fast-Yeast Transformation kit (G-Biosciences). Empty vectors
were used as negative controls. Interaction between the bait and target proteins
was detected by the expression of the HIS3 reporter gene. To distinguish be-
tween leaky expression of theHIS3 gene and the specific interaction of proteins,
detection of a second reporter gene (lacZ) was determined using a filter
lift assay.

In Situ Hybridization

In situ hybridizationwas performed as previously described (Furutani et al.,
2004). Hybridizationwas carried out at 45°C. The template for transcription of a
MAB1 antisense probewas derived from a 606-bp fragment amplified using the
primers pdhe1-b-for in situ-fw and pdhe1-b-for in situ-rv, listed in Supplemental
Table S2.

GUS Staining

ForMAB1p:GUS reporter lines, the genome fragment of the 1.0-kb sequence
upstream of the translation start site of MAB1 (At5g50850) was amplified and
cloned into pBI101.3 vector (Clontech). These constructs were transformed into
Agrobacterium tumefaciens strain GV3101, which was then transformed into Col
plants using the floral dip method (Clough and Bent, 1998).

Tissues were fixed in 90% (v/v) ice-cold acetone and then incubated in GUS
staining solution (100 mM sodium phosphate, pH 7.0, 10 mM EDTA, 10 mM

ferricyanide, 10 mM ferrocyanide, 0.1% [v/v] Triton X-100, and 0.5 mg/mL 5-
bromo-4-chloro-3-indolyl-b-d-GlcA) at 37°C. After the GUS reaction, samples
were destained with 70% (v/v) ethanol, cleared with 8:1:2 (w/v/v) mixture of
2,2,2-trichloroethane-1,1-diol, glycerol, and water, and observed under a mi-
croscope equipped with Nomarski optics (Ni-U; Nikon).

Isolation of Arabidopsis Mitochondria

Mitochondria were isolated from 3-week-old wild-type or mab1-1 seedlings
grown hydroponically under long-day conditions using differential centrifu-
gation and samples were collected and washed (Lee et al., 2008). Aliquots were
frozen at280°C for further analysis of enzymatic activity and differential in gel
electrophoresis.

PDC Enzymatic Activity Assay

PDC activity was assayed spectrophotometrically by measuring NADH
formation at 340 nm in a medium containing 50 mM Tes-NaOH (pH 7.6); 0.2%
(v/v) Triton X-100; 1 mM MgCl2; 2 mM b-NAD; 0.2 mM thiamine pyrophos-
phate; 0.12 mM lithium -CoA, 2 mM L-Cys, and 1 mM sodium pyruvate (Huang
et al., 2015). Assays were initiated by the addition of 100-mL aliquots of mito-
chondria into a cuvette (containing 40–60 mg of protein). An extinction coeffi-
cient of 6229 M21 cm21 at 340 nm for NADH was used for calculations.
Succinate dehydrogenase enzymatic activity was determined based on the
method described previously (Huang et al., 2010). The mitochondrial SDH
activity was assayed spectrophotometrically by monitoring A600, at 25°C, in
1 mL of a reaction medium (50mM potassium phosphate, pH 7.4, 10 mM sodium
succinate, 0.1 mM EDTA, 0.1% (w/v) BSA, 10 mM potassium cyanide, 0.12 mM

dichlorophenolindophenol, and 1.6 mM phenazine methosulfate). The reaction
was initialized by adding isolated mitochondria. An extinction coefficient of
21 mM21 cm21 at 600 nm for reduced dichlorophenolindophenol was used for
calculations.

Oxygen Consumption Assays

O2 consumption by a single root tip (5 mm) from 9-d-old plants grown on
plates was measured as previously described (Sew et al., 2013). The respiration
medium contains 10 mM HEPES, 10 mM MES, and 2 mM CaCl2 at pH 7.2.

DIGE Analysis

Mitochondrial proteins (50 mg) from wild-type (Col) and mab1-1 plants, as
well as a 1:1 mixture of both samples, were acetone-precipitated and resolu-
bilized in lysis buffer as previously described (Huang et al., 2013). Individual
proteins were labeled with fluorescent cyanine dyes Cy2, Cy3, or Cy5 and then
combined and separated on isoelectric focusing strips (pH 3–10 nonlinear).
Two-dimensional gels were run at 50 mA current for 6 h. The fluorescence-
labeled proteins were visualized with a Typhoon Trio laser scanner (GE
Healthcare) and compared with the DECYDER software package (version 6.5;
GEHealthcare).Mass spectrum identification of protein spotswas conducted as
previously reported (Lee et al., 2008).
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Metabolite Extraction and GC-MS Analysis

Plants were grown on plates for 11 d under long-day conditions. Shoots and
roots (six biological replicates) were harvested for GC-MS analysis as previ-
ously described (Huang et al., 2013). Raw GC-MS data preprocessing and sta-
tistical analysis were performed using METABOLOME-EXPRESS software
(version 1.0, http://www.metabolome-express.org).

Reverse Transcription Quantitative PCR and
Semiquantitative Reverse Transcription Quantitative PCR

Total RNAwas isolated from roots or seedlings of 5-d-old seedlings using the
RNeasy Plant Mini Kit (Qiagen). First-strand cDNAwas synthesized from 2 mg
of DNA-treated total RNAwith an oligo(dT)24 primer and SuperScriptII reverse
transcriptase (Invitrogen). Reverse transcription quantitative PCR was per-
formed with the LightCycler 96 (Roche) with SYBR Premix Ex Taq (TaKaRa)
and the gene-specific primer sets according to the manufacturer’s instructions.
b-TUBULIN was measured for an internal control and used to normalize the
data. All primer sequences are listed in Supplemental Table S2.

For semiquantitative reverse transcriptionPCR, cDNAwas synthesized from
1 mg of DNA-treated total RNA with an oligo(dT)24 primer and SuperScriptII
reverse transcriptase (Invitrogen). ACT2 was used for an internal control. All
primer sequences are also listed in Supplemental Table S2.

Drug Application

Drugs were exogenously applied by incubation of 5-d-old seedlings in MS
liquid medium supplemented with 3-bromopyruvate (250 mM, 500 mM), con-
canamycin A (1 mM), and wortmannin (33 mM). Control treatments contained an
equivalent amount of solvent (dimethyl sulfoxide). For concanamycin A and
wortmannin treatment, plants were rinsed twice in half MS liquidmedium after
treatment. For the brefeldin A (BFA) washout experiment, 4-d-old seedlings
were transferred into half MS liquidmediumwith 50mM BFA and incubated for
90 min. The washout of BFA was performed by incubating the seedlings in half
MS liquid medium without BFA for 120 min after 23 rinsing with half MS
liquid media.

Accession Numbers

The accession numbers for DNA sequences used in this study are listed in
Supplemental Table S3.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Phenotypic analyses of the mab1-1 mutant.

Supplemental Figure S2. Phenotypic analyses of mab1 mutants in seedling
development.

Supplemental Figure S3. Complementation test and characterization of
the mab1-2 allele.

Supplemental Figure S4. Expression patterns of MAB1.

Supplemental Figure S5. Effects of IAA-Ala on seedling development in
mab1 mutants.

Supplemental Figure S6. Auxin response in the mab1-1 mutant.

Supplemental Figure S7. Expression analyses of PIN genes.

Supplemental Figure S8. Effects of 3-BP on PIN2 internalization.

Supplemental Figure S9. Effects of wortmannin on PIN2 internalization in
the mab1-1 mutant.

Supplemental Table S1. Metabolomic analysis of shoot and root tissue.

Supplemental Table S2. Primers used in this study.

Supplemental Table S3. Accession numbers of the genes in this study.
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